ultra low power vedic multiplier

Upload: dycsteizn

Post on 06-Jul-2018

219 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/16/2019 Ultra Low Power Vedic Multiplier

    1/6

     Abstr 

    multi

    (EEA

    signi

    capac

    adiab

    μmSuite.

    funct

    energ

    integ

     Keyw

    recensyste

    multi

    Multi

    [9],India

    8×8

    TSM

    suite.

    certai

    appr time-

    ener 

    noise

    effici been

    one sand i

    In

    cons betw

    featu

    whiccircu

     

    ov

    Po

    mana

     

    ct  — In this pplier structur

    L). The powe

    icantly low b

    itance is most

    atic multiplier

    MOS process. Both simul

    onality of suc

    y-aware and

    ation (VLSI) c

    rds: adiabatic;

      plethora of

    tly in literatatic design

     plier based o

     plier Archite

    sutra or “Ver n Vedic Math

    Vedic multip

    C 0.18μm C

     diabatic swi

    n interest, and

    ach is based ovarying clock 

    y used by slo

      immunity a

    ent adiabatic lintroduced as

    inusoidal pows geared towa

    EAL, high

    mptions areeen the outp

    es simplicity

    substantiallt complexity.

    l Tra

    er Hi

    Me

    sh.bst@gmail.

    aper, we desc

      using Ener

      consumption

    ecause the e

    ly recovered.

    structure have

    technology ation and me

    h logic, makin

    performance

    ircuitry.

    single phase; l 

    I.I NTROD

    multiplication

    re [1]-[8]. Iethodology f 

    n Vedic mat

    ture is based

    tical and Croematics. Con

    lier structure

    OS technolo

    ching [13]-[1

     is being impl

    n a slow char ed ac power

    ly decreasing

    d driving a

    ogic (EEAL)an adiabatic l

    er clock supplrd high-speed

     peed operati

    ensured by ut nodes and

    and static lo

      decreases

    sistor 

    gh-spM. Ch

    EC

    hnad Saha Ins

    com1, suvadip

    ribe an energ

    gy Efficient

    of the propo

    ergy transfer

    he proposed

    been designed

    d verified byasurement re

    g it suitable f 

    - efficient v

    w power, mult 

    CTION 

    algorithm ha

    n this paperor fast and ar 

    ematics [3],[

    on the Urdh

    sswise” algorientional, as

    have been i

    gy, using CA

    5] has recentl

    mented in ma

    ing of the capand a partial

    the supply wi

    ility. In this

    ased on DCVgic style. EE

    y, has simpleand low-ener 

    on as well

    sing a paralle  clock suppl

    gic resembled

    ransistor ove

    Leve

    ed Aanda

    1, S. B

     Dept.1&4, VD

    titute of Tech

    [email protected]

    -efficient Ved

    diabatic Log

    ed multiplier

    ed to the lo

    8x8 CMOS a

     in a TSMC 0.

    Cadence Desiults verify t

    r implementi

    ery-large sca

     plier.

     been propos

    we presenta efficient di

    ],[9]-[12]. T

    a-Tiryakbhya

    thm of ancieell as, adiabat

    mplemented

    ENCE Desi

    y become of

    ny systems. T

    acitive nodesrecovery of t

    hout sacrifici

     paper, Ener 

     logic [16], hL requires on

    implementatioy VLSI desig

    as low ener 

    l resistive pa. EEAL log

      characteristic

    heads and t

     Real

    iabatnerjee

    2, D.

