ultra-rad-hard sensors for particle physics applications z.li brookhaven national laboratory on...

36
Ultra-rad-hard Sensors for Particle Physics Applications Z.Li Brookhaven National Laboratory On behalf of CERN RD50 Collaboration Pixel 2002, September 9-12, 2002, Carmel, CA

Upload: horace-king

Post on 05-Jan-2016

216 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Ultra-rad-hard Sensors for Particle Physics Applications Z.Li Brookhaven National Laboratory On behalf of CERN RD50 Collaboration Pixel 2002, September

Ultra-rad-hard Sensors for Particle Physics Applications

Z. LiBrookhaven National Laboratory

On behalf of CERN RD50 Collaboration

Pixel 2002, September 9-12, 2002, Carmel, CA

Page 2: Ultra-rad-hard Sensors for Particle Physics Applications Z.Li Brookhaven National Laboratory On behalf of CERN RD50 Collaboration Pixel 2002, September

J.Adey1, A.Al-Ajili2, P.Alexandrov3, G.Alfieri4, P.P.Allport5, A.Andreazza6, M.Artuso7, S.Assouak8, B.S.Avset9, A.Baldi10, L.Barabash11, E.Baranova3, A.Barcz12, A.Basile13, R.Bates2, B.Bekenov14, N.Belova3, G.M.Bilei15, D.Bisello16, A.Blumenau1,

V.Boisvert17, G.Bolla18, V.Bondarenko19, E.Borchi10, L.Borrello20, D.Bortoletto18, M.Boscardin21, L.Bosisio22, G.Bredholt9, L.Breivik9, T.J.Brodbeck23, J.Broz24, A.Brukhanov3, M.Bruzzi10, A.Brzozowski12, M.Bucciolini10, P.Buhmann25, C.Buttar26, F.Campabadal27,

D.Campbell23, C.Canali13, A.Candelori16, G.Casse5, A.Chilingarov23, D.Chren24, V.Cindro28, M.Citterio6, R.Coluccia29, D.Contarato25, J.Coutinho1, D.Creanza30, L.Cunningham2, V.Cvetkov3, C.Da Via31, G.-F.Dalla Betta21, G.Davies32, I.Dawson26, W.de Boer33, M.De

Palma30, P.Dervan26, A.Dierlamm33, S.Dittongo22, L.Dobrzanski12, Z.Dolezal24, A.Dolgolenko11, J.Due-Hansen9, T.Eberlein1, V.Eremin34, C.Fall1, C.Fleta27, E.Forton8, S.Franchenko3, E.Fretwurst25, F.Gamaz35, C.Garcia36, J.E.Garcia-Navarro36, E.Gaubas37, M.-

H.Genest35, K.A.Gill17, K.Giolo18, M.Glaser17, C.Goessling38, V.Golovine14, J.Goss1, A.Gouldwell2, G.Grégoire8, P.Gregori21, E.Grigoriev14, C.Grigson26, A.Groza11, J.Guskov39, L.Haddad2, R.Harding32, J.Härkönen40, J.Hasi31, F.Hauler33, S.Hayama32,

F.Hönniger25, T.Horazdovsky24, R.Horisberger41, M.Horn2, A.Houdayer35, B.Hourahine1, A.Hruban12, G.Hughes23, I.Ilyashenko34, A.Ivanov34, K.Jarasiunas37, R.Jasinskaite37, T.Jin32, B.K.Jones23, R.Jones1, C.Joram17, L.Jungermann33, S.Kallijärvi42, P.Kaminski12,

A.Karpenko11, A.Karpenko31, A.Karpov14, V.Kazlauskiene37, V.Kazukauskas37, M.Key27, V.Khivrich11, J.Kierstead43, J.Klaiber-Lodewigs38, M.Kleverman44, R.Klingenberg38, P.Kodys24, Z.Kohout24, A.Kok31, A.Kontogeorgakos45, G.Kordas45, A.Kowalik12,

R.Kozlowski12, M.Kozodaev14, O.Krasel38, R.Krause-Rehberg19, M.Kuhnke31, A.Kuznetsov4, S.Kwan29, S.Lagomarsino10, T.Lari6, K.Lassila-Perini40, V.Lastovetsky11, S.Latushkin3, R.Lauhakangas46, I.Lazanu47, S.Lazanu47, C.Lebel35, C.Leroy35, Z.Li43, L.Lindstrom44,

G.Lindström25, V.Linhart24, A.P.Litovchenko11, P.Litovchenko11, A.Litovchenko16, V.Litvinov3, M.Lozano27, Z.Luczynski12, A.Mainwood32, I.Mandic28, S.Marti i Garcia36, C.Martínez27, S.Marunko39, K.Mathieson2, A.Mazzanti13, J.Melone2, D.Menichelli10,

C.Meroni6, A.Messineo20, S.Miglio10, M.Mikuz28, J.Miyamoto18, M.Moll17, E.Monakhov4, L.Murin44, F.Nava13, H.Nikkilä42, E.Nossarzewska-Orlowska12, S.Nummela40, J.Nysten40, R.Orava46, V.OShea2, K.Osterberg46, S.Parker48, C.Parkes2, D.Passeri15,

U.Pein25, G.Pellegrini2, L.Perera49, B.Piatkowski12, C.Piemonte21, G.U.Pignatel15, N.Pinho1, S.Pini10, I.Pintilie25, L.Plamu42, L.Polivtsev11, P.Polozov14, J.Popule50, S.Pospisil24, G.Pucker21, V.Radicci30, J.M.Rafí27, F.Ragusa6, M.Rahman2, R.Rando16, K.Remes42,

R.Roeder51, T.Rohe41, S.Ronchin21, C.Rott18, A.Roy18, P.Roy2, A.Ruzin39, A.Ryazanov3, S.Sakalauskas37, J.Sanna46, L.Schiavulli30, S.Schnetzer49, T.Schulman46, S.Sciortino10, G.Sellberg29, P.Sellin52, D.Sentenac20, I.Shipsey18, P.Sicho50, T.Sloan23, M.Solar24, S.Son18,

B.Sopko24, J.Stahl25, A.Starodumov20, D.Stolze51, R.Stone49, J.Storasta37, N.Strokan34, W.Strupinski12, M.Sudzius37, B.Surma12, A.Suvorov14, B.G.Svensson4, M.Tomasek50, C.Trapalis45, C.Troncon6, A.Tsvetkov24, E.Tuominen40, E.Tuovinen40, T.Tuuva42, M.Tylchin39, H.Uebersee51, J.Uher24, M.Ullán27, J.V.Vaitkus37, P.Vanni13, E.Verbitskaya34, G.Verzellesi13, V.Vrba50, S.Watts31,

