umts system

359
7/29/2019 UMTS System http://slidepdf.com/reader/full/umts-system 1/359 UMTS Architecture Overview by Dr Paul Raby

Upload: mazs91

Post on 03-Apr-2018

233 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 1/359

UMTS Architecture Overview

by Dr Paul Raby

Page 2: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 2/359

Public Land Mobile Network (PLMN)

▪ A PLMN can be regarded as anindependenttelecommunications entity.

▪ A PLMN is defined as:

▫ One or more switches with:

▪ a common numbering plan

▪a common routing plan▫ Switches act as the interface to

external networks

▪ The PLMN can be separatedinto

▫ Core Network

▫ Access Network

Core Network

Access Network

PLMN

System Architecture Overview  

Page 3: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 3/359

User Equipment 

UMTSTerrestrial

Radio AccessNetwork 

Core Network 

UU  IU UE UTRAN CN

UMTS High Level Architecture

System Architecture Overview  

Page 4: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 4/359

Major Network Elements in UMTS

PLMN,PSTN,ISDN 

Internet,X25

PacketNetwork 

UU 

UE

CU

USIM 

ME 

MobileEquipment 

UMTSSIM 

CN

MSC/VLR 

SGSN  GGSN 

GMSC 

HLR 

Serving GSN Gateway

GSN 

GatewayMSC 

Mobile SwitchingCentre 

Home LocationRegister 

IU 

UTRAN

IUb

IUr

Node B 

Node B 

Node B 

Node B 

RNC 

RNC 

Radio NetworkController 

Radio NetworkController 

Iu-ps

 

Iu-cs 

IUb

System Architecture Overview  

Page 5: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 5/359

General UTRAN Architecture

UU  IU 

UE 

UTRAN

IUb

IUr

Node B 

Node B 

Node B 

Node B 

RNC 

RNC 

Radio NetworkController 

Radio NetworkController 

Iu-ps 

Iu-cs 

IUb

CN (MSC)

CN (SGSN)

System Architecture Overview  

Page 6: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 6/359

Elements of UTRAN

▪ Radio Network Controller

▫ Owns and controls radio resources in its domain (BSC in GSM)

▫ Service Access Point for all services that UTRAN provides for the CN

▫ Note: Service RNC (SRNC) and Drift RNC (DRNC) are subsets

▫ Note: Control RNC (CRNC ) whichever RNC is talking to the UE

▪ Node B

▫ Acts as the radio base station (BTS in GSM)

▫ Converts the data flow between the Iub and Uu interfaces

System Architecture Overview  

Page 7: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 7/359

Major Interfaces in UMTS

▪ There are four major newinterfaces defined in UMTS

▫ Iu

▪The interface between UTRANand the CN

▫ Iur 

▪The Interface between differentRNCs

▫ Iub 

▪The interface between theNode B and the RNC

▫ Uu 

▪The air interface

RNC 

Node- B  

RNC 

UE

CN

Uu

 

Iu 

Iub

Iur

System Architecture Overview  

Page 8: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 8/359

UMTS Interface Implementation

ATM/IP Network

RNC Node  B

Node  B

Node  B

MSC 

RNC 

SGSN 

Node  B

Iub Iu_cs

 Iu_ps Iur 

System Architecture Overview  

Page 9: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 9/359

Handover in UMTS

▪ There are 3 basic types of handover▫ Intra frequency handovers 

▪ Handovers between 2 UMTS carriers at thesame frequency

▪ These can be soft handovers

▫ Inter frequency handovers ▪ Handovers between 2 UMTS carriers at different

frequencies

▪ These are hard handovers

▫ Inter system handovers 

▪ Handovers between UMTS and GSM carriers

▪ These are hard handovers

System Architecture Overview  

Page 10: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 10/359

Macrodiversity between Node B’s 

▪ If Active Set consists of

▫ two connections to cellsparented to different Node Bs

▫ then the combining of the twochannels occurs at the RNC

▪ This is known as a soft handover  

▪ This doubles thetransmission „cost‟ of thecall

RNC 

Node  B

Cell 

Cell 

Cell 

Node  B

Cell 

Cell 

Cell 

Iur 

Iu 

Uu 

System Architecture Overview  

Page 11: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 11/359

Maximal Combining between Cells on theSame Node B

RNC 

Node  B

Cell 

Cell 

Cell 

Node  B

Cell 

Cell 

Cell 

Iur 

Iu 

Uu 

▪ If Active Set consists of

▫ two connections to cellsparented to the same Node B

▫ then the combining of the twochannels occurs at the NodeB

▪ This is known as a softer handover  

▪ This has no transmissionimplication (but does havecapacity implications) ifcells are collocated.

▪ Uses maximal combining

▫ Adds electrically the

signals making one betterthan each individual

System Architecture Overview  

Page 12: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 12/359

Architecture of a UMTS bearer service

TE  TE UE  UTRAN CN

edge node 

CNgateway 

End-to-End 

TE/UE LocalBearer  UMTS Bearer  External Bearer 

Radio Access Bearer  CN Bearer 

Radio Bearer  Iu Bearer  Backbone Network 

UTRA FDD/TDD  Physical Bearer 

Each bearer service on a specific layer provides services using layers below.

System Architecture Overview  

S A hi O i

Page 13: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 13/359

UMTS Protocol Stratums

▪ Non-access StratumEncompasses layers 4 to

7 of the OSI 7 layermodel, and the upper partof layer 3

 onA  c  c  e s  s  S  t  r  a t   um 

A  c  c  e s  s  S  t  r  a t   um 

L1 L1 L1L1

L2L2L2L2

L5L5

L4L4

L6 L6

L7 L7

L3 lower L3 lower L3 lower L3 lower

L3 upper L3 upper

Uu  Iu UE  UTRAN  CN 

System Architecture Overview  

• Access Stratum

→ Encompasses layers 1and 2 of the OSI 7 layermodel and the lower part oflayer 3

S t A hit t O i

Page 14: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 14/359

UMTS QoS Classes

▪ Conversational ▫ Speech over CS bearer

▫ Voice over IP, PS bearer

▫ Delay critical, imposed by human perception

▪ Streaming ▫ Multimedia streaming

▫ Using buffers, for non-real time delivery; real-video, real- audio 

▪ Interactive ▫ Web browsing, database retrieval

▫ Round trip delay time is a key parameter

▪ Background ▫ E-mail

▫ Delay:- 10s of seconds or even minutes

System Architecture Overview  

S t A hit t O i

Page 15: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 15/359

Protocol Model for UTRAN Interfaces

▪ Protocol structures in UTRAN are designed in layers and planes.

▪ They are seen as logically independent of each other

▫ However they will physically interact.

▪ Being logically independent allows for changes to blocks in the

future

theoretically! 

System Architecture Overview  

System Architecture Overview

Page 16: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 16/359

General Protocol Model forUTRAN Terrestrial Interfaces

System Architecture Overview  

System Architecture Overview

Page 17: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 17/359

Horizontal Layers in the General Protocol Model

▪ All UTRAN related issues are only visible in the Radio

Network Layer

▪ The Transport Layer simply represents standard transport

technology for use in UTRAN

▫ e.g. ATM and appropriate ATM Adaptation Layers 

▪ AAL2 ( voice ) and AAL5 ( data/control)

▫ UDP/IP or RTP/UDP/IP ( release 6 ? )

System Architecture Overview  

System Architecture Overview

Page 18: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 18/359

Vertical Planes in the General Protocol Model

▪ The Control Plane is provided for all UMTS

specific control signalling including: 

▫ Application Protocols

▫ Signalling Bearers

▪ The User Plane is provided for all data sent and

received by the user including: 

▫ Data Streams

▫ Data Bearers

System Architecture Overview  

System Architecture Overview

Page 19: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 19/359

Vertical Planes in the General Protocol Model

▪ The Transport Network Control Plane also includes the Access

Link Control Application Part, ALCAP.

Transport Network User 

Plane 

Transport Network User 

Plane 

Transport Network Control 

Plane 

ALCAP 

System Architecture Overview  

Page 20: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 20/359

UMTS Technology Overview

UMTS Technology Overview

Page 21: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 21/359

CDMA - Direct Sequence Spread Spectrum

UMTS Technology Overview  

f  r  e q u en c  y 

time 

code 

Frame Period (we may still needframes/timeslots for signaling)

UMTS Technology Overview

Page 22: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 22/359

CDMA Spreading

•Essentially Spreading involves changing the symbol rate on the air interface

Identical codes 

Tx Bit Stream 

P

f

Code Chip Stream 

Spreading  

P

f

Channel 

Air InterfaceChip Stream 

P

f

Code Chip Stream 

Despreading  

P

f

Rx Bit Stream 

P

f

UMTS Technology Overview  

UMTS Technology Overview

Page 23: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 23/359

Spreading and Despreading

Rx Bit Stream 

Air InterfaceChip Stream 

Tx Bit Stream 1 

-1 

Code Chip Stream 

XSpreading  

Code Chip Stream 

X Despreading  

UMTS Technology Overview  

UMTS Technology Overview

Page 24: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 24/359

Spreading and Despreading with code Y

Air InterfaceChip Stream 

Tx Bit Stream 1 

-1 

Code Chip Stream 

XSpreading  

X Despreading  

UMTS Technology Overview  

Code Chip Stream Y 

Rx Bit Stream 

UMTS Technology Overview

Page 25: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 25/359

Spreading

▪ If the Bit Rate is Rb, the Chip Rate is Rc, the energy per bitEb and the energy per chip Ec then

▪ We say the Processing Gain Gp is equal to:

▪ Commonly the processing gain is referred to as theSpreading Factor 

b

ccb

 R

 R E  E 

b

c p

 R

 RG

UMTS Technology Overview  

UMTS Technology Overview  

Page 26: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 26/359

Spreading in noise

▪ The gain due to Despreading of the signal over widebandnoise is the Processing Gain 

Signal 

P

f

Spreading Code 

Tx SignalP

f

Rx Signal (= Tx Signal + Noise)

f

P

Channel 

Wideband Noise/Interference 

P

f

Spreading Code Signal 

P

f

gy

UMTS Technology Overview  

Page 27: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 27/359

Visualising the Processing Gain

Signal

Intra-cell Noise

Inter-cell Noise

W/Hz

Before Spreading 

f

W/Hz

After Spreading 

f

W/Hz

Ec 

Io With Noise 

f

W/Hz

After Despreading  /Correlation 

f

W/HzEb 

No 

Post Filtering Orthog = 0 

f

dBW/Hz

Eb 

No 

Eb /No 

f

Eb 

No 

W/HzPost Filtering Orthog > 0 

f

Eb 

No 

Eb /No dBW/Hz

f

gy

UMTS Technology Overview  

Page 28: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 28/359

Separating BaseStations

▪ Summarising:

▫ Channelisation Codes

▪Are used to separate channelsfrom a single cell

▫ Scrambling Codes

▪Are used to separate cells fromeach other rather than purelychannels

▪ Different base stations will use thesame spreading codes withseparation being provided by theuse of different scrambling codes.

S1

 

S2 

S3 

C1  C2  C3 

C1  C2  C3 

C1  C2  C3 

gy

UMTS Technology Overview  

Page 29: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 29/359

Separating UE’s 

▪ Summarising:

▫ Spreading/Channelisation Codes

▪Are time dependent and so are used in the UL to spread the signalbut not to separate the UE‟s 

▫ Scrambling Codes

▪Are used to separate UEs from each other rather.

gy

UMTS Technology Overview  

Page 30: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 30/359

Spreading Codes = Channelisation Codes

▪ Channelisation codes are orthogonal

▫ Which provides channel separation

▪ Number of codes available is dependant onlength of code

▪ Channelisation codes are used to spread thesignal

UMTS Technology Overview  

Page 31: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 31/359

Channelisation Code Generation

▪ Channelisation codes can be generated from a Hadamard matrix

▪ A Hadamard matrix is:

▪ Where x is a Hadamard matrix of the previous level

▪ For example 4 chip codes are:

▫ 1,1,1,1

▫ 1,-1,1,-1

▫ 1,1,-1,-1

▫ 1,-1,-1,1

x x

 x x

Note: These two codes correlateif they are time shifted

UMTS Technology Overview  

Page 32: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 32/359

▪ Orthogonal Variable Spreading Factor Codes can

be defined by a code tree:

▫ SF = Spreading Factor of code (maximum 512 forUMTS in the DL, 256 in the UL)

SF = 1 SF = 2 SF = 4

Cch,1,0 = (1)

Cch,2,0 = (1,1)

Cch,2,1 = (1,-1)

Cch,4,0 =(1,1,1,1)

Cch,4,1 = (1,1,-1,-1)

Cch,4,2 = (1,-1,1,-1)

Cch,4,3 = (1,-1,-1,1)

OVSF codes

UMTS Technology Overview  

Page 33: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 33/359

Vital Parameters

▪ Ec/Io of the Pilot Channel is used to

▫ estimate (“sound”) the channel (multipath characteristics)

▫ decide which server is “best server”

▫ make handover decisions

▫ Typical requirement > -15 dB

▪ Eb/No in both uplink and downlink affects error ratios.

▫ Typical requirement 1 to 10 dB

▫ Required value of Eb/No depends on propagationconditions and sophistication of receiver.

▫ This is your Quality Measure

▪ Noise rise limits path loss and coverage.

UMTS Technology Overview  

Page 34: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 34/359

Rake Receiver

Correlator

Code Generators

(S & C)

ChannelEstimator

Phase Rotator Delay Equalizer

Matched Filter

I

Q

I

Q

A typical rake receiver withthree fingers

UMTS Technology Overview  

Page 35: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 35/359

RAKE Receiver

▪ Auto-correlation function of PN sequence is used toproduce multipath estimate of propagation path.

▪ Each finger then acts as separate receiver to provide theoptimum signal

Autocorrelation

-0.5

0

0.5

1

0 1 2 3 4 5 6 7

Delay

   A  v  e  r  a  g  e  v  a   l  u  e

Direct Component Delayed Components

UMTS Technology Overview  

Page 36: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 36/359

Wideband Implications

▪ Autocorrelation function of PN sequence is 1 for zero delay and zerofor all delays outside a chip period.

UMTS Technology Overview  

Page 37: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 37/359

Multipath Situation

Autocorrelation can be processedto provide a channel estimation.