    TT Dept.2 and

    ology1&4, IIT

    m2, deepon.sa

    ic

    ic

    is

    d

    d

    8

    ne

    g

    le

    d

    ait

    e

    m

    ntic

    in

    n

    a

    e

    ye

    g

    y

    asly

    n,n.

    y

    thic

    s,

    e

    T

    descriissue

    shows

     based

    Cross

    adiabaof pe

    imper 

    concl

    EDCVS

    each s

    Figure

    E

    has s previo

    of ene

    clockoverh

    circuit

     

    zatio

    c VeSaha

    3, S. Ja

     ETCE Dept.3

    Delhi2, Jadavp

    [email protected]

    e rest of the

    es the operatiof power diss

      the general

    on Urdhva

    ise” algorit

    tic 8×8 multirformance of

    tive logic sty

    sions are give

    EAL is a dual network and

    tage, as illustr 

     1. EEAL logic (supply (d

    EAL requires

    mple impleusly proposed

    rgy consumpt

    scheme [16],ads. figure 1

    and supply cl

     of U

    ic Min

    4

    ur University3

    2, sankalp.00

     paper is org

    on of EEAL iipation of thi

    implementatio

    -Tiryakbhyam

    m. Implemen

    lier, experimour energy

    les are also d

    n in section V.

    II. EEAL 

    -rail adiabatica pair of cro

    ted by figure

    ) Block diagram () Cascading of In

     only one sin

    entation, an adiabatic logi

    on. As single

    this logic styl(b) and (c) sho

    ock () respec

    tra L

    ltiplie

     

    [email protected]

    nized as foll

    verter and als  proposed lo

    n of N×N V

      sutra or

    tation of co

    ental results arecovery lo

    tailed in sect

     

    OGIC 

    logic whichs-coupled P

    1(a).

     b) Inverter/Buffeerter/Buffer circ

    soidal power 

      performs bc families [13

    clock circuit

    e can enjoyws the EEAL

    tively.

    w

    r

    ws. Section I

    o addresses thic. Section II

    edic multiplie

    “Vertical an

    ventional an

    nd comparisoic with othe

    on IV. Finall

    onsists of twOS devices i

     circuit (c)Power

    its

    clock suppl

    etter than th]-[15] in term

    equires simpl

    inimal contro buffer/Inverte

    I

    eI

    r

    r

    es

    e

    lr

    8

    978-1-4673-5090-7/13/$31.00 ©2013 IEEE

  • 8/16/2019 Ultra Low Power Vedic Multiplier

    2/6

     

    using

    (“outup fr 

    “0” a

    P1

    follo

    comb

    nodesuppl

    disch“outb

    can

    node.

    MHz

    unde

    rampCLV

    chan

    Ediss

    Simil proc

    E = {

     

    Hencoutp

    volta

    time,

     parameas

    In Ealmocomp

     

    Eload 

    ComCLV

    adiab

     Adia

    Ene

    = [{2

    = 2{

    he operation

    figure 1 (b).

    ” and “outb”)m logic 0 ( “

    nd “inb”= “1”

    ill be turned

    ing the sup

    ination of P

    is kept at gy clock swin

    arged throug” is kept at s

    e obtained in

    . Output volt

     frequencies

    he energy a

    stood by ass

    s up betwee

    D  over a ti

    el resistance

    {(CLVDD)/T}2

    arly, energyss of the EEA

     

    (R PCL)/T} CL

    e R P is the tur t load capacit

    ge drop acros

    yet due to v

    eter is treateures the thres

    EAL as chast similar amolete cycle can

    2{(RCL)/T}

    ared to con

    D2  energy in

    atic gain (G)

    atic Gain (G)

    Energy comsu

    gy Consumption b

    R PCL/T} + {(

    PCL/T}×100

    of EEAL inve

    Assuming the

    are initially lo” ) to logic 1

    ; N1, M1 will

    ON. The “o

    ly clock ()OS (P1) and

    ound potentiags from “VD

      the sameme ground po

    “out” node a

    ge swing for

    ith 20 f F capa

    vantage of

    uming a ram

      “0” and “Ve period T.