A.Werner9, I.Wilhelm24, S.Worm49, V.Wright2, R.Wunstorf38, P.Zabierowski12, A.Zaluzhnyi14, M.Zavrtanik28, M.Zen21, V.Zhukov33, N.Zorzi21

RD50 – 271 members

Page 3: Ultra-rad-hard Sensors for Particle Physics Applications Z.Li Brookhaven National Laboratory On behalf of CERN RD50 Collaboration Pixel 2002, September

1 University of Exeter, Department of Physics, Exeter, EX4 4QL, United Kingdom; 2 Dept. of Physics & Astronomy, Glasgow University, Glasgow, UK; 3 Russian Research Center "Kurchatov Institute", Moscow, Russia; 4 University of Oslo, Physics

Department/Physical Electronics, Oslo, Norway; 5 Department of Physics, University of Liverpool, United Kingdom; 6 INFN and University of Milano, Department of Physics, Milano, Italy; 7 Experimental Particle Physics Group, Syracuse University, Syracuse, USA; 8 Université catholique de Louvain, Institut de Physique Nucléaire, Louvain-la-Neuve, Belgium; 9 SINTEF Electronics and

Cybernetics Microsystems P.O.Box 124 Blindern N-0314 Oslo, Norway; 10 INFN Florence – Department of Energetics, University of Florence, Italy; 11 Institute for Nuclear Research of the Academy of Sciences of Ukraine, Radiation PhysicDepartments; 12 Institute of Electronic Materials Technology, Warszawa, Poland; 13 Dipartimento di Fisica-Università di Modena e Reggio Emilia, Italy; 14 State

Scientific Center of Russian Federation, Institute for Theoretical and Experimental Physics, Moscow, Russia; 15 I.N.F.N. and Università di Perugia – Italy; 6 Dipartimento di Fisica and INFN, Sezione di Padova, Italy; 17 CERN, Geneva, Switzerland; 18 Purdue University,

USA; 19 University of Halle; Dept. of Physics, Halle, Germany; 20 Universita` di Pisa and INFN sez. di Pisa, Italy; 21 ITC-IRST, Microsystems Division, Povo, Trento, Italy; 22 I.N.F.N.-Sezione di Trieste, Italy; 23 Department of Physics, Lancaster University, Lancaster, United Kingdom; 24 Czech Technical University in Prague&Charles University Prague, Czech Republic; 25 Institute for Experimental Physics, University of Hamburg, Germany; 26 Experimental Particle Physics Group, Dept of Physics, University of

Sheffield, Sheffield, U.K.; 27 Centro Nacional de Microelectrónica (IMB-CNM, CSIC); 28 Jozef Stefan Institute and Department of Physics, University of Ljubljana, Ljubljana, Slovenia; 29 Fermilab, USA; 30 Dipartimento Interateneo di Fisica & INFN - Bari, Italy; 31

Brunel University, Electronic and Computer Engineering Department, Uxbridge, United Kingdom; 32 Physics Department, Kings College London, United Kingdom; 33 University of Karlsruhe, Institut fuer Experimentelle Kernphysik, Karlsruhe, Germany; 34 Ioffe

Phisico-Technical Institute of Russian Academy of Sciences, St. Petersburg, Russia; ; 35 Groupe de la Physique des Particules, Université de Montreal, Canada; 36 IFIC Valencia, Apartado 22085, 46071 Valencia, Spain; 37 Institute of Materials Science and

Applied Research, Vilnius University, Vilnius, Lithuania; 38 Universitaet Dortmund, Lehrstuhl Experimentelle Physik IV, Dortmund, Germany; 39 Tel Aviv University, Israel; 40 Helsinki Institute of Physics, Helsinki, Finland; 41 Paul Scherrer Institut, Laboratory for Particle Physics, Villigen, Switzerland; 42 University of Oulu, Microelectronics Instrumentation Laboratory, Finland; 43 Brookhaven

National Laboratory, Upton, NY, USA; 44 Department of Solid State Physics, University of Lund, Sweden; 45 NCSR DEMOKRITOS, Institute of Materials Science, Aghia Paraskevi Attikis, Greece; 46 High Energy Division of the Department of Physical Science,

University of Helsinki, Helsinki, Finland; 47 National Institute for Materials Physics, Bucharest - Magurele, Romania; 48 University of Hawaii; 49 Rutgers University, Piscataway, New Jersey, USA; 50 Institute of Physics, Academy of Sciences of the Czech Republic,

Praha, Czech Republic; 51 CiS Institut für Mikrosensorik gGmbH, Erfurt, Germany; 52 Department of Physics, University of Surrey, Guildford, United Kingdom

RD50 – 52 institutes

Page 4: Ultra-rad-hard Sensors for Particle Physics Applications Z.Li Brookhaven National Laboratory On behalf of CERN RD50 Collaboration Pixel 2002, September

OUTLINE• Introduction• Radiation induced defects levels in Si• Radiation induced degradation of electrical

properties in Si detectorsLeakage current Changes in electrical neutral bulkSpace charge transformations and CCE loss

• RD 50’s approaches to obtain ultra radiation hardness

Material /impurity / defect engineering (MIDE)Device structure engineering (DSE)New materials

• Future tasks to be carried out by RD 50• Summary

Page 5: Ultra-rad-hard Sensors for Particle Physics Applications Z.Li Brookhaven National Laboratory On behalf of CERN RD50 Collaboration Pixel 2002, September

Introduction

LHC L = 1034cm-2s-1 ( R=4cm) ~ 3·1015cm-2 10 years( R=75cm) ~ 3·1013cm-2

Technology available, however serious radiation damage will resultlt.

Possible up-grade L = 1035cm-2s-1 ( R=4cm) ~1.6·1016cm-2

Afocused and coordinated R&D effort is mandatory to develop reliable and

cost-effective radiation hard HEP detector technologies for such radiation

levels ---- The approval and formation of CERN RD50 Collaboration (6/02)

Dedicated radiation hardness studies also beneficial before a luminosity upgradeRadiation hard technologies now adopted have not been completely characterized:

Oxygen-enriched Si in ATLAS pixels

A deep understanding of radiation damage will be fruitful also for the linear collider where high doses of e, will play a significant role.

Page 6: Ultra-rad-hard Sensors for Particle Physics Applications Z.Li Brookhaven National Laboratory On behalf of CERN RD50 Collaboration Pixel 2002, September

Scientific Organization of RD50

SpokespersonMara Bruzzi

INFN and University of Florence

Deputy-SpokespersonClaude Leroy

University of Montreal

Defect / MaterialCharacterizationBengt Svensson(Oslo University)

Defect Engineering

Eckhart Fretwurst(Hamburg University)

Macroscopic Effects

Stanislav Pospisil(Prague University)

New Structures

Mahfuzur Rahman(Glasgow University)

Full DetectorSystems

Gianluigi Casse(Liverpool University)

New Materials

Juozas V.Vaitkus(Vilnius University)

•Pre-irradiationSIMS, IR, PL,Hall, FPP,….