Tx

Rx

+

UMTS Technology Overview  

Page 38: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 38/359

Resolution of Multipath

Chip Period = 0.26 microsecondsCorresponding path length difference = 78 metres

This indicates the sort of resolution possible with theUMTS Rake receiver

Tx

Rx

excel

UMTS Technology Overview  

Page 39: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 39/359

Noise Rise

▪ The effective noise floor of the receiver increases as the

number of active mobile terminals increases.

▪ This rise in the noise level appears in the link budget andlimits maximum path loss and coverage range.

Background Noise

Three Users

One User

Two Users

UMTS Technology Overview  

Page 40: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 40/359

Self Assessment Questions

▪ What is the Processing Gain (in dB) if a UMTS

system utilising a chip rate of 3840 kbps is used

with the following user rates?

i) 12.2 kbps

ii) 64 kbps

iii) 128 kbps

UMTS Technology Overview  

Page 41: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 41/359

Self Assessment Questions

Solution:

dB98.2412200

3840000log10

3840000log10Gain

10

10

b R

UMTS Technology Overview  

Page 42: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 42/359

Self Assessment Question

▪ If a 12200 bps voice channel has a

SNR of -16 dB. Determine Eb/No.

Processing Gain = 25 dB 

Eb/No = 25 - 16 = 9 dB 

UMTS Technology Overview  

Page 43: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 43/359

Self Assessment Questions

▪ A mobile receives a 12200 bps voice channel from a base

station at a level of –106 dBm. The base station is transmitting

12 additional identical voice channels plus a pilot channel and

common channel that are both received with power levels of –

104 dBm. The background thermal noise level of the mobile is –99 dBm.

Determine the value of Eb/No at the output of the receiver for

the following orthogonality factors.

i) 0 ii) 0.5 iii) 1.0

UMTS Technology Overview  

Page 44: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 44/359

Example Solution

13-

14-

13-

103.81Total

107.96dBm-1042

103.01dBm-10612

common)andpilot(incchannelsotherfromPowerTotal

Taking Orthogonality to be 0.5:

W 13-101.9PowerEffectiveModified

UMTS Technology Overview  

Page 45: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 45/359

Solution

W 13-101.9PowerEffectiveModified

W 13-101.26dBm99-PowerNoiseThermal

dBm95

10.163PwrEff.ModifiedNoiseThermal 13-

dB11(-95)--106SNR

dB14N

E

dB52GainProcessing

0

b

ebno

Page 46: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 46/359

The Link Budget

The Link Budget 

Page 47: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 47/359

The Link Budget

▪ GSM and UMTS compared

▫ More thermal noise in UMTS systems. KToB ~ -108.1 dBm

▫ Processing Gain (dBs) in UMTS

= 10 log (3840000/User Rate (bps))

▫ Power Control Margin for imperfect Fast Fading Power

Control must be considered in UMTS systems

▫ Interference Margin for Noise Rise must be considered in

UMTS systems

The Link Budget 

Page 48: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 48/359

Recovering the Wanted Signal

 jtotal

 j

 j

b

 jtotal

 j

P I 

P

 R

 N 

 E 

P I 

PSNR

0

The Link Budget 

Page 49: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 49/359

Recovering the Wanted Signal

total j

 j jb

total

 j

 j

b

 j

 j

btotal

 j

 j

 j

b

 jtotal

 j

 I  L

 R

 E 

 N 

 I 

 R

 N 

 E 

 R

 N 

 E  I 

P

W  R

 N  E 

P I P

 

  

 

 

  

 

 

 

 

 

  

  

0

0

0

0

1

1

The Link Budget 

Page 50: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 50/359

Recovering the Wanted Signal

 j jb

 j

 R

 E 

 N  L

 

  

 

01

1

95

1

1220038400003.01

1

12200 3840000 )dB5.2( 3.00

  

  

 j

 j

b

 L

 RW  E 

 N 

Inserting typical values for a voice service:

The Link Budget 

Page 51: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 51/359

Recovering the Wanted Signal

Possibility 1:

•Single user.

•Thermal Noise responsible for

94/95ths of received power.

•SNR=1/94 = -19.8 dB

User j is responsible for 1/95th of received power

Possibility 2:

•Power level so high that thermalnoise is insignificant.

•95 identical users possible.

Practical situations will lie in between these two extremes.

The Link Budget 

Page 52: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 52/359

Considering Thermal Noise

Total Power = Power from Users + Thermal Noise

ReceivedPowerTotaluserswantedfromreceivedPower

1

1

1

1

budget)link (affectsRiseNoise

1

1

UL

UL M  j

 j j

 N 

total

 N 

total

 N total

 M  j

 j jtotal

 LP

 I P

 I 

P I  L I 

 

 

•This is also the equivalent to loading factor – see later

C

The Link Budget 

Page 53: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 53/359

Considering Thermal Noise

Total Power = Power from Own Cell + Power from Other Cells + Thermal

Noise

Thermal Noise

Own Cell

Other Cell 323

95

New Capacity

Th N i Ri E i

The Link Budget 

Page 54: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 54/359

The Noise Rise Equation

 jb

 jUL

 M  j

 j j

 N 

total

 R

 E 

 N  L L

P

 I 

 

  

 

0

1

1

1

 1

1

1

1

 

If we have M identical users:

 jb

 M  j

 j j

 R

 E 

 N  M  L

 

  

 

01 1

 jb

 N 

total

 R

 E 

 N 

 M P I 

 

  

 

01

1

1 RiseNoise

Th N i Ri E i

The Link Budget 

Page 55: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 55/359

The Noise Rise Equation

 jb

 N 

total

 R

 E 

 N 

 M P

 I 

 

  

 

01

1

1

 RiseNoise

W  E 

 N  R

 MR

b j

 j

 

 

 

 

0

1

1RiseNoise

W  E 

 N 

b  

 

 

 

0

ghputuser throusingle

tthroughputotal1

1

Eff t f N i hb i C ll

The Link Budget 

Page 56: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 56/359

Effect of Neighbouring Cells

Users in other cells cause interference.

Typical ratio of power from other cells to power

from own cell, i, is 0.6

C id i th ll

The Link Budget 

Page 57: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 57/359

Considering other cells

Total Power = Power from Users + Noise from other cells + Thermal Noise

ReceivedPowerTotal

userswantedfromreceivedPower

11

1

11

1

budget)link (affectsRiseNoise

1

11

UL

UL

 M  j

 j

 j N 

total

 N 

total

 N total

 M  j

 j

 jtotal

 M  j

 j

 jtotal

i Li

P

 I 

P

 I 

P I  Li I  L I 

 

 

Th M difi d N i Ri E ti

The Link Budget 

Page 58: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 58/359

The Modified Noise Rise Equation

 jb

 j

UL

 M  j

 j

 j N 

total

 R

 E 

 N  Li Li

P

 I 

 

  

 

0

1

1

1 11

1

11

1

 

If we have M identical users:

 jb

 M  j

 j j

 R

 E 

 N  M  L

 

  

 

01 1

 jb

 N 

total

 R

 E 

 N 

i M P

 I 

 

  

 

01

11

1

 RiseNoise

Th M difi d N i Ri E ti

The Link Budget 

Page 59: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 59/359

The Modified Noise Rise Equation

W  E 

 N 

i

b

 

  

 

0ghputuser throusingle

1tthroughputotal1

1RiseNoise

i

W  E 

 N 

b

 

 

 

 

1

ghputuser throusingle

tthroughpuTotal

as RiseNoise

0

C ll C it

The Link Budget 

Page 60: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 60/359

Cell Capacity

i

W  E 

 N 

b

 

  

 

1

ghputuser throusingle 0

is known as “pole capacity”. 

i N 

b E 

 

 

 

 

10

 CapacityPole

 usersof numberlargeFor

Cell Capacity

The Link Budget 

Page 61: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 61/359

Cell Capacity

i N 

 E 

b  

  

  1 CapacityPole

usersof numberlargeFor

0

kbps853

5.0133840000 CapacityPole

0.5 (4.77dB) 3Eb/No 3840000W

i

• 50% of this would give a Noise Rise of 3 dB• ( Eb/No goes from 3 to 6 )

•50% of 853 kbps = 426 kbps

Loading Factor

The Link Budget 

Page 62: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 62/359

Loading Factor

 R

i M  N 

 E 

i N 

 E 

 R M 

 R M 

b

o

b

 

 

 

 

  

  

1

1

 FactorLoading

:ratedatawithusersidenticalFor

CapacityPole

ThroughputActual

 FactorLoading

0

Noise Rise and Loading Factor

The Link Budget 

Page 63: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 63/359

Noise Rise and Loading Factor

▪ Loading (Capacity) is linked to Eb/No value

▪ Noise Rise is linked to maximum path loss

Noise Rise Loading Factor

1 dB 20%

3 dB 50%

6 dB 75%10 dB 90%

UL  1log10RiseNoise 10

Activity Factor

The Link Budget 

Page 64: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 64/359

Activity Factor

factor.activityusertheis where

1

 FactorLoading

 

 

 R

i M  N  E 

o

b

  

  

Users are not active 100% of the time.

It is necessary to adjust the loading factor to acknowledge this fact

Downlink Considerations

The Link Budget 

Page 65: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 65/359

Downlink Considerations

The Downlink benefits from orthogonality between channelisation codes.

)1(

ghputuser throusingle

 CapacityPole

0

i

W  E 

 N 

b

 

  

 

 

is orthogonality factor and has a value between zero and 1.

Downlink Considerations

The Link Budget 

Page 66: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 66/359

Downlink Considerations

The Downlink loading factor.

i N 

 E 

o

b  

  

 

 

 

1throughput

 DL

maxP

Ptotal DL

 

Varies between approximately 20% and 75%

Uplink Budget for 144 kbps service

The Link Budget 

Page 67: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 67/359

Uplink Budget for 144 kbps service

Thermal Noise: -108 dBm, Noise Figure: 4 dB, Eb/No: 1.5 dB

Processing Gain: 14 dB (10 log[3840/144])

Sensitivity -116.5 dBm

Margins: Noise Rise: 3 dB, Fast Fading: 2 dB

Antenna Gains: 20 dBi

Tx Power: 21 dBm

•Allowable Path Loss: 152.5 dB 

Downlink Budget for 144 kbps service

The Link Budget 

Page 68: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 68/359

Downlink Budget for 144 kbps service

Allowable Path Loss: 152.5 dB 

Sensitivity -113.5 dBm 

Margins: Noise Rise: 3 dB, Fast Fading: 2 dB

Antenna Gains: 20 dBi

Required Tx Power: 24 dBm per channel

kbps19115.1

41.1

3840144 CapacityPole

For 3 dB Noise Rise, capacity is halved to 955 kbps or 6

channels.

Total transmitted power required = 6 x “24 dBm” = 31.8 dBm 

Uplink Budget for 8 kbps service

The Link Budget 

Page 69: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 69/359

Uplink Budget for 8 kbps service

Thermal Noise: -108 dBm, Noise Figure: 4 dB, Eb/No: 5 dB

Processing Gain: 27 dB (10 log[3840/8])

Sensitivity -126 dBm

Margins: Noise Rise: 3 dB, Fast Fading: 2 dB

Antenna Gains: 20 dBi

Tx Power: 21 dBm

Allowable Path Loss: 162 dB 

Downlink Budget for 8 kbps service

The Link Budget 

Page 70: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 70/359

Downlink Budget for 8 kbps service

Allowable Path Loss: 162 dB 

Sensitivity -123 dBm 

Margins: Noise Rise: 3 dB, Fast Fading: 2 dB

Antenna Gains: 20 dBi

Required Tx Power: 24 dBm per channel

For 3 dB Noise Rise, capacity is halved to 407 kbps or 51 channels.

Total required power is 51 x “24 dBm” = 41 dBm 

kbps8155.1

3840316.08 CapacityPole

Coverage vs Capacity Comparisons

The Link Budget 

Page 71: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 71/359

Coverage vs. Capacity Comparisons

Coverage vs. Capacity

145.00

150.00

155.00

160.00

165.00

170.00

175.00

180.00

100 200 300 400 500 600 700 800

Throughput (kbps)

   M  a  x   i  m

  u  m    P

  a   t   h   l  o  s  s   (   d   B   )

Uplink

Downlink

144 kbps service 8 kbps service

Coverage vs. Capacity

145.00

150.00

155.00

160.00

165.00

170.00

175.00

180.00

100 200 300 400 500 600 700 800

Throughput (kbps)

   M  a  x   i  m

  u  m    P

  a   t   h   l  o  s  s   (   d   B   )

Uplink

Downlink

Capacity Issues

The Link Budget 

Page 72: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 72/359

Capacity Issues

▪ Cell Throughput affects Noise Rise

▪ Noise Rise affects Link budget.

▪ Adding more cells reduces pathloss andallows for more Noise Rise and hence highercapacity.

Capacity Issues: example

The Link Budget 

Page 73: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 73/359

Capacity Issues: example

▪ Network originally provides coverage at NR = 2dB

Radius of each cell is RR

If number of cells isdoubled the radius

reduces to R/ 2

Path loss will reduce by 5.3 dB.

( Assuming simple model for Path loss 137 + 

35logR)

NR can increase by 5.3 dB.

Capacity Issues: example

The Link Budget 

Page 74: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 74/359

Capacity Issues: example

▪ NR of 2 dB corresponds to a loading factor of 37%.

▪ NR of 7.3 dB corresponds to loading factor of 81%

▪ Each cell can now handle more than double the traffic.

▪ Doubling the number of cells has increased the capacity

by a factor of 4.4 ( 0.81/0.37 x 2 )

Note that doubling the number again would give a NR of 12.6 dB

(loading factor 95%) which would not produce such a remarkable

improvement.

( 0.95/0.81 x 2 = 2.34 this is equivalent to 10.3 x capacity of original network )

Target Eb/No Values

The Link Budget 

Page 75: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 75/359

Target Eb/No Values

▪ Capacity is linked to Eb/No value

▫ Typical values: Voice 4 dB; High Speed Data 1.5 dB

▪ Lower overhead in control data for higher speed data.

▪ Also, Eb/No value assumes processing gain of 3840/12.2 for 12200bps voice. Actual transmitted data is 30000 bps.

▪ Target Eb/No controlled by RNC and will depend upon prevailing

conditions.