    is,

    RT = {(RCL)/

    onsumption dL inverter/buf 

    VDD)2 + ½ CL

    -on resistancances, T is th

     the resistive

    ery small ma

    d as constant.old loss whi

    ging and disunt of energy, be expressed

    CL(VDD)2 + C

    ventional C  a full cycl

    f EEAL beco

    in (%)

     ption by EEAL pe

    y conventional C

    V)/VDD}2] ×

    (as V

  • 8/16/2019 Ultra Low Power Vedic Multiplier

    3/6

     

    squa

     be p

    Eachwith

    writt

    cross

    signi

    and t

    initia

    3.2

    Imulti

    and

    consi

    (Xa res

    The s i) S1 i 

    ii) S2Y0) a 

    iii) 

    gene

    adde

    iv) S

    multishow

    divid

    eachwe g

    (N/2+3)

    YL={

    e will be divi

    rtitioned agai

    digit of the

    every digit ofn in the sm

    wise dotted li

    ficant digit of

    e rest as the

    l carry is take

    Figure 3. M

     Implementati

    n this sectio plier block,

    8×8 multip

    dering two i

    X1X0 and Y

    lt, by doing v

    teps are:

    s the result of

    is the additio

    nd (X0 and Y1

    3  is the verti

    ated from the

     with the vert

     is the carry g

    y using this

     plier block can in figure 4,

    ed into two e

    halve. Assumet XL= {X1 X

    ….X N}as two

    Y1 Y2 Y3…Y

    ed into N2 (=

    n by crosswis

    multiplier isthe multiplica

    all square bo

    e are added t

    the obtained

    arry for the n

     as “logic 0”.

    ltiplication using

    n of general

    we first dishich will be

    lier structur 

     puts (X and

    Y1Y0), we get

    ertical and cro

    Vertical multi

    n of crosswir 

    .

    cal product

     previous step

    cal product to

    nerated durin

    2×2 multiplie

    n be impleme-bit multiplie

    ual halves, c

    ing N-bit mul

    2  X3….X N/2}

    halves of X.

    /2} and YH={

    16) no. of squ

    e line, as sho

    hen independd and the two

    . All the di

     the previous

    umber acts a

    xt step. In thi

    UrdhvaTiryakbhy

    edic multiplie

    cuss the orgafurther used t

    s. In 2×2

    Y) having t

    four outputs (

    ss-multiplicati

    lication betw

     bit multiplic

    f X1 and Y1,

    s, otherwise

    generate S3 as

     addition of S

    r block 4×4,

    ted. For N×r and multipli

    nsisting of N

    tiplication betand XH= {X (For Y, its tw

    (N/2+1) Y(N/2+2) 

    ares, which w

    n in Figure

    ently multipli-digit product

    its lying on

    carry. The lea

     the result di

     above examp

    am Sutra 

     structure

    ization of 2  configure 4

    multiplicatio

    wo digits ea

    SS4S3S2S1)on and additio

    en X0 and Y0.

    tion of (X1 a

      if no carry

    arry bit will

    a sum.

    3.

    8×8, 16×16 e

     multiplicatioand first will

    2 no. of bits

    ween X and

    /2+1)  X (N/2+2) halves will

    Y(N/2+3) ….Y N

    ll

    3.

    dis

    a

    st

    it

    le

    24

    n,

    h

    as

    n.

    d

    is

    e

    tc

    n,e

    in

    ,X

    e

    }.

    So, X

    steps

    1)  Fi

    Y

    fi

     N

     bi

     2)  In

    ,{

    S

    a

    3) 

    V bi

    Oc

    T N

    S(a

     4)  C

    c

    a

    T

    law

    th

    S( 

    and Y can be

    re given bello

    rst vertical

    L(N/2 bits) wi

    st N/2 bits {

    /2 outputs {S1t in next steps.

     next steps cr 

    L) and (XL  ,

    HL(1)  SHL(2) S

    H(N)} respecti

    ded up to pro

    rry.