•TheoryDefect formation, defect annealing,energy states,…..

•Post-irradiationTSC, DLTS, EPR,PICTS,…

•Oxygenation•Dimerization•Other impurities

H, N, Ge, …

•Thermal donors•Pre-irradiation

procedures

• SiC• CdTe• other materials

•Test structurecharacterizationIV, CV, CCE

•NIEL•Device modeling•Operational

conditions

•3D detectors•Thin detectors•Cost effective

solutions

•LHC-like tests•Links to HEP•Links to R&Dof electronics

•Comparison:pad-mini-fulldetectors

Defect / MaterialCharacterizationBengt Svensson(Oslo University)

Defect Engineering

Eckhart Fretwurst(Hamburg University)

Macroscopic Effects

Stanislav Pospisil(Prague University)

New Structures

Mahfuzur Rahman(Glasgow University)

Full DetectorSystems

Gianluigi Casse(Liverpool University)

New Materials

Juozas V.Vaitkus(Vilnius University)

•Pre-irradiationSIMS, IR, PL,Hall, FPP,….

•TheoryDefect formation, defect annealing,energy states,…..

•Post-irradiationTSC, DLTS, EPR,PICTS,…

•Oxygenation•Dimerization•Other impurities

H, N, Ge, …

•Thermal donors•Pre-irradiation

procedures

• SiC• CdTe• other materials

•Test structurecharacterizationIV, CV, CCE

•NIEL•Device modeling•Operational

conditions

•3D detectors•Thin detectors•Cost effective

solutions

•LHC-like tests•Links to HEP•Links to R&Dof electronics

•Comparison:pad-mini-fulldetectors

CERN contact: Michael Moll

CERN RD50Development of Radiation Hard Semiconductor Devices for Very High Luminosity Colliders

Page 7: Ultra-rad-hard Sensors for Particle Physics Applications Z.Li Brookhaven National Laboratory On behalf of CERN RD50 Collaboration Pixel 2002, September

D is p la c e m e n t ra d ia tio n in d u c e d d e fe c ts in S i -6 0C o g a m m a ra y

S i sV

S i i

V -V , V -Oe tc ., s in g leD e fe c ts o n ly(n o c lu s te rs )

S i C o m p to n

E le c tro n

(1 M e V ) R e c o ils(1 5 0 e V )

F r e n k e l p a ir

D is p la c e m e n t ra d ia tio n in d u c e d d e fe c ts in S i -n e u tro n

n

(1 M e V )S i s

V

S iiR e c o ils

(1 3 3 k e V )C a s c a d e w ithm a n y in te ra c tio n s

V -V , V -Oe tc ., s in g led e fe c ts

D e fe c t c lu s te rsD is o rd e re d re g io n s

2 5 e V th r e sh o ld5 k e V th r e sh o ld

M a in ly

F r e n k e l p a ir

Displacement radiation induced defects in Si –charged particle

(p, , etc.)

It is between neutron and gamma:Lots of single defectsplus some smaller defect clusters

xxxxxx

xxxxxxCharged particles (p, , etc.)

xxxxxxxn

Defect clustersSingle defectsParticle type

xxxxxx

xxxxxxCharged particles (p, , etc.)

xxxxxxxn

Defect clustersSingle defectsParticle type

Comparison of defect structures

Page 8: Ultra-rad-hard Sensors for Particle Physics Applications Z.Li Brookhaven National Laboratory On behalf of CERN RD50 Collaboration Pixel 2002, September

I n c r e a s e o f l e a k a g e c u r r e n t w i t h f l u e n c e

Z . L i , e t a l , N I M A 3 0 8 ( 1 9 9 1 ) 5 8 5

equnJ ,

×

: d a m a g e c o n s t a n t , 4 - 6 x 1 0 - 1 7 A / c m a t 2 0 C

0 . 0 0 3 0 0 . 0 0 3 5 0 . 0 0 4 0 0 . 0 0 4 5 0 . 0 0 5 0 0 . 0 0 5 51 0

- 5

1 0- 4

1 0- 3

1 0- 2

1 0- 1

1 00

1 01

2 8 5 K

e x p e r i m e n tf i t , t w o l e v e l m o d e l :

It o t

c o n t r i b u t i o n :

V V-

D L 1 1

I, A

1 / T , K - 1

L e a k a g e c u r r e n t t e m p . d e p e n d e n c ekTE aeJJ /

0 / E a = 0 . 6 5 e V f o r 1 M e V n e u t r o n r a d i a t i o n

E . V e r b i t s k a y a , e t a l , F l o r e n c e C o n f e r e n c e , J u l y , 2 0 0 0

2 0 0 k

- 1 0 C

3 0 0 k

( 0 . 5 1 e V )( 0 . 4 - 0 . 4 5 e V )

M o d e s t c o o l i n g c a n h e l p a l o t !

Radiation induced degradation of electricalproperties in Si detectors

Page 9: Ultra-rad-hard Sensors for Particle Physics Applications Z.Li Brookhaven National Laboratory On behalf of CERN RD50 Collaboration Pixel 2002, September

Parameterization of Leakage current

J = eq

: leakage current constant

Annealing behavior:

(t)= I ·exp(-t/I )++ 0 - · ln(t/t0)

0 = -9x10-17 A/cm+4.6x10-14 /Ta AK/cm t0=1 min

1/ I= k0I exp(-EI/kBTa ) k0I =1.2 x10-18 /s, EI=1.1 eV

I =1.2x10-17 A/cm

=3.1x10-18 A/cm

M. Moll, Ph.D. Thesis, University of Hamburg, 1999

Page 10: Ultra-rad-hard Sensors for Particle Physics Applications Z.Li Brookhaven National Laboratory On behalf of CERN RD50 Collaboration Pixel 2002, September

Bulk Damage (electrical neutral bulk, ENB)

Si bulk resistivity increases with fluence and saturates near the intrinsicvalue of about 300 k cm

B. Dezillie et al., IEEE Trans. Nucl. Vol. 46, No. 3, (1999) 221

100

1000

10000

100000

1000000

0.E+00 2.E+14 4.E+14 6.E+14 8.E+14

Neutron Fluence (n/cm2)

Res

istiv

ity (O

hm

cm

)

A, CZ100B, FZ100C, FZ500FZ4-6k

S. Pirollo et al., NIM A426 (1999) 126-130

Page 11: Ultra-rad-hard Sensors for Particle Physics Applications Z.Li Brookhaven National Laboratory On behalf of CERN RD50 Collaboration Pixel 2002, September