Single Channel Cells

The Link Budget 

Page 76: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 76/359

Single Channel Cells

▪ UMTS Flexibility allows for one user to take up entire cell‟scapacity.

▪ Noise Rise is now irrelevant as there can be no other users.

▪ Base station has higher capacity making coverage uplink

limited.

▪ Asymmetry in power can be reflected in asymmetry in

throughput. e.g. 2 Mbps possible in downlink with 144 kbpsin uplink.

Asymmetric Traffic

The Link Budget 

Page 77: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 77/359

Asymmetric Traffic

▪ Combination of (symmetric) voice and (highly asymmetric) packet data traffic

will tend to make the service asymmetric.

▪ Predicted asymmetry is 3:1 in favour of downlink.

▪ Achievable through balancing the links so that for the same path loss, downlink

has greater throughput capability.

Coverage vs. Capacity

145.00

150.00

155.00

160.00

165.00

170.00

100 200 300 400 500 600 700 800

Throughput (kbps)

   M  a  x   i  m  u  m    P  a   t   h   l  o  s  s   (   d   B   )

Uplink

Dow nlink

ConclusionsThe Link Budget 

Page 78: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 78/359

Conclusions

▪ Eb/No and Capacity intimately linked.

▪ Link budgets are affected by fast fading and interference

margins.

▪ Uplink and downlink affected differently by increased loading.

▪ Flexibility allows high data rate services to be provided.

▪ Asymmetric traffic requirements can be designed in.

Page 79: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 79/359

Analysis, Prediction and Optimisation ofDownlink Capacity

The Story so Far

Coverage versus Capacity  

Page 80: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 80/359

The Story so Far

▫ It is possible to make “ball park” estimates of the capacity on

the downlink.

▫ The first step is to estimate a nominal pole capacity

▫ Then estimate the noise rise that can be produced at the“magic spot”. 

▫ Hence deduce loading factor.

▫ This is a useful “first pass” planning calculation to perform. 

▫ However, it does not consider an unevenly loaded network, nor

does it help us optimise network performance. 

i N 

E b  1

3840

0

Further Analysis of the Downlink

Downlink Analysis  

Page 81: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 81/359

Further Analysis of the Downlink

▫ The concept of the “identical user”. 

Identical:

•Bit Rate

•Eb/No

•Path loss

•Orthogonality

•Interference

Further Analysis of the Downlink

Downlink Analysis  

Page 82: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 82/359

Further Analysis of the Downlink

int

11)1( R

 L

Tcom

 L

user 

 L

user  N  P

 L

P

 L

P N 

 L

PP

  

▫ Power Received by each user:

PTcom

Puser

N-1“other users” 

Bit Rate

Eb/No

Path loss

Orthogonality

PRint

i L

 NPP

 L

user Tcom

Further Analysis of the Downlink

Downlink Analysis  

Page 83: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 83/359

u t e a ys s o t e o

RW 

P L

P L

P N P

 LP N  E 

 R L

Tcom

 L

user  N 

 Luser b

  

  

int0

111 / 

  

▫ Eb/No delivered to each user:

Total Transmitted Power

=

Tcomuser  P NP

Capacity vs Link Loss

Downlink Analysis  

Page 84: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 84/359

Capacity vs. Link Loss

Link Loss(dB) Tx Power for25 users(dBm)

Maximumusers for 43dBm TxPower

110 37.62 64

125 37.69 64

140 39.33 49

145 41.63 33

150 45.26 16

dBm102 ;bit/s12200 dBm;36

 dB;6N ;6.0 ;6.0 0

 N Tcom

b

P RP

 E i 

Rapid, Approximate Method

Downlink Analysis  

Page 85: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 85/359

p , pp

▫ As Puser is allowed to approach infinity:

i N  E 

W  RN 

b

 10

▫ The “Pole Capacity”. 

Rapid, Approximate Method

Downlink Analysis  

Page 86: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 86/359

p , pp

▫ Identical Users will experience identical noise rise.

▫ Noise rise can be converted to throughput.

▫ We can predict the noise rise for given circumstances. 

0

5

10

15

20

25

0 0.2 0.4 0.6 0.8 1 1.2

Rapid, Approximate Method

Downlink Analysis  

Page 87: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 87/359

p , pp

iP LP

 LPiP

Tcom L N 

 L N T 

 

 

1

1max

We can predict the noise rise for given circumstances.

The maximum noise rise that can be produced is 

Then, capacity is given by

L N T 

TcomT 

b LPiPPP

 N  E W PC 

 1.

RiseNoise11

max

max

0

Effect of Link Loss on Capacity

Downlink Analysis  

Page 88: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 88/359

p y

There is a maximum capacity at low levels of link loss. High

transmit power allows this capacity to be approached at significantlevels of link loss.

0

200

400

600

800

1000

1200

120 130 140 150 160

Link Loss (dB)

   C   a   p   a   c   i   t   y   (   k   b   i   t   /   s

   )

+37 dBm +40 dBm +43 dBm +46 dBm

Maximum Capacity

Downlink Analysis  

Page 89: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 89/359

At negligible levels of link loss, the expression

for noise rise becomes

Tcom

P

P max

kbit/s1.

1

3840

max0

 

 

 

 

Tcom

b P

P

i N 

 E  

And capacity can be estimated from

Maximum Capacity

Downlink Analysis  

Page 90: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 90/359

If is taken to be fixed at, for example, 5,

then capacity is given byTcom

P

P max

kbit/s

1

3072

0i

 N  E b  

And maximum capacity can be estimated from

kbit/s2.01

1

3840

0

i N  E b  

Effect of Orthogonality

Downlink Analysis  

Page 91: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 91/359

Graph shows the effect of orthogonality on the downlink

capacity for a link loss of 145 dB and i set at 0.6.

0

200

400

600800

1000

1200

0 0.2 0.4 0.6 0.8 1

Orthogonality

   C  a  p  a  c   i   t  y   (   k

   b   i   t   /  s   )

BTS Power: 37 dBm 40 dBm 43 dBm 46 dBm

Effect of Out-of-Cell Interference

Downlink Analysis  

Page 92: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 92/359

Graph shows the effect of variations in the value of i on the

downlink capacity for a link loss of 145 dB and orthogonality of 0.6.

0

200

400

600

800

1000

1200

1400

0 0.4 0.8 1.2 1.6 2

Out of Cell Interference

   C  a  p  a  c   i   t  y   (   k   b   i   t   /  s   )

BTS Power: 37 dBm 40 dBm 43 dBm 46 dBm

Extending the Validity – The Evenly-loaded Network

Downlink Analysis  

Page 93: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 93/359

So far, “identical users” have been considered.

Consideration is now given to an evenly loaded

network.

Crucially, is there a

representative value oflink loss and out-of-cell

interference that can

be used to estimate

downlink capacity?

Extending the Validity

Downlink Analysis  

Page 94: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 94/359

Experimentation with Monte

Carlo simulation suggests

that:

The effective value of link loss

is 4 dB less than that to the

edge of the cell.

The effective out-of-cell

interference ratio is 0.85.

Max throughput = kbit/s2458

0 N  E b

Extending the Validity- An Example

Downlink Analysis  

Page 95: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 95/359

Network of cells with link loss

to edge of 133 dB.

Maximum throughput on

downlink at Eb/No of 7 dB

is 460 kbit/s for 43 dBm

transmit power.

Note:

Pole Capacity = 613 kbit/s

If 20% of power is for

common channels then

Max throughput = 490 kbit/s 

for very low linkloss

Uplink-Downlink Balance

Downlink Analysis  

Page 96: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 96/359

Approximate Downlink Max Capacity =

Approximate Uplink Max Capacity =

Initial expectation is that loading factors will be higher

on the downlink.

Uplink Diversity and MHA will favour the uplink.

kbit/s2458

0 N  E b

kbit/s2400

0 N  E b

The Unevenly-loaded Network

Downlink Analysis  

Page 97: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 97/359

The situation is complicated by the fact that different

users experience different levels of noise rise.

For example, consider the case where there are 24

voice users, split into two, equal groups.

• Link loss = 120 dB

• DL i = 0.3

• NR = 2.1 dB

• Link loss = 140 dB

• DL i = 1.0

• NR = 1.4 dB

The Unevenly-loaded Network

Downlink Analysis  

Page 98: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 98/359

For a more general

situation, the

maximum capacity is

often determined

using a Monte Carlo

simulator on a trial

and error basis.

The Unevenly-loaded Network

Downlink Analysis  

Page 99: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 99/359

However, if the pole capacity is estimated from

Then a single simulation result can be used to estimatethe maximum downlink capacity.

Reports from the simulation include downlink traffic

channel power and throughput.

i N  E b  1

3840

0

The Unevenly-loaded Network

Downlink Analysis  

Page 100: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 100/359

As an example, it was found that a cell supported 300 kbit/s at an

Eb/No value of 6 dB using 33.9 dBm of traffic channel power.

Pole Capacity estimated at 772 kbit/s.

Hence representative noise rise estimated as 2.14 dB.

42 dBm of traffic channel power is available.

What noise rise (and hence throughput) would this cause?

The Unevenly-loaded Network

Downlink Analysis  

Page 101: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 101/359

If 33.9 dBm causes 2.14 dB of noise rise then 42 dBm would

cause 7.1 dB of noise rise.

Loading factor of 80%.

Resulting throughput of 622 kbit/s at an Eb/No value of 6 dB.

Tested with Monte Carlo simulation and found to be valid for

general situations where the distribution of the new load was

similar to the existing load.

The Unevenly-loaded Network

Downlink Analysis  

Page 102: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 102/359

For heavily concentrated “hot spot” situations.

A static analysis can result in an estimate for downlink values of i.

Optimising Throughput – using Pilot SIR

Downlink Analysis  

Page 103: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 103/359

The value of i influences

throughput. Any hotspotsshould be located where i is

low. Examining the Pilot SIR

as part of a static analysis

when the network is heavily

loaded will indicate the

throughput possible. 

Optimising Throughput – using Pilot SIR

Downlink Analysis  

Page 104: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 104/359

If the pilot is at +33 dBm, the SIR reported will

be that for any traffic channel with the samepower.

This influences throughput.

E.g. SIR = -6 dB; target Eb/No = 4 dB

Maximum throughput for 33 dBm = 384 kbit/s.

33dBm = 2W so

192 kbit/s/watt (192 kbit/J).

Optimising Throughput – using Pilot SIR

Downlink Analysis  

Page 105: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 105/359

Pilot SIR varies between -5 dB and -12dB.

kbit/J parameter varies by a factor of 5.

Re-directing antennas can cause

variation by a factor of 3 or more. 

Conclusions

Downlink Analysis  

Page 106: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 106/359

▫ Downlink capacity can be estimated for dimensioning purposes.

▫ Estimates compared with Monte Carlo simulator predictions.

▫ Estimates less accurate where network is not evenly loaded.

Simulations can lead to a more accurate estimate.

▫ Site location and antenna azimuth have key role in optimising

downlink throughput. 

Page 107: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 107/359

Network Dimensioning

Session ObjectivesNetwork Dimensioning  

Page 108: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 108/359

▪ To answer the questions:

▫ What is dimensioning?

▫ How might we carry out dimensioning?

▫ What are the key issues with dimensioning?

▫ What are the key equations that we need?

▫ What is sensitivity analysis and how is it carried

out?

What is Dimensioning?Network Dimensioning  

Page 109: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 109/359

▪ Dimensioning is the task of estimating the site numbers in a network

▪ Why do we need to know the number of sites?

▫ Project Management

▫ Rollout Strategy

▫ Vendor Comparison

▫ Configuration Comparison

▫ Business Planning

▪ We are NOT talking about dimensioning individual sites/links forcapacity

Dimensioning OutputsNetwork Dimensioning  

Page 110: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 110/359

▪ Site Numbers

▫ By region

▫ By configuration

▫ By environment

▪ Project Milestones and Required Resource

▪ Turnkey Zones

▪ Core Network and Transmission Network DimensioningInputs

▪ Sensitivity Analysis

▫ How sensitive is the dimensioning to changes in inputs...

Types of Dimensioning

etwor 

Dimensioning  

Page 111: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 111/359

▪ There are many different ways to dimension anetwork

▫ There is no „right‟ way but there are many „wrong‟ways

▪ These can be generically grouped:

▫ Simple Coverage▫ Simple Capacity

▫ Simple Combined Coverage and Capacity

▫ Interactive Coverage and Capacity

▫ Benchmark Planning

„Spreadsheet‟ based 

Planning Tool based

Dimensioning Inputs

etwor 

Dimensioning  

Page 112: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 112/359

Environment 

SiteConfiguration 

Geographic Demographic 

Service 

Simple Coverage

etwor 

Dimensioning  

Page 113: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 113/359

▪ Link Budget based

▫ i.e. simple numerical calculation

▪ Firstly a link budget is created

▪ The maximum path loss is used to calculate the cell

range using a propagation model

▪ The cell range is used to calculate the site area

▪ Site Numbers = (Total Area)/(Site Area)

Create Link Budget

Calculate Range

Calculate Site Area

Calculate Number

of Sites in a givenArea

Max PL

Max Range

Max Area

Key Issues with Simple CoverageDimensioning

etwor 

Dimensioning  

Page 114: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 114/359

Dimensioning

▪ Capacity!