    Figure 4. Gene

    ertical multiplts) also produ

    ut of thesescaded with

    ..SLL(N)}, of

    ese total N n bit adder, S11 N/2+1)  to S(3N/2dition also pr 

    1  and C2  are

    rry bits. (N/2-

    d sum to pro

    ese N/2 bits

    st N/2 bits ofhich are {SHHese N/2 bits a

    3N/2+1) to S(2N))

    represented a

    w,

    ultiplication

    ll produce tot

    SLL(1)  SLL(2) 

    S2 ….S N}. La

    .

    ss-multiplicat

    YH)to produc

    HL(3)…..SHL(N)}ely. These t

    duce another

    ral lock diagram

     

    ication betweces N no. of b

      bits, first Nthe last N/

    ertical multip

    o. bits will beto S1N, to pro

    )) of N×N m

    duces a carry,

    ent to the hal

    2) no. of zero

    uce a set of

    ill be added

    vertical multip

     N/2+1) SHH(N/2+2ddition will pr 

    of N×N multi

     XH XL and

     between XL 

    l N no. of bit

    ..SLL(N/2)} ar 

    t N/2 bits will

    ions have don

      two sets ofand {SLH(1) SLo sets of N

    no. bits,S11 t

     of NxN Vedic M

    n XH (N/2 bitits, {SHH(1) SH2 bits, SHH(1)2 bits, {SLL(lication betwe

    added with thuce total N n

    ultiplier. This

     C2.

    f adder to ge

     will be insert

    /2 bits, as sho

     p by a N/2 bit

    lication betw

    ) …..SHH(N)} .

    oduce the last

    lier.

    HYL . Now th

    (N/2 bits) an

    s. Out of thes

      taken as firs

     be used for N

    e between (X

     N no. of bit

    H(2)  SLH(3) ….

    no. of bits ar 

    o S1N and C1 a

    ultiplier

    s) and YH (N/H(2) …..SHH(N)}

    to SHH(N/2)  ar 

     N/2+1)  SLL(N/2+en XL  and Y

     output of firso. of bits (fro

      second N bi

    erate sum an

    ed before carr 

    wn in figure 4

     adder with th

    en XH and YThe outputs o

     N/2 bits (fro

    e

    e

    t

    -

    e

    s

    e

    t

    t

    e

    f

  • 8/16/2019 Ultra Low Power Vedic Multiplier

    4/6

     

    multi 

    Figur 

    the

    impl prese

    EEA

    usingrepla

     NAN

    sum

     blocstand

    as b

    and

    spectPMOwher 

    3.3

    All s

    Duriand

    Henc

    input{A}

    0000

    0001

    0000CM

    respe

    multi

    multi

    o in a N×

     pliers, two N

    5. DCVS networ 

    tatic conventi

    conventional

    mentation, fir nt the design

    L logic. Com

      simple NMcing the DC

    D gate with

    and carry blo

      are shown iard-cell librar 

    ffer/inverter,

    multiplier blo

    re circuit simuS and NMOSe =0.9 m.

     Results and Si

    imulations ha

    g simulation

    0} and {B} =

    e random patt

      bit (Ai  or Bi{01010101,

    1111, 001100

    0101, 00001

    1111 and 001S and Vedic

    ctively. Perfo

     plier circuit a

     pliers with v

      multiplicati

    it adders, a h

    k (a) Sum block (

    onal CMOS l

    Vedic multi

    st we describ  of adiabatic

     plex gates ca

    S based DS network

    EAL circuit

    ck of Full ad

      figure 5. Wy, consisting

    two inputs an

    ck of varyin

    lator in 0.18μ

      are taken wi

    mulations 

    ve been don

    we apply {A}{B7, B6, B5,B

    rns consist of

    where i = 00001111, 00

    11 and 0001

    111, 00110

    10011}. Themultiplier are

    mance meas

    long with Ca

    rying bit-size

    on, we need

    lf adder and a

    ) Carry block (c)

    gic style is us

    lier. In cas

     the EEAL ga8x8 Vedic

    n be easily i

    VS network.e can imple

    topology. DC

    er circuits, a

    e have designf common di

    d three-input

    g bit length

    technology.h W/L = 12

      under 1.8V

    = {A7, A6, A, B3, B2, B1 a

    four bits are a

    to 7). The as110011,00010

    0101} and {

    11, 011100

    simulated walso shown i

    rement of 8×

    ry-Save, Arra

    s (2-bit, 4-bit,

    four N/2×N

     N/2 bit adder.