Space charge transformations and CCE lossSpace charge transformation (SCT) takes one of the following three forms:

1. Space charge becomes more negative with radiationdue to the creation negative deep acceptors (As-irradiated effect)

• Space charge sign inversion (SCSI) or “type inversion”• Increase in full depletion voltage (Vfd) due to increase of net

space charge density Vfd = CCE loss at a given bias

2. Increase of space charge density during annealing at RT andelevated temperatures (“Reverse annealing”)• More increase of Vfd

3. Space charge modifications due to trapping by free carriers

0

2

2effNed

Page 12: Ultra-rad-hard Sensors for Particle Physics Applications Z.Li Brookhaven National Laboratory On behalf of CERN RD50 Collaboration Pixel 2002, September

A s - i r r a d i a t e d E f f e c t sS C S I ( S p a c e c h a r g e s i g n i n v e r s i o n ) - - - d o n o r r e m o v a l & a c c e p t o r c r e a t i o n :

( D R ) ( A C )

S C S I( )

( + S C ) ( - S C )

ndeffneNN

×

0

D R

A C

R . W u n s t o r f , D E S Y F 3 5 D - 9 7 - 0 8 , 1 9 9 7

As-irradiated EffectsDonor removal modelsV+P P-V (E-center)

B. Dezillie, Z. Li, et al., IEEE Trans. Nucl. Sci., Vol. 46, No.3, (1999) 221-227

model ModifiedN

0.1

RemovalDonor 10

onCompensati 0

(3)

d0

13-

)(0

ndeff

neNN

1E+12

1E+13

1E+14

1E+15

1E+16

1E+12 1E+13 1E+14 1E+15 1E+16Nd,0 (cm

-3)

Inve

rsio

n F

luence (cm

-2)

Universal model

(Underlined Compensat ion)

= 0.1 / Nd0

Compensation

= 0

Classic Donor Removal

= 10-13

10|11 10|12 10|13 10|14

Initial Doping Concentration Nd0 (cm-3)

10|11

10|12

10|13

10|14

10|15

10|16

SC

SI

Flu

en

ce a

nd

Satu

rate

Flu

en

ce

SCSI FluenceSaturated FluenceModel

CZ

Modified model:= 0.1/Nd0

(AC only)

(classic model)

A c c e p t o r c r e a t i o n :V + V V - VA n d o t h e r V - V r e l a t e d d e f e c t s

A f t e r S C S I : neffN

= 0 . 0 2 4 t o 0 . 0 3 2 c m - 1

Donor removal:

The removal rate is not a constant-

= 0.1/Nd0

1011

1011

1012 1013

1013

1015

1014

1013

1015

1012 1014 1016

Page 13: Ultra-rad-hard Sensors for Particle Physics Applications Z.Li Brookhaven National Laboratory On behalf of CERN RD50 Collaboration Pixel 2002, September

B e n e f i c i a l A n n e a l ( B A )

R e v e r s e A n n e a l ( R A )

days 10

V f d i n c r e a s e s w i t h a n n e a l i n g t i m e a f t e r a b o u t 1 0 d a y s a t R TN e f f b e c o m e s e v e n m o r e n e g a t i v e

2 0 h r s i n O 2 a t :

9 7 5 C

1 2 0 0 C( O x y g e n a t e d )

1 2 0 0 C( O x y g e n a t e d )

1 1 0 0 C

( N e u t r o n r a d i a t i o n )

• Possibly multiple annealing stages (two or more defects involved)

• First order process:

• Activated process:

with Ea = 1.18 eVand = 1013 s

• It can be frozen at low temperatures

kTEae /2/1

12ln

n

n

effN

N

073.0

035.0max

0

)1()( /max,0

treffeff eNNtN

0 10 20 30 40 50 60 70

(Thousands)Anneal Time (sec)

0

1

2

3

4

5

Ne

ff in

SC

R (

10

E1

2/c

m3

) 8.2E12

8.2E12

1.36E13

1.64E13

3.2E13

3.7 hr179 d14.6 yr96.8 yr

80200-10T (C)

3.7 hr179 d14.6 yr96.8 yr

80200-10T (C)

Z. Li , IEEE Trans. Nucl. Sci., Vol. 42, No. 4, (1995) 224

Reverse Annealing

Z. Li et al., IEEE Trans. Nucl. Sci., Vol. 42No. 4, (1995) 219

RT annealing

ET annealing

Neutron

Neutron

Proton

G.Lindstroem, presented on "1st Workshop on Radiation hard semiconductor devices for very high luminosity colliders", CERN 28-30 November, 2001

Page 14: Ultra-rad-hard Sensors for Particle Physics Applications Z.Li Brookhaven National Laboratory On behalf of CERN RD50 Collaboration Pixel 2002, September

Parameterization of Neff (As-irradiated and reverse annealing)

Neff = Neff0 - Neff

Neff = NA + NC + NY

NY : Reverse annealing

NA : Beneficial annealing

Stable defect

gY =0.0516 cm-1

Stable acceptor NC = NC0 (1-e-ceq) + gC eq

NC0 0.7xNd0

Removable donor

0

NY = NY, (1- 1/(1+t/Y ))

1/ Y = k0,Y exp(-EY/kBTa ) EY =1.33 eV

k0,Y =1.5x1015 /s

NA = NA0 exp(-t/a )

ga =0.018cm-1

1/ a = k0,a exp(-Eaa/kBTa )

Eaa =1.09 eV

k0,Y =2.4x1013 /s

c =0.1/Nd0

M. Moll, Ph.D. Thesis, University of Hamburg, 1999

Page 15: Ultra-rad-hard Sensors for Particle Physics Applications Z.Li Brookhaven National Laboratory On behalf of CERN RD50 Collaboration Pixel 2002, September

Model for the reverse annealing

Z. Li et al., IEEE Trans. Nucl. Sci., Vol. 44, No. 3, (1997) 834

• Reverse annealing in n, p, alpha irradiated Si detectors (Clusters)

• No reverse annealing in gamma irradiated Si (Single defects only, no clusters)

• Reverse annealing may be due to the breaking off of clusters over time and temp, releasing single defects:

Clusters V-V or related defects

Releasing

Single defects

Page 16: Ultra-rad-hard Sensors for Particle Physics Applications Z.Li Brookhaven National Laboratory On behalf of CERN RD50 Collaboration Pixel 2002, September

Double-Junction/Double-Peak (DJ/DP) Effect

DJ/DP effect and the 2-deep level model (Z. Li and H.W. Kraner, J. Electronic Materials, Vol. 21, No. 7, (1992) 701)