▪ Building Penetration

▪ Shadow Fading

▪ Propagation Model

▪ Site Environment Parameters

Shadow Fading and Building Penetration

etwor 

Dimensioning  

Page 115: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 115/359

▪ Building Penetration

▫ Mean and standard deviation per environment ▪ Shadow Fading

▫ Typically calculated using „Jakes formula‟

▫ This assumes an isolated omni directional site… 

 

  

  

  

 

 

  

 

b

aberf 

b

abaerf F u

11

21exp1

2

12

2

0

  

 

xa

2

log10 10

 

enb Where: ; 

x 0 -    = Fade Margin 

 = location variability ( standard deviation )

n  = Propagation Model Exponent

x0 -  

x0 -  

P(connect)

P(connect)

5.6

0

50%

76% 90%

75%

Point Location Probability

Area Location Probability

RH Clarke, "Statistical Theory of Mobile-Radio Reception," Bell SystemTechnical Journal 47, July 1968, pp. 957-1000 

Shadow Fading

etwor 

Dimensioning  

Page 116: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 116/359

▪ Shadow Fading

▫ The distribution of power signals is known as log-normal distribution

▪That is the signal measured in decibels has a normal distribution

▫ The process by which this distribution comes about is known ashadowing or slow fading

▫ Any variation in received signal is of the order of 10s to 100s of metres

▫ The standard deviation in decibels is known as the locationvariability

▪On average 5 - 12 dB ( 8 dB at 2GHz in urban environment )

▪Has a tendency to increase with frequency

▪No relationship has been proven between range and  

▪With A = 5.2 in urban and 6.6 in suburban and fc in MHz

A f  f  cc log3.1log65.02

 

Propagation Model

etwor 

Dimensioning  

Page 117: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 117/359

▪ COST 231 Hata typically used

▫ Rural very optimistic▫ No accounting for diffraction

▫ Typically considered inaccurate

▫ Accuracy limited to sites above30m, ranges above 1km,frequencies below 2GHz

▫ R in km

▫ fc in MHz

▫ hb base station height in metres

▫ hm mobile height usually 1.5m

▪ Very simple to implement...

▪ Assuming base station height tobe 30m and carrier of 1910MHzin a medium sized city

areasianmetropolit3dBG

citiessizedmedium0dBG

97.475.11log2.3

log55.69.44

log82.13log9.333.46

log

2

m

b

bc

dB

h E 

h B

h f F 

G E  R BF  L

 R LdB log35137

Site Environment Parameters

etwor 

Dimensioning  

Page 118: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 118/359

▪ Different configurations in different environments

▫ MHA

▫ Xpolar/Space Diversity

▫ Antennas

▪ Requires different link budgets… 

▪ Loading on sites may also differ withenvironment

▫ To take advantage of the capacity-coverage

tradeoff

▪ Also different number of sectors

Area Calculation

etwor 

Dimensioning  

Page 119: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 119/359

▪ Cells are complex shapes

▪ We assume in dimensioning that cellsconform to a regular shape

▫ Hexagons are commonly used because oftheir close packing properties

▫ K factors used to represent the differencebetween a circle of radius r and the site area

▫ The K factor will depend upon the number ofsectors

K = 0.827

K = 0.62

r

r

2

r K  Area  

Coverage-based Dimensioning: Example

etwor 

Dimensioning  

Page 120: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 120/359

▪ Area to be covered: 80 km2.

▪ Link Budget for NR of 3dB suggestsmaximum path loss of 151 dB can betolerated, assuming sectored antennas areused.

▪ In building margin and shadow fading marginreduce this to 131 dB

▪ Path loss model

K = 0.62

 R 

dBlog35137 R L

km674.01010 35635137  L R

Coverage-based Dimensioning: Example

etwor 

Dimensioning  

Page 121: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 121/359

▪ Area covered by 3-sectored site

▪ Number of sites required =

▪ 90 sites required (270 cells)

K = 0.62

 R 

km674.0101035635137

 L

 R

22 km88.062.0  R 

9088.080

excel

Environment Distribution

etwor 

Dimensioning  

Page 122: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 122/359

▪ Spreadsheets don‟t dealwith topology ormorphology accurately

▫ Hills, parks anddistributed target areas

▫ Interference and trafficcaptured by sites will

vary

▪ Margins for siteacquisition and overlapare required

Urban Area  Site Numbers

Suburban

Area 

Site Numbers?

Simple Capacity Dimensioning

etwor 

Dimensioning  

Page 123: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 123/359

▪ Capacity calculation based

▪ Firstly calculate maximumcapacity per carrier

▪ Calculate maximum offeredtraffic per sector

▪ Calculate site area based ontraffic density

▪ Finally calculate themaximum number of sites inan area

Calculate CarrierCapacity

Calculate SectorOffered Traffic

Calculate MaximumSite Area

Calculate Numberof Sites in a Given

Area

Erlang-B

etwor 

Dimensioning  

Page 124: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 124/359

▪ Erlang-B formula provides an

estimate of the peak traffic (notexceeded more than x%(usually 2%) of the time giventhe average traffic (quoted inErlangs).

▪ Erlang-B should only be usedfor:

▫ circuit switched traffic

▫ single services

▪ UMTS is multi-service andpacket switched...

Variation of demand with time

time

demand

average

peak

Erlang B

Accommodating a multi-service system

etwor 

Dimensioning  

Page 125: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 125/359

▪ The Erlang B formula relies on the variance of the

demand equalling the mean (a Poisson distribution).

▪ If a particular service requires more than one “trunk”per connection, the demand is effectively linearlyscaled and the variance no longer equals the mean.

▪ Methods to investigate:

▫ Equivalent Erlangs

▫ Post Erlang-B

▫ Campbell‟s Theorem 

Equivalent Erlangs Example

etwor 

Dimensioning  

Page 126: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 126/359

▪ Let us consider 2 services sharing the same resource:

▫ Service 1: uses 1 trunk per connection. 12 Erlangs of traffic.▫ Service 2, uses 3 trunks per connection. 6 Erlangs of traffic.

▪ We could regard the above as equivalent to 30 Erlangs of service 1:

▫ 30 Erlangs require 39 trunks for a 2% Blocking Probability

▪ Alternatively, we could regard the above as equivalent to 10 Erlangsof service 2.

▫ 10 Erlangs require 17 trunks, (equivalent to 51 “service 1 trunks”) for a 2%blocking probability

▪ Prediction varies depending on what approach you choose.

Post Erlang-B

etwor 

Dimensioning  

Page 127: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 127/359

▪ Consider 2 services sharing the same resource:

▫ Service 1: uses 1 trunk per connection. 12 Erlangs of traffic.

▫ Service 2: uses 3 trunks per connection. 6 Erlangs of traffic.

▪ We could calculate the requirement separately

▫ Service 1: 12 Erlangs require 19 trunks for a 2% Blocking Probability

▫ Service 2: 6 Erlangs require 12 trunks (equivalent to 36 “service 1trunks”). 

▪ Adding these together gives 55 trunks.

▪ This method is known to over-estimate the number of trunks requiredas can be demonstrated by considering services requiring an equalnumber of trunks.

Post Erlang-B

etwor 

Dimensioning  

Page 128: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 128/359

▪ Consider 2 services requiring equal resource:

▫ Service 1: uses 1 trunk per connection. 12 Erlangs of traffic.

▫ Service 2: uses 1 trunk per connection. 6 Erlangs of traffic.

▪ We could calculate the requirement separately

▫ Service 1: 12 Erlangs require 19 trunks for a 2% Blocking Probability

▫ Service 2: 6 Erlangs require 12 trunks.

▪ Adding these together gives 31 trunks.

▪ The accepted method of treating the above would be to regard it as a

total of 18 Erlangs that would require 26 trunks.

▪ Post Erlang-B overestimates the requirement.

Campbell’s Theorem 

▪ Campbell‟s theorem creates a composite distribution where:

etwor 

Dimensioning  

Page 129: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 129/359

▪ Campbell s theorem creates a composite distribution where: 

▪ c is known as the capacity factor

▪ The amplitude used in the capacity is the amplitude of the target service

▪ Once the offered traffic and Capacity are derived, GoS can be derived withErlang-B -> similarly Required Capacity can be calculated if Offered Trafficand GoS target is known

caC Capacity ii

c

 fficOfferedTra  

i iii

i

iii

ba

ba

c  

  

 

 

2

= mean = variance

i = arrival rateai = amplitude ofservicebi = mean holdingtime 

iibγTrafficOfferedService

Campbell’s Theorem Example(1) 

etwor 

Dimensioning  

Page 130: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 130/359

▪ Consider the same 2 services sharing the same

resource:▫ Service 1: uses 1 trunk per connection. 12 Erlangs of traffic.

▫ Service 2, uses 3 trunks per connection. 6 Erlangs of traffic.

▪ In this case the mean is:

▪ The variance is:

3063121Erlangs iiii aab  

6636112Erlangs 2222iiii aab  

Campbell’s Theorem Example(2) 

etwor 

Dimensioning  

Page 131: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 131/359

▪ Capacity Factor c is:

▪ Offered Traffic for filtered distribution:

▪ Required Capacity for filtered distribution at2% GoS is 21

2.230

66  

 c

63.132.2

30 TrafficOffered c

α

Campbell’s Theorem Example(2) 

etwor 

Dimensioning  

Page 132: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 132/359

▪ Required Capacity is different depending upon target

service for GoS (in service 1 Erlangs):

▫ Target is Service 1 C1=(2.2 x 21) + 1 = 47

▫ Target is Service 2, C2=(2.2 x 21) + 3 = 49

▪ Different services will require a different capacity for the

same GoS. In other words: for a given capacity, the

different services will experience a slightly different GoS.

campbell

Traffic Analysis Methods Compared

etwor 

Dimensioning  

Page 133: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 133/359

▪ Equivalent Erlangs

▫ Optimistic if you use the smallest amplitude of trunk (39)▫ Pessimistic if you use the largest amplitude of trunk (51)

▪ Post Erlang-B

▫ Pessimistic (55)

▫ Trunking efficiency improvement with magnitude ignored

▪ Campbell‟s theorem 

▫ Middle band (47 - 49)

▫ Different capacities required for different services -realistic

▫ Preferred solution for dimensioning, but not ideal...

Capacity Dimensioning with Campbell’sTheorem

etwor 

Dimensioning  

Page 134: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 134/359

Theorem

▪ Consider the following service definition and traffic forecast.

Service Amplitude Forecast

Voice 1 250 E64 kbps data 2 63 E

144 kbps data 4 41 E

384 kbps data 8 12 E

Capacity Dimensioning with Campbell’sTheorem

etwor 

Dimensioning  

Page 135: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 135/359

Theorem

▪ Assuming we have n cells, we can determine the loadingper cell.

nnc

c

nnnnn

nnnnn

210028.3636meantrafficoffered

028.3636

1926

mean

variance

1926821414263250variance

636821414263250mean

222

Capacity Dimensioning with Campbell’sTheorem

etwor 

Dimensioning  

Page 136: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 136/359

Theorem

▪ Unfortunately, we cannot now look up “210/n” in the ErlangB tables.

▪ We need to introduce a notional capacity per cell in termsof “Service 1 trunks”. 

▪ We will assume that each cell has a capacity of 32 suchtrunks.

nnc

210

028.3

636meantrafficoffered

Capacity Dimensioning with Campbell’sTheorem

etwor 

Dimensioning  

Page 137: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 137/359

Theorem

▪ Considering the equation

▪ C iis predefined as 32. a

idepends on the service we use as our

“benchmark”.

▪ Choosing service 3 as the “benchmark” service make aiequal to 4.

▪ Therefore 9.25 (or, rather, 9) trunks will service 4.34 Erlangs.

caC  ii  Capacity

25.9

028.3

4323

Capacity Dimensioning with Campbell’sTheorem

etwor 

Dimensioning  

Page 138: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 138/359

Theorem

▪ 9 trunks will service 4.34 Erlangs.

▪ Therefore,

▪ Cell requirement is established at 48cells.

▪ Each of the cells will service:

▫ 5.21 Erlangs of voice

▫ 1.32 Erlangs of 64 kbps data

▫ 0.85 Erlangs of 144 kbps data

▫ 0.25 Erlangs of 384 kbps data

48

34.4210

n

n

campbell

Key Issues with Simple capacitydimensioning

etwor 

Dimensioning  

Page 139: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 139/359

▪ What is the resource?

▫ Bitrate - no… 

▫ Loading of individual user - yes… 

▫ Calculate traffic analysis using the ratio of single channel loading fordifferent services

▪ Loading is affected by bitrate and E 

b /N 

0

▪ Note that uplink and downlink will yield different pole capacities

1amplitudefor1amplitudeforratebit

serviceforserviceforratebitamplitudeRelative

0

0

 N 

 E 

 N  E 

b

b

Campbell amplitude

Simple Coverage and Capacity Dimensioning

etwor 

Dimensioning  

Page 140: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 140/359

▪ Simply carry out both coverage ANDcapacity dimensioning and combine them,taking the maximum value

▪ This should be carried out on a „per 

environment basis‟, preferably per region. 

Complex Coverage and CapacityDimensioning

etwor 

Dimensioning  

Page 141: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 141/359

▪ In this case a link is made between the coverage andcapacity

▪ The coverage is calculated from an initial link budget. Thislink budget will include an assumption of Noise Rise

▪ Then the number of subscribers captured per cell iscalculated

▪ The required loading to support the subscribers to thedesired GoS is calculated.

▪ This can be used to recalculate the Noise Rise…and fedback into the link budget

Complex Coverage and CapacityDimensioning (example)

etwor 

Dimensioning  

Page 142: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 142/359

▪ Link budget is created assuming 4 dB Noise Rise

▪ 120 Cells required.

▪ Analysis of traffic forecast suggest each cell will experience

2 dB Noise Rise

▪ Re-create link budget

▪ 90 Cells required

▪ Analyse loading: 3 dB Noise Rise

▪ Re-create link budget

▪ 100 Cells required

▪ Analyse loading: 2.8 dB Noise Rise………. 

Benchmark Planning

etwor 

Dimensioning  

Page 143: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 143/359

▪ A „first pass‟ nominal plan is created 

▪ The problems of non-contiguous clutter and diffraction are

removed

▪ A capacity „check‟ is required to ensure that cells aren‟t

overloaded

▪ Very resource hungry… 

▪ Sensitivity analysis is impossible

Other Dimensioning Key Failings...

GSM/UMTS Interaction

Page 144: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 144/359

▪ GSM/UMTS Interaction

▫ Proportion a percentage of voice traffic to GSM

▫ Don‟t assume that UMTS carries all of the traffic 

▪ Microcells

▫ Offer capacity relief to macrocells

▫ This allows macrocells to be larger, potentially with a lower loading

▪ Repeaters

▫ Extend the coverage of macrocells at a lower cost than a new Node-B

▪ Sharing the load▫ Analysis so far has assumed that each cell looks after its own traffic. If

capacity is fully allocated on best server, a connection may be establishedwith a neighbour.

Page 145: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 145/359

Cell Breathing

Uplink Analysis: Cell Breathing

Page 146: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 146/359

▪ The base station has to achieve the required Eb/No ratio from

a particular mobile.