    AND NAND blo

    ed to impleme

    e of adiabat

    tes and thenultiplier usi

    mplemented

    In Fig. 1,ent the AN

    S network f 

    ong with AN

    ed an adiabatgital gates su

    unctions, add

    using Caden

    W/L ratio of t  /2  and 6  /

    supply voltag

    5,A4, A3, A2,d B0} as inpu

    ssigned for ea

    signed bits ar 101, 0001010

    B}={0111001

    11, 0001010

    veform of 8  Figure 6 &

    CMOS Ved

    y, Wallace tr 

      and 8-bit) h

    /2

    k

    nt

    ic

    eg

    y

    y-

    or

    D

    ich

    er

    e

    e.

    1 s.

    h

    e;1,

    1,

    1,

    87

    ic

    e

    as

     been c

    are al

    simulthe m

    minim

    is 180

    Figu

    ompared. Per 

    so compared

    tions have beultiplier circu

    um transistor

    m.

    e 6. Output wave

    ormances of a

    with the C

    n done to veriits using CA

    width in the 0

    orm of 8×8 Conv

    diabatic 8×8

    OS counter 

    fy the functioENCE Spic

    .18μm CMOS

    entional(CMOS)

    edic multiplie

    art. Extensiv

    ality of the al  Spectra. Th

    n-well proces

    edic Multiplier  

    r

    e

    le

    s

    8

  • 8/16/2019 Ultra Low Power Vedic Multiplier

    5/6

     

    cons

    Sinc

    multidirec

    10M

    30%

    Wall

    Figure 7. Outp

    able 1 show

    mption comp

      greater nu

     pliers, the poly extrapolat

    z 2×2, 4×4 a

    and 41% of t

    ce tree multi

    t waveform of 8×

    s that Vedic

    ared to other

     bers of add

    er savings fod to higher o

    nd 8×8 Vedic

    e total powe

     plier respecti

    8 Adiabatic Vedic

    multiplier sho

    optimized m

    r cells are

    smaller oper erand multipl

    multiplier con

     consumed b

    ely. Table 1

    Multiplier  

    ws least pow

    ltiplier circui

    sed for larg

    nd sizes canier modules.

    sume only 33

     carry save a

    also shows th

     

    er

    s.

    er

    eIn

    ,

    d

    at

    Vedic

    existi

    multip produ

    multip

    almos

    faster

    multip

    length69% (

    multip

    (EDP)

    energ

    Tablecarry

    operat

    (8×8)

    16.9%array,

    the fo

     produworse

    due to

    EEAL

    yet du

    reducsaves

    conve

    Tab

     

    Bit L

    Conve

    Mul

    2

    4

    8

    Bit L

    Conve

    Mul

    2

    4

    8

    multiplier is

    g multiplier,

    lier are gainets with their

    lications tho

     same speed

    than the othe

    lier is reporte

    , delay of 4×451%) of the to

    lier circuit unHence we

    which shoul

      is more re

    2 shows thatsave and Bit-

    ion yet deviat

    Vedic multi

      (33.4 %) anWallace tree

    llowing resul

    t (PDP) ofthan the PDP

    the negligibl

      logic. Thoug

    e to very lowd significantl

    almost 16.5%

    tional 8x8 (2

    le 1. Power dissip

    circuits with var 

    ength

    f

    ntional

    iplier 

    Power

    Vedic

    ×2 27

    ×4 104

    ×8 892

    ength

    f

    ntional

    iplier  Vedic

    ×2 0.23

    ×4 0.58

    ×8 1.38

      considerabl

    as the spe

    d by paralleliconcurrent s

    gh the other 

    et the Vedic

    rs. Due to si

     as 230 ps onl

     (8×8) Vedictal delay sho

    er same bit lealso compar 

      combine a

    evant metric

    though the enarray multipli

    ions occur in

    lier achieves

     20% (28.6%and carry sav

    ts can be su

    he 8x8 convof the fully ad

     amount of n

    h adiabatic c

    ower consumy. 8x8 (2x2)