1.7x1014 n/cm2, Laser on p+

(D. Menichelli et al., NIM A426 (1999)135-139)

Page 17: Ultra-rad-hard Sensors for Particle Physics Applications Z.Li Brookhaven National Laboratory On behalf of CERN RD50 Collaboration Pixel 2002, September

DL #D/A, 0/1 0 0 1 1

electrons holes electrons holes electrons holes electrons holes

Et=Edl-Ev 0.36 #REF! 0.52 #REF! 0.7 -0.7 0.6 -0.6sig/e[cm2] 1.00E-15 1.00E-15 1.00E-15 1.00E-15sig/h[cm2] 1.00E-15 1.00E-15 1.00E-15 1.00E-15Ndl[cm-3] 0.00E+00 4.60E+14 0.00E+00 4.00E+15

Ci-Oi Deep donor V-V Deep acceptor

0

5000

10000

15000

20000

25000

30000

0 50 100 150 200 250 300 350 400

x, mkm

E, V

/cm

0

5000

10000

15000

20000

25000

30000

35000

0 50 100 150 200 250 300 350 400

x, mkm

E, V

/cm

Detail Modeling of (DJ/DP) Effect

2-deep level model (V. Eremin et al, Nucl. Instrum. & Meth. A476 (2002) 556-564. )

Increasing V Increasing V

Page 18: Ultra-rad-hard Sensors for Particle Physics Applications Z.Li Brookhaven National Laboratory On behalf of CERN RD50 Collaboration Pixel 2002, September

NIM A 476, (2002), 734

0

0.2

0.4

0.6

0.8

1

1.2

0 1E+14 2E+14 3E+14 4E+14 5E+14 6E+14

Fluence [p cm-2]

Q/Q

0

(Maximum collected charge)/Q0 - Ox. detectors

(Maximum collected charge)/Q0 - Non-ox. detectors

Data: Gianluigi Casse: 1st Workshop on Radiation hard semiconductor devices for high luminosity colliders; CERN; 28-30 November 2002

CMS microstrip + RO electronicsATLAS microstrip + RO electronics

= 1014n/cm2

Degradation in Charge Collection Efficiency (CCE)

)() 6

1

6

1(1)(

(10) )

)830(,)(2

11(

2

0

MIPtt

d

W

sidejunctionon

nmlasert

d

W

Q

QQCCE

tte

e

th

h

t

c

cc

B. Dezillie et al., IEEE Trans. Nucl. Sci., Vol. 46, No. 3, (1999) 221-227 Depletion Volume term

Trapping term

Page 19: Ultra-rad-hard Sensors for Particle Physics Applications Z.Li Brookhaven National Laboratory On behalf of CERN RD50 Collaboration Pixel 2002, September

Radiation Hardness

OVVOV

VOOV

VVV

2

2

o Impurities intentionally incorporated into Si may serve to getterradiation-induced vacancies to prevent them from forming thedamaging V-V and related centerso Impurities: O, Sn, N, Cl, H, etc.

One example: oxygen O:

Competing processes for V

If [O] >>[V] and [V-O], then the formation rates of V2 and V2O will be

greatly suppressed:

Key: impurity concentration should be much larger than that of vacancies

Material/ impurity/defect Engineering (MIDE)

Page 20: Ultra-rad-hard Sensors for Particle Physics Applications Z.Li Brookhaven National Laboratory On behalf of CERN RD50 Collaboration Pixel 2002, September

Defect kinetics model 

PKA cluster reactions I + V Si V + V V2

 

Reactions 

I + Cs Ci

 

V + O VO 

Ci + Cs CC

I + V2 V V + P VP Ci + O CO

I + VP P V + VO V2O CO + I COI *

I + V3O V2O V + V2O V3O CC + I CCI *

     

  * Not thought to be electrically active

I reaction V reaction Ci reaction

  B. MacEvoy, 3rd ROSE Workshop 12-14 Feb 98

Material/ impurity/defect Engineering (MIDE)

Page 21: Ultra-rad-hard Sensors for Particle Physics Applications Z.Li Brookhaven National Laboratory On behalf of CERN RD50 Collaboration Pixel 2002, September

More clustersfor n-rad

10 M eV protons 24 G eV /c protons 1 M eV neutrons

M ika H uhtinen -R O SE /T echn .N ote/2001 -02

10 M eV protons 24 G eV /c protons 1 M eV neutrons

M ika H uhtinen -R O SE /T echn .N ote/2001 -02

Defect structure modeling

Page 22: Ultra-rad-hard Sensors for Particle Physics Applications Z.Li Brookhaven National Laboratory On behalf of CERN RD50 Collaboration Pixel 2002, September

Defect kinetics modeling

 

Both V2 and V2 O productions are greatly suppressed in oxygenated Si

S. Lazanu et al, RESMDD02, Florence, Italy, July 10-12, 2002

0 , 0 0 , 5 1 , 0 1 , 5 2 , 0 2 , 5 3 , 0

0

5

1 0

1 5

2 0

( 9 ) , . . .

( 8 )

( 7 )

( 6 )

( 5 )( 4 )

( 3 )( 1 )

[V2O

] [1

014 c

m-3

]

0 , 0 0 , 5 1 , 0 1 , 5 2 , 0 2 , 5 3 , 0- 2

0

2

4

6

8

1 0

1 2

1 4

( 1 1 ) , . . .

( 1 0 )( 9 )

( 8 )

( 7 )

( 6 )

( 5 )( 4 )( 3 )

( 2 )( 1 )

[CiO

i] [10

13 c

m-3

]

0 , 0 0 , 5 1 , 0 1 , 5 2 , 0 2 , 5 3 , 0

0

2

4

6

8

1 0

1 2

( 1 0 ) , . . .

( 9 )( 8 )

( 7 )

( 6 )

( 5 )

( 4 )

( 3 )

( 2 )

( 1 )

[CiC

s] [10

14 c

m-3

]

T im e [ 1 08 s . ]

0 , 0 0 , 5 1 , 0 1 , 5 2 , 0 2 , 5 3 , 0

0

1

2

3

4

( 4 ) , . . .

( 3 )

( 2 )

( 1 )

[V2O

] [1

017 c

m-3

]

0 , 0 0 , 5 1 , 0 1 , 5 2 , 0 2 , 5 3 , 0

0

1

2

3

( 9 ) , . . .

( 8 )( 7 )

( 6 )

( 5 )

( 4 )

( 3 )

( 2 )( 1 )

[CiO

i] [10

15 c

m-3

]0 , 0 0 , 5 1 , 0 1 , 5 2 , 0 2 , 5 3 , 0

0

2

4

6

8

1 0

1 2

( 1 0 ) , . . .