▪ Noise and interference is present from:

▫ Thermal Noise

▫ Other mobiles in the same cell

▫ Mobiles in other cells

▪ Remember that all mobiles use the same frequency

Noise Rise vs. Throughput

e om na 

Plan  

Page 147: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 147/359

▪ Each new userincreases the

throughput of

the cell but also

increases the

effective noiseexperienced by

all other users.

Noise Rise vs. Throughput

0.00

5.00

10.00

15.00

20.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Throughput (x100kbps)

   N  o   i  s  e   R   i  s  e

Coverage vs. Capacity Example

e om na 

Plan  

Page 148: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 148/359

Two polygons were createdto allow traffic served by aparticular cell to be spreadover two geographicregions.

Coverage vs. Capacity Example

e om na 

Plan  

Page 149: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 149/359

Firstly 50 terminals were

spread over the large outerpolygon to demonstrate thatcoverage existed in that area.

Coverage vs. Capacity Example

e om na 

Plan  

Page 150: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 150/359

Next 340 terminals were spreadover the same area. The quality of

service is significantly reducedsuggesting that there is a capacityproblem. The report suggests that306 users may be the maximum thesite can support.

Coverage vs. Capacity Example

However, redistributing these

e om na 

Plan  

Page 151: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 151/359

, gterminals so as to reduce path lossresults in a very good quality ofservice being restored. An averageof 330 terminals were served.Capacity and coverage are linkedtogether.

Cell Breathing :- “good” or “bad” ? 

e om na 

Plan  

Page 152: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 152/359

.

▪ Cell Breathing is integral to WCDMA cellular radio systems.

▪ Its disadvantage is that it leads to the creation of gaps in the network

coverage.

▪Its advantage is that it maximises capacity when it is demanded.

▪ The amount of cell breathing can be controlled by limiting the

NoiseRise in the admission algorithm. It cannot, however be

eliminated.

Cell Breathing :- “Good” or “Bad” ? 

e om na 

Plan  

Page 153: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 153/359

.

▪ Limiting the Noise Rise to 3 dB will restrict throughput to 50% of

theoretical maximum and restrict coverage shrinkage to 33% of its

maximum area.

▪ Allowing Noise Rise to increase to 10 dB will allow throughput to rise

to approximately 90% of its theoretical maximum but coverage

shrinkage will rise to 73% of maximum.

▪ Planning to restrict Noise Rise to 3 dB will necessitate the provision of

extra sites.

Cell Breathing

e om na 

Plan  

Page 154: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 154/359

.

▪ Very rough rule of thumb.

Area shrinkage (%) =

Coverage with 3 dBNoise Rise

Coverage with 10 dBNoise Rise

Unloaded Coverage

  

   5.17101100

 NR

breathing 

Page 155: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 155/359

Dimensioning Packet Scheduled Traffic 

Packet Scheduled Traffic

mens on ng ac et c e u e  

Traffic  

Page 156: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 156/359

▪ Issues

▫ Adding Packet Traffic into gaps in CS demand

▫ Trunking Efficiency when delays are tolerated.

Gaps in CS demand

mens on ng ac et c e u e  

Traffic  

Page 157: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 157/359

▪ Each cell will have a notional capacity in kbps

▪ Simulation will provide details of mean demand during “busy

hour”. 

▪ Difference between the two can be construed as “free

capacity”. 

Efficiency using Erlang C

▪ Erlang C formula will predict probability of a given delay

mens on ng ac et c e u e  

Traffic  

Page 158: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 158/359

Erlang C formula will predict probability of a given delayfor a given number of trunks and Erlangs of offered

traffic

▪ If unlimited delay can be tolerated, efficiency will be100%.

Example:

25 Servers, 20 Erlangs of Traffic offered.P(>0) = 0.21

P(T1/T2>0.4)=0.02

P(T1/T2>0.8)=0.0038

P(T1/T2>1.2)=0.00052

P(T1/T2>1.6)=0.00007

P(T1/T2>2.0)=0.00001

T1 is delay time

T2 is mean holding time

Erlang c

Delay Categories for UMTS

mens on ng ac et c e u e  

Traffic  

Page 159: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 159/359

Category Example Delay

Conversational Interactive Games <250 ms

Interactive Web Browsing <4 s

Streaming ftp transmissions <10 s

Background e-mail >10 s

Example Result

mens on ng ac et c e u e  Traffic  

Page 160: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 160/359

▪ 25 “Trunks”, each with 12200 bps capacity. 

▪ Mean delay of 10 ms acceptable. P(T1/T2>1)=0.02

▪ Result: 22 Erlangs of traffic carried.

▪ Note: Erlang B for 0.02 GoS would predict 17.5 Erlangs

carried.

▪ Accepting a delay increases trunking efficiency.

Erlang B

Erlang C for Shoppers

mens on ng ac et c e u e  Traffic  

Page 161: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 161/359

Factors affecting the delay

mens on ng ac et c e u e  Traffic  

Page 162: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 162/359

▪ Delay is proportional to the holding time.

▪ Holding time proportional to packet size.

▪ Need to consider “sensible” packet size. 

▪ www model has standard packet size of 3840 bits.

▪ Short text message of 128 alphanumeric characters will

require approximately 1 kbit of capacity.

Probability of the Delay exceeding a givenvalue.

mens on ng ac et c e u e  Traffic  

Page 163: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 163/359

▪ The higher the delay, the lower the probability.▪ The curve is an exponential decay.

Probability vs. Delay

0

5

10

15

20

25

30

0 20 40 60 80 100 120 140

Delay (ms)

   P  r  o   b  a   b   i   l   i   t  y   (   %   )

Line 1

Dimensioning “all packet” services 

mens on ng ac et c e u e  Traffic  

Page 164: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 164/359

▪ Packet traffic may dominate demand in UMTS.

▪ Efficiency issues for packet data become very

significant.

Dimensioning “all packet” services 

mens on ng ac et c e u e  Traffic  

Page 165: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 165/359

▪ Tolerance of delays implies tolerance of re-transmissions.

▪ Retransmission possibility allows for very low Eb/No

▪ Target Eb/No as low as 1 dB with 25% FER will provide maximumefficiency.

▪ 33% extra demand due to retransmission more than offset by

increased capacity.

Dimensioning “all packet” services 

▪ If i = 0 5 Eb/No = 1 dB pole capacity = 2 Mbps

mens on ng ac et c e u e  Traffic  

Page 166: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 166/359

If i = 0.5, Eb/No = 1 dB, pole capacity = 2 Mbps.

▪ At 50% loading factor, a capacity of 1 Mbps could be

expected.

▪ 750 kbps of offered traffic will result in 1 Mbps carried if

retransmission ratio is 25%.

▪ High trunking efficiency will result in very high levels of traffic

serviced.

▪ Delay implications of retransmissions need to be addressed.

▪ Frame period of 10 ms significant.

Packet Scheduling for Web Browsing

▪ Web Browsing involves near-total asymmetry in downlink

mens on ng ac et c e u e  Traffic  

Page 167: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 167/359

Web Browsing involves near total asymmetry in downlinkdirection.

▪ It is possible to plan a cell so that, at the maximum pathloss, the downlink capacity is greater than the uplinkcapacity.

▪ Low Eb/No requirement of packet data can make great useof this extra capacity.

▪ E.g. 320 kbps at Eb/No of 1 dB imposes same loading as100 kbps at an Eb/No of 6 dB.

Packet Scheduling for Web Browsing

E l

mens on ng ac et c e u e  Traffic  

Page 168: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 168/359

▪ Example.

▫ 40 x 12.2 kbps speech channels on uplink and downlink.

▫ Analysis suggests that downlink transmitter is operating 4

dB below maximum.

▫ This extra 4 dB of power can be converted into

approximately 850 kbps of data throughput for packet

scheduled traffic.

Effect of Base Station Power on DownlinkNoise Rise

mens on ng ac et c e u e  Traffic  

Page 169: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 169/359

▪ Increasing Base Station Power will increase the Noise Rise

on the downlink but not in a particularly straightforward way.

▪ The Analysis involves imagining that the base station

transmits an effective thermal noise power along with the user

power.

Effect of Base Station Power on DownlinkNoise Rise

mens on ng ac et c e u e  Traffic  

Page 170: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 170/359

User Power B dBm

Noise Power A dBm

 

  

 

 

 

 

 

10

10

10

1010

10

10110log

10

101010logRise,Noise

 A B

 A

 B A

 X 

Effect of Base Station Power on DownlinkNoise Rise

mens on ng ac et c e u e  Traffic  

Page 171: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 171/359

110

10

10

11010

10101

10

1010

1010

1010

 X 

 B A

 X  A B

 X  A B

110

10log10

110

10log10

10

10poweruser

10

10

10

10

 NR

 X 

 B

 A

The first step in calculating the new noise rise is to assign a value to thepower of the virtual noise source, A.

Effect of Base Station Power on DownlinkNoise Rise

mens on ng ac et c e u e  Traffic  

Page 172: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 172/359

1010 101log10RiseNoiseNew

 AC 

Then if the user power is increased from B dBm to C dBm:

Effect of Base Station Power on Downlink NoiseRise

mens on ng ac et c e u e  Traffic  

Page 173: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 173/359

Example: Original Noise Rise = 2 dB. Base Station Transmit Power

= 36 dBm.

Transmit Power is increased to 41 dBm.

Intermediate Parameter A = 38.33 dBm

New Noise Rise is 4.55 dB.

(Noise Rise has increased by 2.55 dB for a Base Station powerincrease of 5 dB. This increase in Noise Rise represents an increase

in loading factor and, hence, an increase in throughput.)

10

10 101log10RiseNoiseNew AC 

110

10

log10

110

10log10

10

10poweruser

10

10

10

10

 NR

 X 

 B

 A

New noise rise

Pause for Breath

mens on ng ac et c e u e  Traffic  

Page 174: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 174/359

▪ General Ideas:

▫ A small amount of extra capacity for CS traffic withhigh Eb/No can be converted to a larger amount oftraffic for a service at a low Eb/No.

▫ Extra Power available in the downlink can beconverted to extra capacity by increasing the Noise

Rise and hence the loading factor. 

Calculating Extra Capacity

▪ Example

mens on ng ac et c e u e  Traffic  

Page 175: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 175/359

▪ Example.

▫ CS traffic Eb/No 6 dB, provides 225 kbps of traffic (uplink anddownlink) for a cell.

▫ i = 50%.

▫ Orthogonality on the downlink, = 0.6

▫ 32 dBm user power (max. available 42 dBm) on downlink.

▫ Our challenge is to determine the extra capacity available on the

uplink and downlink for a service requiring an Eb/No of 1.5 dB if

the base station user power can be increased to 42 dBm and the

Noise Rise limit on the uplink is set at 3 dB.

U li k l i

Calculating Extra Capacity

mens on ng ac et c e u e  Traffic  

Page 176: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 176/359

▪ Uplink analysis.

▫ At an Eb/No of 6 dB, the pole capacity isapproximately 640 kbps and throughput at 3 dBNoise Rise would be 320 kbps.

▫ 320 - 225 = 95 kbps available.

▫ 95 kbps at an Eb/No of 6 dB produces anequivalent loading as 268 kbps at an Eb/No of 1.5dB.

▫ 268 kbps of data can be added to the uplink.

Calculating Extra Capacity

mens on ng ac et c e u e  Traffic  

Page 177: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 177/359

▪ Downlink analysis.

▫ At an Eb/No of 6 dB, the pole capacity on the downlink is

approximately 1067 kbps and a throughput of 225 kbps

represents a loading factor of 21% and, hence, a Noise

Rise of 1 dB.

▫ Increasing the base station power from 32 dBm to 42 dBm

would increase the Noise Rise to 5.55 dB.

▫This represents 72% loading factor, an increase of 51%.

Downlink analysis continued

Calculating Extra Capacity

mens on ng ac et c e u e  Traffic  

Page 178: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 178/359

▪ Downlink analysis continued.

▫ At an Eb/No of 1.5 dB, the pole capacity on the downlink

is approximately 3000 kbps 51% loading factor increase

represents 1530 kbps.

▪ Conclusion is that the cell could accommodate additional 268kbps packet data on the uplink and 1530 kbps packet data onthe downlink.

▪ Provision of bearers to service the 1530 kbps additional

packet data would have to be addressed as a separateproblem.

Conclusions

mens on ng ac et c e u e  Traffic  

Page 179: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 179/359

▪ Tolerating Delays increases trunking efficiency -

efficiencies higher than 80% can usually be assumed.

▪ Tolerating retransmissions reduces required Eb/No to

as low as 1 dB.

▪ Packet data that is heavily asymmetric in the downlink

direction can be planned for at the link

budget/dimensioning stage.

Page 180: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 180/359

Optimisation Procedures  

Optimisation Techniques

pt m sat on Procedures  

Page 181: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 181/359

)1(

3840CapacityPole

0

i N 

 E b

Parameter i is crucial. Limiting mutual interference

between cells will increase capacity

Limiting mutual interference

pt m sat on Procedures  

Page 182: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 182/359

• Downtilt antennas.• Consider mounting antennas onthe side of buildings.

Limiting mutual interference

pt m sat on Procedures  

Page 183: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 183/359

Controlling the backlobe can produce asmall but significant improvement in

capacity. 

0º 

0ºElec 6ºMech 

0º 0º 

6º 

6º 6º 

6ºElec 0ºMech 

0º 

6º 

6º 0º 

6ºElec -6ºMech 

0º 

-6º 

12º 

0º 

Limiting mutual interference

pt m sat on Procedures  

Page 184: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 184/359

• Key parameter: Frequency Re-use Efficiency(FRE).

(W)ceinterferencell-intertheis

(W)ceinterferencell-intratheis

FRE

 Inter 

 Intra

 Inter  Intra

 Intra

 N 

 N  N  N 

 N 

Note FRE = 1/(1+i)

Limiting mutual interference

• Avoid high sites they become overloaded quickly

pt m sat on Procedures  

Page 185: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 185/359

• Avoid high sites, they become overloaded quickly.

Balanced siteswill divide load

evenly.

• High sites will

“grab” too much

traffic.•They will gather a

lot of interferenceon the uplink.•They willcontribute a lot ofinterference on thedownlink.