      (57.1%) of t

    2) Vedic mul

    ation, delay and E

    ing bit lengths fo

    consumption (μW)

     

    Carry-save

    81

    427

    2060

    Delay (ns) of diffe

     

    Carry-save

    0.46

    0.66

    1.68

    faster com

    d improvem

    ing the gener ummations. I

      multiplier c

    ultiplier is al

     plicity, delay

    y. However o

    multiplier is 8n by carry-sa

    gth conditione the energy

    easure of pe

    than Power-

    ergy-delay pr rs are almost

    4×4 and 8×8

    almost 11.1

     of total EDe multipliers.

    marized, th

    entional Vediiabatic Vedic

    n-adiabatic lo

    unterpart is l

     ption, poweradiabatic V

    tal energy co

    iplier.

    nergy-delay of C

     180nm CMOS T

     

    of different type o

     

    Bit-array

    92

    449

    2090

    rent type of Multip

     

    Bit-array

    0.45

    0.84

    2.69

    ared to othe

    nts of Vedi

    ation of parti  case of 2×

    rcuits achiev

    ost two time

      of 2×2 Vedi

     increasing bi

    8% (82%) ane and Bit arra

    .-delay produ

    rformance an

    delay produc

    duct of Vedi  same for 2×

    operation. 4×

    1% (11.3 %

     shown by BiFrom Table 2

      power dela

    c multiplier i8x8 multiplier 

    ss of propose

    ittle bit slowe

    elay product idic multiplie

    nsumed by th

    OS multiplier

    echnology

    Multiplier units

    Wallace Tree [5] 

    185

    389

    2172

    ier units

    Wallace Tree

    0.42

    0.73

    1.53

    r

    c

    e

    s

    c

    t

    t

    t

    ss

    r

    s

    re

    8

  • 8/16/2019 Ultra Low Power Vedic Multiplier

    6/6

     

    Bit Length

    of

    Conventional

    Multiplier 

    Energy-Delay Product (×10-25 Js) comparison of different type

    of Multiplier units

    Vedic Carry-save Bit-arrayWallace Tree

    2×2 0.14 0.17 0.173.20

    4×4 3.50 18.80 30.5020.70

    8×8 169.80 589.60 1505.10508.40

    Table 2. Performance comparison of conventional and adiabatic Vedic

    multiplier circuits with varying bit lengths at 10 MHz for 180nm Technology 

    Bit Length of

    Multiplier

    Power consumption (μW) of Multiplier

    Conventional Vedic Adiabatic Vedic Savings (%)

    2×2 27 9.64 64.3

    4×4 104 45.76 56.0

    8×8 892 526.28 41

    Bit Length of

    Multiplier 

    Propagation Delay (ns) of Multiplier

    Conventional Vedic Adiabatic Vedic Savings (%)

    2×2 0.23 0.25 -8.0

    4×4 0.58 0.67 -15.5

    8×8 1.38 1.87 -35.5

    Bit Length of

    Multiplier

    Energy-Delay Product (×10-25 Js) comparison of Multiplier

    Conventional Vedic Adiabatic Vedic Savings (%)

    2×2 0.14 .06 57.1

    IV.CONCLUSION 

    An energy efficient new adiabatic multiplier structure

     based on Urdhva Tiryakbhyam sutra of Vedic mathematics has

     been proposed using EEAL style. On basis of Cadence spectre

    simulations, it can be concluded that this Vedic multiplier ismore efficient than array multiplier, Booth multiplier and

    Wallace-Tree multiplier, in terms of timing efficiency and

    speed. The speed improvements are gained by parallelizing the

    generation of partial products with their concurrent

    summations. It is also shown that energy efficiency can beenhanced significantly in low frequency domain using the

    newly proposed adiabatic approach.

    REFERENCES

    [1]  P. P. Kundu, O. Bandyopadhyay, A. Sinha, "An efficient architecture of

    RNS based Wallace Tree multiplier for DSP applications," Proceedings

    51st Midwest Symposium on Circuits and Systems, Knoxville, TN, pp

    221, 10-13 Aug. 2008.