( 9 )( 8 )

( 7 )

( 6 )

( 5 )

( 4 )( 3 )

( 2 )

( 1 )

[CiC

s] [10

12 c

m-3

]T im e [ 1 0

8 s ]

0 , 0 0 , 5 1 , 0 1 , 5 2 , 0 2 , 5 3 , 0

0

5

1 0

1 5

2 0

( 9 ) , . . .

( 8 )

( 7 )

( 6 )

( 5 )( 4 )

( 3 )( 1 )

[V2O

] [1

014 c

m-3

]

0 , 0 0 , 5 1 , 0 1 , 5 2 , 0 2 , 5 3 , 0- 2

0

2

4

6

8

1 0

1 2

1 4

( 1 1 ) , . . .

( 1 0 )( 9 )

( 8 )

( 7 )

( 6 )

( 5 )( 4 )( 3 )

( 2 )( 1 )

[CiO

i] [10

13 c

m-3

]

0 , 0 0 , 5 1 , 0 1 , 5 2 , 0 2 , 5 3 , 0

0

2

4

6

8

1 0

1 2

( 1 0 ) , . . .

( 9 )( 8 )

( 7 )

( 6 )

( 5 )

( 4 )

( 3 )

( 2 )

( 1 )

[CiC

s] [10

14 c

m-3

]

T im e [ 1 08 s . ]

0 , 0 0 , 5 1 , 0 1 , 5 2 , 0 2 , 5 3 , 0

0

1

2

3

4

( 4 ) , . . .

( 3 )

( 2 )

( 1 )

[V2O

] [1

017 c

m-3

]

0 , 0 0 , 5 1 , 0 1 , 5 2 , 0 2 , 5 3 , 0

0

1

2

3

( 9 ) , . . .

( 8 )( 7 )

( 6 )

( 5 )

( 4 )

( 3 )

( 2 )( 1 )

[CiO

i] [10

15 c

m-3

]0 , 0 0 , 5 1 , 0 1 , 5 2 , 0 2 , 5 3 , 0

0

2

4

6

8

1 0

1 2

( 1 0 ) , . . .

( 9 )( 8 )

( 7 )

( 6 )

( 5 )

( 4 )( 3 )

( 2 )

( 1 )

[CiC

s] [10

12 c

m-3

]T im e [ 1 0

8 s ]

R a t e d e p e n d e n c e :( 1 ) G R = 5 x 1 0 9 V Ip a i r s / s . . .( 1 7 ) G R = 5 0 V Ip a i r s / s

" s t a n d a r d " S i :1 0 1 4 P , 2 1 0 1 5 O , 51 0 1 5 C

" o x y g e n a t e d " S i :1 0 1 4 P , 4 1 0 1 7 O , 51 0 1 5 C

0,0 0,5 1,0 1,5 2,0 2,5 3,0-1

0

1

2

3

4

5

6

7

8

(12), ...

(11)

(1)(2)

Standard Si.

(3)

(10)

(9)

(8)

(7)(6)

(5)(4)

[VO]

[10

14 cm

-3]

0,0 0,5 1,0 1,5 2,0 2,5 3,0-2

0

2

4

6

8

10

12

14

16

(7), ...

Oxygenated Si

(6)(5)

(4)

(3)

(2)

(1)

[VO]

[10

16 cm

-3]

0,0 0,5 1,0 1,5 2,0 2,5 3,0

0

2

4

6

8

10

(7), ...

(6)(5)

(4)

(3)

(2)

(1)

[VP]

[10

12 cm

-3]

0,0 0,5 1,0 1,5 2,0 2,5 3,0

0

2

4

6

8

10

(2), ...

(1)

[VP]

[10

12 cm

-3]

0,0 0,5 1,0 1,5 2,0 2,5 3,0

0

1

2

3

4

5

Time [108 s.]

(6), ...

(5)(4)(3)

(2)

(1)

[V2]

[1017

cm-3

]

0,0 0,5 1,0 1,5 2,0 2,5 3,0

0

5

10

15

20

25

Time [108 s.]

(2), ...

(1)

[V2]

[1016

cm-3

]

0,0 0,5 1,0 1,5 2,0 2,5 3,0-1

0

1

2

3

4

5

6

7

8

(12), ...

(11)

(1)(2)

Standard Si.

(3)

(10)

(9)

(8)

(7)(6)

(5)(4)

[VO]

[10

14 cm

-3]

0,0 0,5 1,0 1,5 2,0 2,5 3,0-2

0

2

4

6

8

10

12

14

16

(7), ...

Oxygenated Si

(6)(5)

(4)

(3)

(2)

(1)

[VO]

[10

16 cm

-3]

0,0 0,5 1,0 1,5 2,0 2,5 3,0

0

2

4

6

8

10

(7), ...

(6)(5)

(4)

(3)

(2)

(1)

[VP]

[10

12 cm

-3]

0,0 0,5 1,0 1,5 2,0 2,5 3,0

0

2

4

6

8

10

(2), ...

(1)

[VP]

[10

12 cm

-3]

0,0 0,5 1,0 1,5 2,0 2,5 3,0

0

1

2

3

4

5

Time [108 s.]

(6), ...

(5)(4)(3)

(2)

(1)

[V2]

[1017

cm-3

]

0,0 0,5 1,0 1,5 2,0 2,5 3,0

0

5

10

15

20

25

Time [108 s.]

(2), ...

(1)

[V2]

[1016

cm-3

]

0,0 0,5 1,0 1,5 2,0 2,5 3,0-1

0

1

2

3

4

5

6

7

8

(12), ...

(11)

(1)(2)

Standard Si.

(3)

(10)

(9)

(8)

(7)(6)

(5)(4)

[VO]

[10

14 cm

-3]

0,0 0,5 1,0 1,5 2,0 2,5 3,0-2

0

2

4

6

8

10

12

14

16

(7), ...

Oxygenated Si

(6)(5)

(4)

(3)

(2)

(1)

[VO]

[10

16 cm

-3]

0,0 0,5 1,0 1,5 2,0 2,5 3,0

0

2

4

6

8

10

(7), ...

(6)(5)

(4)

(3)

(2)

(1)

[VP]

[10

12 cm

-3]

0,0 0,5 1,0 1,5 2,0 2,5 3,0

0

2

4

6

8

10

(2), ...

(1)

[VP]

[10

12 cm

-3]

0,0 0,5 1,0 1,5 2,0 2,5 3,0

0

1

2

3

4

5

Time [108 s.]

(6), ...

(5)(4)(3)

(2)

(1)

[V2]

[1017

cm-3

]

0,0 0,5 1,0 1,5 2,0 2,5 3,0

0

5

10

15

20

25

Time [108 s.]

(2), ...