Multi-User Detection

▪ Multi-User detection (MUD) is a method used toi th f f th i b d i th

pt m sat on Procedures  

Page 186: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 186/359

improve the performance of the receiver by reducing the

noise contributions from other CDMA users.

▪ The concept is based on the fact that noise from CDMAusers, although usually approximated with AWGNcharacteristics, inherently consists of coherent signals.

▪ MUD reception decodes a number of userssimultaneously and subtracts their noise contributions tothe each other

▪ Essentially this results in a more sensitive receiver

Visualising the Processing Gain w/o MUD

W/Hz W/Hz W/Hz

pt m sat on Procedures  

Page 187: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 187/359

W/Hz W/Hz W/Hz

Ec 

No 

SignalIntra-cell Noise

Inter-cell Noise

Before Spreading 

After Spreading  With Noise 

f f f

W/Hz

After Despreading  /Correlation 

f

W/HzE

b

 

No 

Post Filtering Orthog = 0 

f

dBW/Hz

Eb 

No 

Eb /No 

f

Visualising the Processing Gain with MUD

W/Hz

Post Filtering

pt m sat on Procedures  

Page 188: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 188/359

W/Hz

Signal

Inter-cell Noise

After Despreading  /Correlation 

Filtering 

f

Other Users

Eb 

No 

W/Hz

f

Eb 

No 

W/Hz

f

Eb 

No 

W/Hz

f

Eb 

No 

W/Hz

f

Because of MUD the contribution of the other users to the Noise is Reduced.

It is not completely eliminated because of the inaccuracies of the Multiple access interference estimation.

Multi-User Detection

pt m sat on Procedures  

Page 189: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 189/359

▪ Modelling the MUD receiver can beachieved by adjusting the Eb/No of theservices to account for the improved noisecancellation.

▪ Compensates for cable loss between antenna and base station(t i ll 3dB)

Mast Head Amplifiers

pt m sat on Procedures  

Page 190: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 190/359

(typically 3dB)

▪ MHA used to increase coverage range

▪ Gain 12dB (adjustable)

▪ MHA‟s are also called TMA (Tower Mounted Amplifiers)

- LNA‟s used on receive path 

▪ Increase uplink capacity

▪ Only beneficial in uplink-limited situations

▪ 1.6 dB Noise Figure (NF), Gain 12 dB

▪ Drawback - Insertion loss on

Tx path (~ 1.3 dB)Ant

Bias-TDC

TMA

by pass

Uplink Receive Space Diversity

▪ Common to have two receive antennas per sector at the base station.

pt m sat on Procedures  

Page 191: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 191/359

▪ Even if highly correlated, coherent combination should yield ~3 dB

improvement.

▪ In practice a gain of 4 dB or more is expected from antennas spaced 2-3 m

apart.

Receiveantenna 1

Receiveantenna 2

Uplink Receive Space Diversity

▪ This is not “conventional” space diversity

pt m sat on Procedures  

Page 192: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 192/359

▪ This is not conventional space diversity. 

▪ Each antenna is connected to a separate finger of the Rake receiver.

▪ This is possible due to the synchronisation and channel estimation

derived from the Pilot channel.

▪ Thus Eb/No is improved, rather than simply an effective power gain.

▪ Final limitation of this technique (why not 100 or 1000 antennas?) is

interesting to consider

▪ Very low individual Eb/No will probably mean a very low pilot level which

will lead to poor coherence and little gain - process becomes “self -

defeating”. 

Downlink Transmit Diversity

▪ UMTS explicitly allows the use of transmit diversity from the base station

pt m sat on Procedures  

Page 193: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 193/359

▪ However it is not possible to simply transmit simultaneously from two closeantennas as this would cause an interference pattern

▪ Mobile terminals must have the capability of implementing downlink transmitdiversity .

Transmitantenna 1

Transmitantenna 2

Downlink Transmit Diversity

▪ The following methods are suggested in the UMTS

pt m sat on Procedures  

Page 194: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 194/359

Transmit DiversityMethod

Description

TSTD Time Switched Transmit antennaDiversity (open loop)

STTD Space Time block coding Transmitantenna Diversity (open loop)

Closed Loop Mode 1 Different Orthogonal Pilots

Closed Loop Mode 2 Same Pilot

▪ The following methods are suggested in the UMTS

standards to avoid the problem of the interferencepattern

Time Switched Transmit antenna Diversity(TSTD) Synch channel only

pt m sat on Procedures  

Page 195: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 195/359

▪ Even numbered slots transmitted on Antenna 1, oddnumbered slots on Antenna 2

Antenna 1

Antenna 2

P-SCH

Slot #0 Slot #1 Slot #14Slot #2

P-SCH

P-SCH P-SCH

S-SCH

S-SCH

S-SCH S-SCH

Space Time block coding Transmit antennaDiversity (STTD)

STTD di i ti l i UTRAN STTD t i d t t th UE

pt m sat on Procedures  

Page 196: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 196/359

b0 b1 b2 b3

b0 b1 b2 b3

-b2 b3 b0 -b1

Antenna 1

Antenna 2

Channel bits

STTD encoded channel bits

for antenna 1 and antenna 2.

▪ STTD encoding is optional in UTRAN. STTD support is mandatory at the UE

▪ Channel coding, rate matching and interleaving is done as in the non-diversity mod

▪ STTD encoding is applied on blocks of 4 consecutive channel bits

▪ The bit bi is real valued {0} for DTX bits and {1, -1} for all other channel bits.

Analysis of STTD

pt m sat on Procedures  

Page 197: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 197/359

▪ STTD encoding effectively spreads a data bit across more than one bit period.

▪ This leads to a general improvement in noise performance.▪ Further, it allows a stronger signal from one antenna to dominate.

b0 b1 b2 b3-b2 b3 b0 -b1

b0-b2 b1+b3 b0+b2 b3-b1

Processing alternate bits will extract the data

Closed Loop Mode

▪ Channel coding, interleaving and spreading are done as in

pt m sat on Procedures  

Page 198: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 198/359

g, g p gnon-diversity mode

▪ The spread complex valued signal is fed to both TXantenna branches, and weighted with antenna specificweight factors w1 and w2.

▪ The weight factors are determined by the UE, and signalled

using the FBI field of uplink DPCCH (Dedicated PhysicalControl Channel).

1 radio frame: T = 10 ms

Pilot

Npilot bits

TPC

NTPC bits

Slot #0 Slot #1 Slot #i Slot #14

Tslot = 2560 chips, 10 bits

DPCCHFBI

NFBI bitsTFCI

NTFCI bits

Closed Loop Mode

Spread/scramble

w1

CPICH1

Tx

Ant1

pt m sat on Procedures  

Page 199: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 199/359

Spread/scramble

w2

DPCHDPCCH

DPDCH

Rx

Rx

CPICH2

Ant2

Tx

Weight Generation

w1 w2

Determine FBI message

from Uplink DPCCH

Soft Handover as an optimisation technique

▪ Soft handover is a form of space diversity.

pt m sat on Procedures  

Page 200: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 200/359

Soft handover is a form of space diversity.

▪ Issues.

▫ All except one signal may be poor

quality.

▫ Handover margin can influence the

gain achieved.

▫ 2 dB Eb/No gain possible.

Page 201: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 201/359

UTRAN

Architecture and Protocols

Protocol Model for UTRAN Interfaces

▪ Protocol structures in UTRAN are designed in layers and planes

UTRAN  

Page 202: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 202/359

▪ Protocol structures in UTRAN are designed in layers and planes.

▪ They are seen as logically independent of each other

▫ However they will physically interact.

▪ Being logically independent allows for changes to blocks in the

future

theoretically! 

General Protocol Model forUTRAN Terrestrial Interfaces

UTRAN  

Page 203: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 203/359

Horizontal Layers in the General Protocol Model

UTRAN  

Page 204: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 204/359

▪ All UTRAN related issues are only visible in the Radio

Network Layer

▪ The Transport Layer simply represents standard transport

technology for use in UTRAN

▫ e.g. ATM and appropriate ATM Adaptation Layers 

▪ AAL2 ( voice ) and AAL5 ( data/control)

▫ UDP/IP or RTP/UDP/IP ( released 6 ? )

Vertical Planes in the General Protocol Model

UTRAN  

Page 205: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 205/359

▪ The Control Plane is provided for all UMTSspecific control signalling including: 

▫ Application Protocols

▫ Signalling Bearers

▪ The User Plane is provided for all data sent andreceived by the user including: 

▫ Data Streams

▫ Data Bearers

Vertical Planes in the General Protocol Model

UTRAN  

Page 206: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 206/359

▪ The Transport Network Control Plane also includes the AccessLink Control Application Part, ALCAP.

Transport Network User 

Plane 

Transport Network User 

Plane 

Transport Network Control 

Plane 

ALCAP 

ALCAP - Access Link Control Application Part

UTRAN  

Page 207: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 207/359

▪ ALCAP sets up the transport bearers for the User

Plane

▪ The independence of the User and Control Planeassumes that

▫ ALCAP signalling transaction actually takes place.

Iu, the UTRAN-CN Interface

▪ The Iu has two different instances.

UTRAN  

Page 208: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 208/359

▫ Iu-CS for circuit switched connections

▫ Iu_PS for packet switched connections

▪ Originally proposed as one interface but the differences

between circuit and packet switched services has produced

two.

▪ The Control plane is the same for CS/PS as far as possible!

Protocol structure for the Iu-CS

UTRAN  

▪ The Iu-CS control plane 

Page 209: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 209/359

▫ RANAP - Radio Access Network Application Part

▫ Broad-band SS7 ( Network-Network Interface NNI )

▫ ATM - AAL 5

▪ The Iu-CS transport network control plane 

▫ Signaling protocol for setting up ATM AAL2

▫ Broad-band SS7

▫ ATM - AAL 5

▪ The Iu-CS user plane. 

▫ ATM - AAL2 reserved for each CS connection

Protocol structure for the Iu-CS

UTRAN  

Page 210: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 210/359

▪ The Iu-PS control plane 

Protocol structure for the Iu-PS

UTRAN  

Page 211: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 211/359

▫ RANAP - Radio Access Network Application Part

▫ Broad-band SS7 ( NNI ) or IP based signalling bearers

▫ ATM - AAL 5

▪ The Iu-PS transport network control plane 

▫ NONE required

▪ the GPRS tunneling protocol only requires the IP addresses

which RANAP has supplied.

▪ The Iu-PS user plane. 

Protocol structure for the Iu-PS

UTRAN  

Page 212: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 212/359

p

▫ ATM - AAL5

▫ multiple packet data flows are multiplexed onto several

permanent virtual connections PVCs

▫ Each flow uses

▪ GTP-U,

▪ UDP connectionless transport and IP

addressing.

Protocol structure for the Iu-PS

UTRAN  

Page 213: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 213/359

RANAP

▪ The functionality of the RANAP is performed through Elementary

Procedures EP‟s 

RANAP has 12 defined functions

UTRAN  

Page 214: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 214/359

▪ RANAP has 12 defined functions

Relocation Iu Release Radio Access BearerManagement

Paging Location reporting Common IDManagement

Security Mode Control UE-CN signallingtransfer

OverloadManagement

Reset ReportingUnsuccessfultransmitted data

Management ofTracing

Iur, the RNC-RNC Interface

▪ The Iur provides support for four distinct functions:

UTRAN  

Page 215: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 215/359

▪ The Iur provides support for four distinct functions:

▫ Inter RNC Mobility

▫ Dedicated Channel Traffic

▫ Common Channel Traffic

▫ Global Resource Management

▪ The Radio Network System Application Part, RNSAP

is therefore divided into four modules.

RNSAP Iur1: Inter RNC Mobility

UTRAN  

Page 216: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 216/359

▪ Iur1 provides for the mobility of the user between two RNCs but

does not support the exchange of user data traffic.

▪ If the network fails to provide this then the only means of mobility

is to disconnect from RNS1 and reapply for connection in RNS2

Cell 

Cell 

RNSAP Iur2: Dedicated Channel Traffic

UTRAN  

Page 217: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 217/359

▪ Iur2 sets up and maintains a dedicated channel between two

RNCs

▪ Used in inter-RNC soft handover.

▪ Provides the serving SRNC with the capability to manage the

radio links in drift DRNCs

Cell 

Cell SRNC  

DRNC  

RNSAP Iur3: Common Channel Traffic

UTRAN  

Page 218: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 218/359

▪ If Iur3 is not implemented then every time an inter-RNC cell

update takes place then that RNC becomes the serving RNC.

Cell 

Cell 

SRNC  

RNC  

RNC  

SRNC  

SRNC  

RNC  

No Iur3 

RNSAP Iur4: Global Resource Management

UTRAN  

Page 219: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 219/359

▪ This function is considered optionally as it does not

transmit any user data across the Iur.

▪ However it does provide useful information

▫ transfer of cell measurement between RNCs

▫ transfer of Node B timing information between RNCs

Protocol Structure for Iur

UTRAN  

Page 220: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 220/359

Iub, RNC-Node B Interface

▪ Iub user plane, defines every type of transport channel, using

UTRAN  

Page 221: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 221/359

AAL2

▪ Iub signalling control plane, AAL5, is divided into 2 essential

components;

▫ NBAP-C Common Node B application part

▫ NBAP-D dedicated Node B application part

NBAP-C

Set-up of 1st radio link to the UE

Cell configuration

Handling of RACH/FACH andPCH

NBAP-D

Addition, release of radio links

Handling of softer handover

Handling of dedicated and sharedchannels on a Node B - UE.x basis

Protocol structure for the Iub

UTRAN  

Page 222: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 222/359

Note:

SSCF servicespecific co-ordination functionAAL set-up

UNI .. user -network interface

SSCOP servicespecific connectionoriented protocolAAL set-up

Page 223: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 223/359

ATM Overview

ATM

▪ ATM Concepts

ATM  

Page 224: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 224/359

▫ ATM is based on a Virtual Circuit Technology

▫ Similar to Circuit Switching, ATM uses signalling protocols toestablish a Circuit before data communication commences.

▫ Unlike Circuit Switching, ATM is based on Statistical Multiplexing(similar to Packet Switching) 

ATM

▪ Virtual Circuit Concept 

▪ A connection is first established using signallingprotocols

ATM  

Page 225: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 225/359

▫ A route from the source to the destination is chosen

▫ The same route is used for all cells (fixed sizepackets) whilst the connection is maintained.