    [2]  Y. H. Seo, D. W. Kim, “ A New VLSI Architecture of Parallel Multiplier–Accumulator Based on Radix-2 Modified Booth Algorithm,” IEEE Trans

    on VLSI Systems Circuits and Systems, vol. 18, no. 2, pp. 201-208, 2010.

    [3]  J. Chen, C. H. Chang, “High-Level Synthesis Algorithm for the Design of

    Reconfigurable Constant Multiplier,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 28, no. 12, pp.

    1844-1856, 2009.

    [4]  M.E Paramasivam and R.S Sabeenian, “An efficient bit reduction binary

    multiplication algorithm using Vedic methods,” IEEE 2nd InternationaAdvance Computing Conference, Patiala, India, pp. 25, 19-20 Feb. 2010.

    [5]  Asati, A. Chandrasekhar, “An improved high speed fully pipelined 500

    MHz 8×8 Baugh Wooley multiplier design using 0.6 m CMOS TSPC

    logic design style,” ICIIS 2008, pp. 1-6, Dec. 2008.

    [6]  Z. Huang and M. Ercegovac, “High-Performance Left-to-Right ArrayMultiplier Design,” Proc. 16th Symp. Computer Arithmetic, pp. 4-11,

    June 2003.

    [7]  H. P. Afshar, A. K. Verma, P. Brisk and P. Ienne, “Improving FPGA

    Performance for Carry-Save Arithmetic,” IEEE Trans. on VLSI systemvol. 18, no. 4, pp. 577-590.

    [8]  Z. Gang, H. Michalik and L. Hinsenkamp, “Complexity Analysis and

    Efficient Implementations of Bit Parallel Finite Field Multipliers Based on

    Karatsuba-Ofman Algorithm on FPGAs” IEEE Trans. on VLSI systemvol. 18, no. 7, pp. 1057-1066.

    [9]  B. Jagadguru Swami Sri Bharath, KrsnaTirathji, “Vedic Mathematics or

    Sixteen Simple Sutras From The Vedas”, MotilalBanarsidas

    Varanasi(India),1986.

    [10]  H. Thapliyal, “VLSI implementation of RSA encryption system usingancient Indian Vedic mathematics,” proc. of VLSi circuit and system, vol.

    5837, pp. 888-892, 2005.

    [11]  R. Pushpangadan, V. Sukumaran, R. Innocent, D. Sasikumar, V. Sundar

    “High Speed Vedic Multiplier for Digital Signal Processors,” IETE

     journal of research, vol. 55, issue 6, pp. 282-286, 2010.[12]  Thapliyal and M. B. Srinivas, “An Efficient Method of Elliptic Curve

    Encryption Using Ancient Indian Vedic Mathematics”, in Proc. IEEE

    MIDWEST Symp. Circuits. Systems, Cincinnati, Aug. 2005, pp. 826–829

    [13]  M. Chanda, A. Dandapat, H. Rahaman, “ Ultra low-power sequentialcircuit implementation by a Quasi-Static Single phase Adiabatic Dynamic

    Logic (SPADL),” TENCON 2009, Singapore, pp. 1-5, 2009.

    [14] 

    X. Jian, W. Peng-jun, Z. Xiao-yang, “Research of adiabatic multiplier based on CTGAL,” in 7th International Conference on ASIC, China, pp138–141, 22-25 Oct., 2007.

    [15] 

    Y. Takahashi, T. Sekine, and M. Yokoyama, ”Two-phase clocked CMOS

    adiabatic logic,” in Proc. IEEE Asia pacifiic Conf. Circuits and Systems

    Macao, China, Nov. 30-Dec. 3, 2008.

    [16]  J. M. Rabaey, A. Chandrakasan, and B. Nikolic, Digital IntegratedCircuits: A Design Perspective (2nd edition). New York: Prentice Hall

    2003.

    806