(1)

[V2]

[1016

cm-3

]

O x y g e n a t e dS t a n d a r d

Page 23: Ultra-rad-hard Sensors for Particle Physics Applications Z.Li Brookhaven National Laboratory On behalf of CERN RD50 Collaboration Pixel 2002, September

DOFZ : Diffusion Oxygenated Float Zone Si Oxidation+long time diffusion in N2 at high T (up to 1150 °C) [Oi] up to 5·1017cm-3

developed in the framework of RD48 in 1998

Material/ impurity/defect Engineering (MIDE)

HTLT : High Temperature Long Time oxidation Oxidation in straight O2 at high T (up to 1200 °C) for up to 24 hrs [Oi] up to 4·1017cm-3, uniform up to 50 ms. developed at BNL in 1992

Review of Current Technologies

Advanced HTLT : High Temperature Long Time oxidation Oxidation in straight O2 at high T (up to 1200 °C) for up to 216 hrs [Oi] up to 4·1017cm-3, uniform up to 400 ms. developed at BNL in 1999

o Thermal donor (TD) suppression (no change in initial doping)o TD introduction (initial doping dominated by TD)

Page 24: Ultra-rad-hard Sensors for Particle Physics Applications Z.Li Brookhaven National Laboratory On behalf of CERN RD50 Collaboration Pixel 2002, September

HTLT technology totally improve gamma radiation hardness

Vfd versus gamma dose for the BNL standard and HTLT O Diffused 1.1 kcm samples

0

50

100

150

200

250

300

350

0 50 100 150 200 250 300 350 400 450 500 550 600

Dose (Mrad)

Vfd

(V

) n

orm

alis

ed

to

300

m

HTLT O Diff, CVmeasurementHTLT O Diff, TCTmeasurementStandard, CVmeasurementStandard, TCTmeasurement

Vfd versus neutron fluence for BNL Si FZ

with 0 = 5 kcm

0

50

100

150

200

250

0 2E+13 4E+13 6E+13 8E+13 1E+14 1.2E+14

Neutron FLuence (n/cm2)

Vfd

(V

) n

orm

alis

ed t

o 3

00

m

Standard

HTLT O Diffused

HTLT technology does not improve neutron radiation hardnessconfirming BNL’s early results in 1994-95

o

B. Dezillie et al., IEEE Trans. Nucl. Sci., Vol. , No. , (2000) 1892-1897

Little improvement with regard to neutron radiation by HTLT

Maximum improvement with regard to gamma radiation by HTLT

Page 25: Ultra-rad-hard Sensors for Particle Physics Applications Z.Li Brookhaven National Laboratory On behalf of CERN RD50 Collaboration Pixel 2002, September

Vfd versus proton fluence measured by

C-V on BNL 1.2 - 3 kcm wafers

0

50

100

150

200

250

300

350

0.E+00 1.E+14 2.E+14 3.E+14 4.E+14 5.E+14 6.E+14Proton fluence (p/cm2)

Vfd

(V) n

orm

alis

ed fo

r

300

m th

ickness

BNL #921: HTLT O Diffused + TDBNL #923: StandardBNL #903: HTLT O Diffused

= 0.0109

= 0.0047

no SCSI (TCT)

Oxygenation partially improve charged particle (p, ) radiation hardnessBy a factor of 2-3

B. Dezillie et al., IEEE Trans. Nucl. Sci., Vol. , No. , (2000) 1892-1897

RD48, NIM A 447 (2000), 116-125

Thermal donor are not removed:delay of SCSI

Page 26: Ultra-rad-hard Sensors for Particle Physics Applications Z.Li Brookhaven National Laboratory On behalf of CERN RD50 Collaboration Pixel 2002, September

Model for the role of oxygen in rad-hardness

Particle type

Single defects

Defect clusters Oxygen

effect

n x xxxxxx

RV-V>>1

No

Charged particles (p, , etc.)

xxxx

RV-V <<1

xxPartial

xxxxxx

RV-V <<1

Yes1000 V’s 3 O’s

Z. Li et al., Nucl. Inst. & Meth., A461 (2001) 126-132

The local [O] is much smaller than [V] within the cluster

Page 27: Ultra-rad-hard Sensors for Particle Physics Applications Z.Li Brookhaven National Laboratory On behalf of CERN RD50 Collaboration Pixel 2002, September

Material/ impurity/defect Engineering (MIDE)

The advantage of using low Si detectorsin high irradiated environments

1.E+10

1.E+11

1.E+12

1.E+13

1.E+14

1.E+12 1.E+13 1.E+14 1.E+15Neutron Fluence (n/cm2)

Ne

ff (

1/cm

3)

CZ, 100 Ohm cm (BNL)

FZ, 300-700 Ohm cm (BNL)

FZ, 6 kOhm cm (BNL)

FZ, 10 kOhm cm (Hamburg)

Vfd (V)d=300m

68002100

680

200

70

6

Low resistivity starting Si materialso Delayed SCSIo Lower Vfd at higher fluences

Nucl. Inst. Meth. A360 (1995) 445

Page 28: Ultra-rad-hard Sensors for Particle Physics Applications Z.Li Brookhaven National Laboratory On behalf of CERN RD50 Collaboration Pixel 2002, September

Oxygen Dimers in Silicon

22222

2

;

;

OVVOVVOOV

OVVOVVOOV

neutral ?

V

Oi

V2O2

Thinner Detectors

S. Watts et al., presented at Vertex 2001

More radiation tolerance: For d = 50 m, the detector can be still fully depleted up to a fluence of 2-3x1015 n/cm2 at bias of 200 V:

o For a low starting resistivity Si (50 –cm), no SCSI up to 1.5x1015 n/cm2

o For high starting resistivity Si ( 4 k-cm), still fully depleted up to 3x1015 n/cm2 , even though SCSI taking place at about 1x1013 n/cm2.