▪ Consequently no routing decision is needed forevery cell

▪ No dedicated path is required unlike CircuitSwitching

▪ Each Link of the network is shared by a set of

virtual channels▫ Each cell uses only one virtual channel number 

ATM

▪ Each packet contains enough information forthe node (switch) to forward it towards the

ATM  

Page 226: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 226/359

destination.

▪ Tables at nodes are filled with connection data

▪ Parameters used for establishing VirtualCircuits

▫ Calling and Called Party Addresses

▫ Traffic Characteristics

▫ QoS Parameters

ATM VCI & VPI Assignment

ATM  

Page 227: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 227/359

IN LINK IN VCI VPI OUT LINK OUT VCI VPIA 20 10 AB 4 3

AB 4 3 B 19 7 

ATM

▪ Advantages of Virtual Circuits

ATM  

Page 228: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 228/359

g

▪ In-order delivery of packets or cells

▪ Fast Delivery (no routing decision foreach packet)

▪ Less Header Overhead▪ High efficiency when two stations

exchange data for long time

ATM

▪ Handling Congestion with Virtual Circuits

ATM  

Page 229: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 229/359

▪ Establishing Virtual Circuits alone is not sufficientto avoid congestion

▪ We must declare Traffic Characteristics and QoSrequirements.

▪ Resources must be reserved while establishingVirtual Circuits 

▪ ATM network is made up of Switches &

ATM

ATM  

Page 230: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 230/359

Endpoints ▪ Switch

▫ Accepts incoming cell

▫ Reading and updating cell header

▫ Switching cell towards output interface

▪ Endpoints

▫ Contains ATM network interface adapter

▫ Ex. Workstations, routers, DSUs, LAN Switches,Video CODECs 

ATM

ATM  

Page 231: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 231/359

ATM SwitchRouter 

LAN Switch 

Work Station 

ATM Switch Router 

ATM End points

NNI 

UNI UNI 

▪ Interfaces

▫ ATM supports two primary interfaces 

ATM

ATM  

Page 232: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 232/359

▪ User Network Interface (UNI)

▫ Connects end system to an ATM switch

▫ RNC - Node B 

▪ Network Network Interface (NNI)

▫ Connects two ATM switches

▫ RNC - MSC, RNC - RNC 

▫ UNI and NNI can further be subdivided to Public and PrivateUNIs and NNIs 

ATM - Interfaces

Private ATM Public ATM

ATM  

Page 233: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 233/359

PrivateNNI

PrivateUNI

PublicNNI

PublicUNI

Cell Format

▪ ATM Cell Format

ATM  

Page 234: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 234/359

▪ Each cell consists of 53 bytes

▪ First 5 bytes for cell header

▪ Remaining 48 bytes for payload

8 bits

53 bytes

Payload (48 Bytes)

Header (5 Bytes)

Cell-Header

GFC VPI VCI PT HECC

L

P

at

UNI

ATM  

Page 235: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 235/359

 VPI VCI PT HEC

12 16 3 1 8 bits

C

L

P

4 8 16 3 1 8 bits

at

NNI

GFC : Generic Flow Control VPI : Virtual Path IdentifierVCI : Virtual Circuit Identifier PT : Payload TypeCLP : Cell Loss Priority HEC : Header error CheckUNI : User Network Interface NNI : Network-Network Interface 

ATM

▪ ATM Cell Header Bits 

ATM  

Page 236: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 236/359

▫ Generic flow control GFC▫ Only in the cells transported over UNI

▫ Enables a local switch to regulate flowcontrol

▫ In NNI these 4bits are part of VPI

▫ Virtual Path Identifier VPI

▫ Used for identification/routing purposeswithin network

▫ 8 bits at UNI

▫ 12bits at NNI 

ATM

▫ Virtual Circuit Identifier VCI

ATM  

Page 237: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 237/359

▫ Identification/routing purposes within network▫ 16bit field

▫ Payload Type PT

Type of payload carried within a cell

▫ user data

▫ operation and maintenance data (OAM)

▫ congestion indication (CI) bit

▫ CI bit may be modified by any switch to indicate

congestion to end users 

ATM

▫ PT Interpretation

ATM  

Page 238: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 238/359

000 User Data; type 0; no congestion

001 User Data, type 1; no congestion

010 User Data; type 0; congestion

011 User Data; type 1; congestion

100 OAM Cell

101 OAM Cell

110 Resource Management Cell (to be defined)

111 Reserved for future use

ATM

▫ Cell loss Probability CLP : (1 bit)

▪ Indicates relative priority of a cell

ATM  

Page 239: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 239/359

▪ Indicates if a cell can be discarded in case ofcongestion

▪ CLP = 0; High priority; cell not to be discarded

▪ CLP = 1; Low priority; cell may be discarded 

▪ CLP bit is set by the user or by the service

provider

▫ Header error check HEC

▪ 8bit field

▪ cyclic redundancy check CRC on first four bytes(32 bits) of header 

▪ Permanent Virtual Circuits (PVC)

▫ Direct Connectivity

Circuit Provision

ATM  

Page 240: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 240/359

▫ No call setup procedure 

▪ Switched Virtual Circuits (SVC)

▫ Created & released dynamically

▫ Flexible Connection

▪ Connectionless services

▫ Multipoint SVC’s used for broadcast IPpackets

•IP over ATM implementation

•RFC-2684 ( PVC‟s, SVC‟s and multipoint SVC‟s ) 

•RFC-2225 (SVC‟s) 

  VCs are grouped together to create VPs and VPs are

Recap - Virtual Connections

ATM  

Page 241: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 241/359

bundled together to create a transmission path 

 Virtual Channel

 Virtual Path

Transmission Path

ATM Reference Model

OSI Reference Model  ATM Reference Model 

ATM  

Page 242: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 242/359

Higher Layers

ATM Adaptation Layer

(AAL)

ATM Layer

Physical Layer

MANAGEMENT

LAYER

P

LA

N

E

CONTROL USER

Physical Layer

Data Link

Network

Transport

Session

Presentation

Application

Planes (Application Functions)

ATM Reference Model

ATM  

Page 243: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 243/359

▪ Control Plane

▪ Generating & managing signallingrequests

▪User Plane

▪ Managing the transfer of user data

▪ Management Plane

▪ Layer management

▪ Plane management 

ATM Reference Model

ATM  

Page 244: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 244/359

Layers▫ ATM Layer

▫ ATM Adaptation Layer (AAL)

▫ Higher layers above AAL accept user data,

arrange it into packets and hand it to AAL. 

▪ The ATM Layer is responsible for:

ATM Layers

ATM  

Page 245: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 245/359

▫ Addition/removal of correct cell header

▫ Multiplexing cells into a single stream received fromAAL

▫ Demultiplexing of cells and relaying to AAL

▫ Handling of Connection Identifiers

▫ Generic flow control 

ATM Ad i L AAL

ATM Layers

ATM  

Page 246: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 246/359

▪ ATM Adaptation Layer, AAL

▫ Convergence function between user layer and ATM layer

▫ Conversion of source information to 48 byte segments

▫ Allocates service classes to support various information

sources 

ATM Adaptation Layer

ATM  

Page 247: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 247/359

AAL1 AAL2 AAL3/4 AAL5

Timing

Bit rate

Mode

Yes No

Constant Non-real time

Connection oriented Connectionless

Yes No

Real-time, variable NRT Variable

ATM

▪ AAL Types▫ AAL1

ATM  

Page 248: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 248/359

▪ Constant bit rate CBR Example: Circuit Emulation

▪ Connection oriented

▪ Timing information exists

▫ AAL2

▪ Real Time variable bit rate VBR Eg: Traffic UMTS Node B -RNC

▪ Connection oriented

▪ Requires timing information

▪ Ex: Compressed video

ATM

▪ AAL 3/4

ATM  

Page 249: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 249/359

▪ Non-real time VBR Example: FrameRelay

▪ Connection oriented or connectionless

▪ No timing information

▪ AAL5▪ Variable bit rate Eg: Packet data and

signalling UMTS

▪ Connection oriented

▪ No timing information

▪ Simpler than AAL 3/4▪ Started in ITU; Completed in ATM Forum

Page 250: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 250/359

ATM Segmentation & Assembly

ATM AAL2 

ATM Segmentation Process 

Page 251: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 251/359

▪ The principle ATM adaptation layer specified forUTRAN connection is AAL2

▪ AAL2 provides for real-time fixed delay traffic

ATM AAL2 

ATM Segmentation Process 

Page 252: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 252/359

▪ The AAL2 receives from the ATM layerinformation in the form of a 48 byte ATM ServiceData Unit (ATM-SDU).

▪ The AAL2 passes to the ATM layer information inthe form of a 48 byte ATM-SDU.

AAL2 Common Part Sublayer (CPS)

▪ The AAL2 CPS provides the capabilities to transfer CPS-SDUsfrom one CPS user to another CPS user through an ATM network.

ATM Segmentation Process 

Page 253: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 253/359

▪ Two types of CPS users are supported:

▫ Service Specific Convergence Sublayer, SSCS entities

▫ Layer Management.

Iub interface

▪ The service offers a peer-to-peer operation:

▫ data transfer of CPS SDUs of up to 45 (default) or 64 bytes

AAL2 Common Part Sublayer (CPS)

ATM Segmentation Process 

Page 254: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 254/359

▫ data transfer of CPS-SDUs of up to 45 (default) or 64 bytes▫ multiplexing and demultiplexing of multiple AAL type 2 channels

▪ CPS-SDU sequence integrity is maintained on each AAL type2 channel. ( useful for voice ! ) 

▪ However some CPS-SDUs may be lost; and lost CPS-SDUswill not be retransmitted. ( pointless for voice ) 

▪ The AAL2 CPS possesses the following characteristics:

AAL2 Common Part Sublayer (CPS)

ATM Segmentation Process 

Page 255: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 255/359

▫ The AAL2 channel is a bi-directional virtual channel.

▫ The same value of channel identifier value is used for bothdirections.

▫ AAL2 channels can be established over 

▪ ATM layer Permanent Virtual Circuit (PVC)

▪ Switched Virtual Circuit (SVC). 

▪ The Common Part Sublayer merges several streams of CPS-

Packets onto a single ATM connection

Procedure of AAL2 Common Part Sublayer (CPS) 

ATM Segmentation Process 

Page 256: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 256/359

Packets onto a single ATM connection.

▪ The Common Part Sublayer receives CPS-SDUs from one ormore SSCS transmitter processes.

▪ CPS then multiplexes and packs the CPS-Packets into CPSProtocol Data Units, CPS-PDUs.

▪ At the CPS receiver, the CPS-Packets are unpacked anddemultiplexed and passed to one of the SSCS receivers.

 

▪ A CPS-Packet consists of a 3 byte CPS-Packet Header (CPS-

PH) followed by a CPS Packet Payload (CPS PP)

Format and coding of the CPS-Packet 

ATM Segmentation Process 

Page 257: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 257/359

PH) followed by a CPS-Packet Payload (CPS-PP).▫ The size and positions of the fields of the CPS-Packet are shown

below

▪ Channel Identifier (CID) „maximum 255 different sources‟

CPS Packet 

ATM Segmentation Process 

Page 258: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 258/359

▪ Channel Identifier (CID) maximum 255 different sources  

▫ The CID value identifies the AAL2 CPS user of the channel.

▫ The AAL2 channel is a bi-directional channel.

▫ The same value of channel identification is used for bothdirections.

▫ Only 248 used for user data

▪ Length Indicator (LI)

▫ The LI field is binary encoded with a value that is one less than the

number of bytes in the CPS-Packet Payload

CPS Packet 

ATM Segmentation Process 

Page 259: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 259/359

number of bytes in the CPS-Packet Payload.

▫ The default maximum length of the CPS-Packet Payload is 45bytes; otherwise, the maximum length can be set to 64 bytes.

▫ The maximum length is channel specific, i.e. its value need not becommon to all AAL2 channels.

▫ However, for a given CID value, all CPS-Packet payloads mustconform to a common maximum value.

▪ User-to-User Indication (UUI)

▫ The UUI field serves two purposes:

CPS Packet 

ATM Segmentation Process 

Page 260: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 260/359

▫ The UUI field serves two purposes:

▪ to convey specific information transparently betweenthe CPS users, i.e. between SSCS entities orbetween Layer Management

▪ to distinguish between the SSCS entities and LayerManagement users of the CPS

▪ User-to-User Indication (UUI)

▫ The 5-bit UUI field uses

CPS Packet 

ATM Segmentation Process 

Page 261: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 261/359

The 5-bit UUI field uses

▪ 0 to 27 for SSCS entities,

▪ 30 to 31 for Layer Management.

▪ The values 28, 29 are reserved for futurestandardization.

▫ The contents of the UUI field are used to transport the UUIparameters

▪ CPS-UNITDATA primitive

▪ MAAL-UNITDATA primitive

▪ Header Error Control (HEC)

▫ The transmitter shall calculate the remainder of the division(modulo 2) by the generator polynomial x5 x2 1 of the

CPS Packet 

ATM Segmentation Process 

Page 262: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 262/359

The transmitter shall calculate the remainder of the division(modulo 2), by the generator polynomial x5  x2  1, of theproduct of x5 and the contents of CID,LI and UUI (19 bits) ofthe CPS-PH.

▫ The coefficients of the remainder polynomial shall beinserted in the HEC field with the coefficient of the x4 term

in the most significant bit of the HEC field.▫ The receiver uses the contents of the HEC field to detect

errors in the CPS-PH.

▫ Now that the CPS-Packet is formed we can put it into aCPS Protocol Data Unit. This has a single byte headerconstructed as follows. 

CPS-PDU ▪ Format and coding of the Common Packet Sublayer-Protocol Data Unit

CPS-PDU

▫ The CPS-PDU consists of a single byte start field and a 47-byte payload.

▫ The 48-byte CPS-PDU is the ATM-SDU.

Th i d iti f th fi ld f th CPS PDU h b l

ATM Segmentation Process 

Page 263: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 263/359

▫ The size and positions of the fields of the CPS-PDU are shown below.