Oxygen dimer O2i formed during pre-irradiation by Co60 -irradiation at 350ºC

Page 29: Ultra-rad-hard Sensors for Particle Physics Applications Z.Li Brookhaven National Laboratory On behalf of CERN RD50 Collaboration Pixel 2002, September

Device Structure Engineering (DSE)• Multi-guard-ring system (MGS)

o To increase the detector breakdown voltageo High operation voltage to achieve more radiation toleranceo Up to 1000 volts can can be achieved (up to 6x1014 n/cm2 tolerance)o Both CMS and ATLAS pixel detector systems use MGS

JHU

• n on n and n on p detectors

o Not sensitive to SCSIo Both CMS and ATLAS pixel detector systems use n on n

p+ back

sideMGS

n+ pixel

Page 30: Ultra-rad-hard Sensors for Particle Physics Applications Z.Li Brookhaven National Laboratory On behalf of CERN RD50 Collaboration Pixel 2002, September

Multi-guard-ring system (MGS)

p-type n-pixel with various guard-rings

1.E-11

1.E-10

1.E-09

1.E-08

1.E-07

1.E-06

0 200 400 600 800 1000 1200Vbias (V)

I gu

ard (

A)

1 GR

4 GR

7 GR

11 GR

G. Bolla et al., NIM A435 (1999) 178

Page 31: Ultra-rad-hard Sensors for Particle Physics Applications Z.Li Brookhaven National Laboratory On behalf of CERN RD50 Collaboration Pixel 2002, September

3-d Detector

Sherwood I. Parker et al., UH 511-959-00

n

n

pp

n

n n

n

n

n

pp

n

n n

n

Depletion

100 m

o Differ from conventional planar technology, p+ and n+ electrodes are diffused in small holes along the detector thickness (“3-d” processing)o Depletion develops laterally (can be 50 to 100 m): not sensitive to thicknesso Much less voltage used --- much higher radiation tolerance

Non-planar process

Vfd reduced up to a factor of 8-10

Page 32: Ultra-rad-hard Sensors for Particle Physics Applications Z.Li Brookhaven National Laboratory On behalf of CERN RD50 Collaboration Pixel 2002, September

Other Novel Structures

p+- n+ /n/p+ configuration (low resistivity)

Vfd reduced up to a factor of 3-4

Two-sided process-

p+- n+ /n/p+ configuration (low resistivity)2-sided processDepletion from both sidesCan be fully depletedfrom the beginning

Z. Li, 9th Vienna Conference on Instrumentation, Vienna, Austria, February 19-23, 2001

Page 33: Ultra-rad-hard Sensors for Particle Physics Applications Z.Li Brookhaven National Laboratory On behalf of CERN RD50 Collaboration Pixel 2002, September

p+- n+ /n/n+ configuration(Medium resistivity)

• Low bias at the beginning

• p+- n+ /n/n+ configuration:o Depletion from one side before SCSI

o Depletion from both sides after SCSI

• May work up to 1x1015 n/cm2 rad.

• One sided processing

• Bias Vb may be larger than Vf to get maximum depletion depth without break down

Z. Li, 9th Vienna Conference on Instrumentation, Vienna, Austria, February19-23, 2001

p+- n+ /n/n+ configuration (Medium to high resistivity)

• Before radiation, Neff= +1x1012 /cm3 (4 k-cm)

• Junction on the p+ contacts Simulation, V = 100 volts

p+ electrodeto pre-amps

n+ electrode+ bias

n+ electrode+ bias

n+ electrode+ bias

Potentialcontour

Electronconcentration

• After radiation, Neff= -1x1013 /cm3 (5x1014n/cm2)

• Junction on the n+ contacts Simulation, V = 130 volts (<<370 volts)

Holeconcentration

n+ electrode+ bias

n+ electrode+ bias

n+ electrode+ bias

p+ electrodeto pre-amps

Potentialcontour

Z. Li, 9th Vienna Conference on Instrumentation, Vienna, Austria, February 19-23, 2001

Vfd reduced up to a factor of 3-4

Single-sided process!

Other Novel Structures

Page 34: Ultra-rad-hard Sensors for Particle Physics Applications Z.Li Brookhaven National Laboratory On behalf of CERN RD50 Collaboration Pixel 2002, September

Properties of Si as compared to other Semiconductors

Lattice const.

(

Å)

Density (g/cm3)

Eg

(eV)

Dielec Const.

Disp. threshold E (eV)

e-h

creat E

(eV)

e (cm/s/V)

h (cm/s/V)

Rad. Leng

th (cm)

e-

h/0.3%X0[e]

C 3.567 3.5 5.5 5.7 80 13-17

1800 1200 12 7.2k

SiC 3.086 15.117

3.2

3.3

9.7

30?

9

400- 900

20-50

8.1

13k

GaP 5.4512 4.1 2.8 11 10 8 110 75 3.5 5.2k CdS 5.8320 4.8 2.5 9.1 8 7.6 340 50 2.1 7.2k

CdTe 6.482 5.9 1.49 10 6.7 5 1050 100 1.5 6.6k GaAs 5.653 5.3 1.43 13.1 9 4.8 8500 400 2.3 11k InP 5.869 4.8 1.34 13 7.5 4.2 4600 150 2.1 8.9k

Si 5.431 2.3 1.12 11.9 13.5 3.6 1450 450 9.4 24k

Ge 5.646 5.3 0.66 16 15 3 3900 1900 2.3 16k

New Materials

SiC is a most promising material for radiation detection. The 3.3eV gap provides very low leakage currents at room temperature and a mip signal of 5100e per 100m. Epitaxial SiCSchottky barriers have been successfully tested as alpha detectors and showed a 100% CCE after 24GeV/c proton irradiation up to 1014 cm-2.

oOther semiconductor materials may have to be used for extremely high radiation (>1x1016 n/cm2 )

Diamond, SiC, etc.

Page 35: Ultra-rad-hard Sensors for Particle Physics Applications Z.Li Brookhaven National Laboratory On behalf of CERN RD50 Collaboration Pixel 2002, September

Future RD50 Tasks

o More studies in the fields of: MIDE --- O and other impurities: H, Cl, N, oxygen-dimer, etc. DSE --- Realize 3D and semi-3D detectors, and thin detectors (push rad-hardness/tolerance to a few times of 1x1015 n/cm2)

o Make detectors with combined technologies:Oxygenated detectors with MGS and/or 3D and novel detector structuresOxygenated low resistivity detectors with MGS and/or 3D and novel detector structuresAnd so on(push rad-hardness/tolerance close to 1016 n/cm2) o Other semiconductor materials for extremely high radiation SiC, etc.(push rad-hardness/tolerance over 1x1016 n/cm2)

Page 36: Ultra-rad-hard Sensors for Particle Physics Applications Z.Li Brookhaven National Laboratory On behalf of CERN RD50 Collaboration Pixel 2002, September

Summaryo Different particles cause different displacement damage in Si material and detectors

o Radiation-induced damages cause detector electrical properties todegrade: increase of detector leakage current compensation of Si bulk (intrinsic bulk resistivity) increase of negative space charge during radiation and annealing space charge maybe modified by charge trapping

o To obtain ultra high Radiation hardness/tolerance, newly-formed CERN RD50 Collaboration is poised to carry out various tasks Material/impurity/defect engineering Device structure engineering Detector operation and modeling Full detector integration Other semiconductor materials for extreme radiation (> 1016 n/cm2)

1st RD50 - Workshop on Radiation hard semiconductor devices for very high luminosity colliders, CERN 2-4 October, 2002http://rd50.web.cern.ch/rd50/1st-workshop/default.htm