▪ CPS-PDU start field (STF) (8 bits)

▪ a) Offset Field (OSF) (6 bits)

▫ This field carries the binary value of the offset, measured in number ofbytes between the end of the STF and the first start of a CPS Packet or in

CPS-PDU 

ATM Segmentation Process 

Page 264: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 264/359

s e d ca es t e b a y a ue o t e o set, easu ed u be obytes, between the end of the STF and the first start of a CPS-Packet or, inthe absence of a first start, to the start of the PAD field.

▫ The value 47 indicates that there is no start boundary in the CPS-PDUpayload.

▫ Values greater than 47 are not allowed.

▪ b) Sequence Number (SN) (1 bit)

▫ This bit is used to number (modulo 2) the stream of CPS-PDUs.

▫ Alternating 0,1.

▪ c) Parity (P) (1 bit)

▫ This bit is used by the receiver to detect errors in the STF. The transmittersets this bit value such that the parity over the 8-bit STF is odd.

▪ The CPS-PDU payload may carry zero, one or more (completeor partial) CPS-Packets

CPS-PDU Payload 

ATM Segmentation Process 

Page 265: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 265/359

▪ CPS-Packets have a maximum size of 64 bytes.

▪ Unused payload is filled with padding bytes coded with thevalue zero.

▪ A CPS-Packet may overlap one or two ATM cell boundaries.

▪ The overlap point where the CPS-Packet becomes partitionedmay occur anywhere in the CPS-Packet, including the CPS-Packet header.

▪ AUU = ATM-User-to-ATM-User Indication = 0

▪ SLP = Submitted (Cell) Loss Priority = 0

▪ CI = Congestion Indication = 0

Additional ATM-DATA 

ATM Segmentation Process 

Page 266: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 266/359

CI Congestion Indication 0▫ CI "1" indicates that congestion has been encountered

either before transmission or during transfer

▪ CPS Interface Data (CPS-INFO) 

▫ This parameter specifies the interface data unitexchanged between the CPS and the SSCS entity.

▫ The interface data is an integral multiple of one byte.

▫ The CPS Interface Data represents a complete CPS-SDU.

▪ CPS User-to-User Indication (CPS-UUI) ▫ This parameter is transparently transported by the CPS

between peer CPS users.

ITU SDL diagrams 

ATM Segmentation Process 

Page 267: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 267/359

▪ The process of forming ATM CPS-Packets will beattempted through the use of SDL diagrams providedby the ITU.

▪ Copyright has been approved for the use of thesediagrams in this course.

SDL

▪ Due to the international nature of telecommunications and theenormous investment needed to develop large telecommunicationsystems, a structured method for recording designs has been

proposed.

ATM Segmentation Process 

Page 268: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 268/359

p p

▪ The Specification and Description Language enables teams of peopleto work on specific aspects of a system and to communicate theirdesigns in a coordinated way.

▪ The objective of SDL is to break down a system into manageableblocks and processes. These processes can be defined using states,signals and tasks.

SDL Concepts

▪ In complex systems like PABX‟s a large number of independent events occur simultaneously, and any

specification method must be able to cater for theseconcurrent events in a simple manner

ATM Segmentation Process 

Page 269: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 269/359

pconcurrent events in a simple manner.

▪ The concept of a process for describing concurrent events isimportant.

▪ A process may be a physical item such as a line interface, oran abstract item such as an administrative procedure.

▪ Events are the occurrences that are relevant to the behaviourin question.

▪ The following pictures illustrate how a user's requirements can havevarious interpretations (Meek and Heath, 1980).

ATM Segmentation Process 

Page 270: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 270/359

Graphical SDL

▪ Start

▪ State

ATM Segmentation Process 

Page 271: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 271/359

▪ Input

▪ Output

▪ Task

▪ Decision

▪ Stop

▪ Connection

ATM Packet Assembler

ATM Segmentation Process 

I.363.2 SDL Diagrams for the CPS transmitter

Page 272: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 272/359

ATM Packet Assembler

ATM Segmentation Process 

Page 273: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 273/359

▪ This ATM-DATA is an ATM-SDU

▪ With the addition of a cell header, 5 bytes this becomes anATM cell

Page 274: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 274/359

UTRAN Signals & Signaling

Radio Frame Structure

▪ Radio Frame Period Tf = 10ms

▪ Frames are used for channel format control

UTRAN Signalling  

Page 275: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 275/359

▪ 15 slots, #0…#14 

▪ Slots are used for power control, and synchronisation.

Tslot = 666.7s = 2560 chips 

#0 #1 #2 #i #14

Tf = 10ms = 38400 chips 

The Common Pilot Channel CPICH

▪ UTRA has two types of pilot channel

▫ Primary

▪ always uses primary scrambling code – choice of 512fixed channelisation code all 1‟s

UTRAN Signalling  

Page 276: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 276/359

▪ fixed channelisation code, all 1 s 

▪ only one per cell/sector

▫ Secondary

▪ can have any channelisation code of length 256

▪ may use a secondary scrambling code – choice of 1 -15for each P-CPICH

▪ The P-CPICH is defined by the power in its signal and takesthe form

ceinterferen overalltheof thattobitspilotin theenergyof ratio o

c

 I 

 E 

The Primary Synchronisation Channel

▪ The Downlink Synchronisation Channel SCH, transmits the PrimarySynchronisation Code, P-SCH

▪ This is a 256 chip sequence and is the same in all cells in the network

▪ The channel is transmitted at the start of a timeslot, for the first 66.67s

UTRAN Signalling  

Page 277: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 277/359

The channel is transmitted at the start of a timeslot, for the first 66.67s

P-SCH P-SCH P-SCH

256 chips66.67s 

2560 chips666.7s 

Timeslot # 0  Timeslot # 1 Timeslot # 2 

The Primary Synchronisation Channel

▪ The Primary Synchronisation Code, P-SCH is formed by:

▫ a = <1,1,1,1,1,1,-1,-1,1,-1,1,-1,1,-1,-1,1> 16 bits

UTRAN Signalling  

Page 278: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 278/359

▫ Cp-sch= (1+ j)×< a,a,a,-a,-a,a,-a,-a,a,a,a,-a,a,-a,a,a>

a 16×16 complex array

▪ The P-SCH is chosen for good aperiodic auto correlation

▪ No scrambling is used, & the P-SCH is already spread

▪ This is defined for all networks

The Secondary Synchronisation Channel

▪ The downlink SCH also transmits the Secondary Synchronisation Code.

▪ This is a 256 chip sequence and uses a defined bit pattern

▪ The channel is transmitted at the start of a timeslot, for the first 66.67s, atthe same time as the P-SCH

▪ The S-SCH indicates which one of 64 groups of downlink scrambling

UTRAN Signalling  

Page 279: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 279/359

g p gcodes is in use in the cell

P-SCH P-SCH P-SCH

256 chips66.67s 

S-SCH S-SCH S-SCH

2560 chips666.7s 

Timeslot # 0  Timeslot # 1 Timeslot # 2 

The Secondary Synchronisation Channel

▪The Secondary Synchronisation Code can use time-switched transmit antenna diversity (TSTD) and is the only

UTRAN Signalling  

Page 280: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 280/359

y ( ) ychannel in UTRA FDD that uses TSTD.

▪ The S-SCH have identical real and imaginary components,

does not use scrambling & is already spread.

▪ This is defined for all networks

The Secondary Synchronisation Channel

▪ The S-SCH is used to find the scrambling code group, 1 of 64and the timeslot number.

UTRAN Signalling  

Page 281: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 281/359

▪ By following the sequence of S-SCH codes the UE candetermine where it is in the matrix of group codes and itscolumn position.

Exercise

Locate which group code and time slot position the UE is at, from the following data

15,16,10,7,8,1,10,8,2,16,9,15,1,9,2,15

The Secondary Synchronisation Channel

UTRAN Signalling  

Page 282: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 282/359

▪ The PCCPCH is transmitted continuously at constant power from eachcell and carries the Logical Broadcast Channel BCH

▪ Uses one of the 512 Primary Scrambling Codes

▪ There is only one PCCPCH per cell

The Primary Common Control Physical Channel

UTRAN Signalling  

Page 283: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 283/359

There is only one PCCPCH per cell

27 kbps, SF=256 

P-SCH P-SCH P-SCH

256 chips

66.67s 

S-SCH S-SCH S-SCH2560 chips

666.7s 

Timeslot # 0  Timeslot # 1 Timeslot # 2 

2304 chips600s 

Data (18 bits)Data (18 bits) Data (18 bits)PCCPCH 

30 kbps, SF=256 

The Primary Common Control Physical Channel

▪ The PCCPCH does not transmit in the first 256 chips ofeach timeslot.

▫ This provides space for the Primary and SecondarySynchronisation codes to be broadcast.

UTRAN Signalling  

Page 284: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 284/359

y

▪ Used with the Common Pilot Channel to provide forchannel estimation.

▪ To improve performance

▫ The PCCPCH can use open-loop transmission diversity.

▪ There is only one PCCPCH per cell

▪ The SCCPCH carries two different commontransport channels

▫ Forward Access Channel FACH

The Secondary Common Control Physical Channel

UTRAN Signalling  

Page 285: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 285/359

▫ Paging Channel PCH

▪ These two channels can share the same physicalchannel or use separate ones.

▪ There can be multiple SCCPCH channelsdepending on the load

▪ SCCPCH can carry Packet Switched traffic if theFACH load is low

▪ The spreading factor for SCCPCH is fixed at themaximum data rate for FACH and PCH.

The Secondary Common Control Physical Channel

UTRAN Signalling  

Page 286: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 286/359

▪ Sharing the same channel saves power as the signalmust be broadcast at a power level to cover entire cell

▪ A separate paging indicator channel PICH is used to getthe attention of the UE.

▪ The Paging channel and Paging Indicator channel areoperated together.

Paging Indicator Channel PICH

UTRAN Signalling  

Page 287: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 287/359

▪ The paging indicators use a channelisation code of 256.

▪ A PICH radio frame is of length 10ms.

▪ PICH carries 288 bits and 12 bits are left idle

Paging a mobile: PCH

▪ Paging information is carried on the paging channel,PCH, a downlink common channel.

▪ Each terminal is allocated a paging group.

UTRAN Signalling  

Page 288: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 288/359

▪ Each group listens periodically to a Paging IndicationChannel, PICH.

▪ How often a mobile must listen is governed by itspaging group. If the mobile was always on, battery lifewould be very short.

Paging Indication Channel PICH▪ Fixed rate (SF=256, 30 kbps) so that 300 bits occupy a full frame.

▪ N Paging Indicators {PI0, …, PINp-1} are transmitted in each PICH

frame, where Np=18, 36, 72, or 144.

UTRAN Signalling  

Page 289: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 289/359

b1b0

288 bits for paging indication 12 bits (undefined)

One radio frame (10 ms)

b287 b288 b299

▪ These are mapped into 300 bits of which 288 bits are defined.

PICH

▪ A „1‟ in the appropriate bit position indicates to the UE that it

should decode the next PCH

UTRAN Signalling  

Page 290: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 290/359

PICH

S-CCPCH

Paging Indicators

Paging Message

▪ Physical Random Access Channel PRACH

▫ Used to carry the Random Access Channel RACH

Common Uplink Physical Channel

UTRAN Signalling  

Page 291: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 291/359

▫ Based on Slotted ALOHA

▫ UE can start the random-access transmission atdefined time intervals

▫ There are 15 access slots per frame, spaced 5120chips apart.

▪ The RACH procedure has the following steps;

▫ UE decodes the BCH to find

▪ RACH sub-channels

Random Access Channel RACH

UTRAN Signalling  

Page 292: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 292/359

▪ Scrambling codes & signatures

▫ UE randomly selects one of the RACH signatures

▫ UE randomly selects one of the RACH sub-channels

▫ The RACH access slots are taken over 2 × 10ms frames.

▪ The RACH procedure continues with the following steps;

▫ Downlink power level is measured

▫ A preamble of 4096 chips is sent with selected signature

Random Access Channel RACH

UTRAN Signalling  

Page 293: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 293/359

p p g

▫ This is a repeating sequence of a 16 bit preamble

▫ Waits for a Acquisition Indicator channel AICH preamble

▫ When AICH is detected a 10ms or 20ms message istransmitted.

RACH Signatures ( 16 bits )

P0(n) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

P1(n) 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1

P2(n) 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1

P3(n) 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1

P4(n) 1 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1

P5(n) 1 -1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1

UTRAN Signalling  

Page 294: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 294/359

P5(n) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

P6(n) 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1

P7(n) 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1 1 -1

P8(n) 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1

P9(n) 1 -1 1 -1 1 -1 1 -1 -1 1 -1 1 -1 1 -1 1

P10(n) 1 1 -1 -1 1 1 -1 -1 -1 -1 1 1 -1 -1 1 1

P11(n) 1 -1 -1 1 1 -1 -1 1 -1 1 1 -1 -1 1 1 -1

P12(n) 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1

P13(n) 1 -1 1 -1 -1 1 -1 1 -1 1 -1 1 1 -1 1 -1

P14(n) 1 1 -1 -1 -1 -1 1 1 -1 -1 1 1 1 1 -1 -1

Orange(dark) represents a 1 and Blue(light) represents a -1 

▪ The AICH is a fixed rate, SF=256, physical channel whichcarries the Acquisition Indicators, AI.

▪ The AI corresponds to the PRACH signature chosen by the

Acquisition Indicator Channel AICH

UTRAN Signalling  

Page 295: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 295/359

▪ The AIs corresponds to the PRACH signature chosen by theUE.

▪ The phase reference for the AICH is the primary CPICH

▪ Frame duration is 20msec, slot length 5120 chips ( 2 normalTS‟s) 

▪ 4096 chips are used with 1024 chips with no transmission

▪ AICH consists of 32 symbols created as follows:

▪ AICH consists of 32 symbols created as follows:

Acquisition Indicator Channel AICH

jjbAIa 15

UTRAN Signalling  

Page 296: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 296/359

 jss

s jb AI a

,0

▪ a j = <a0,a1,a2…….a31>

▪ bs,j is the sequence bs,0, …. bs,31 

▪ AIs can take values 1, or 0

AICH signature patterns

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1

2 1 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1

3 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1

4 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1

5 1 1 -1 -1 1 1 -1 -1 -1 -1 1 1 -1 -1 1 1 1 1 -1 -1 1 1 -1 -1 -1 -1 1 1 -1 -1 1 1

P0(n) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

P1(n) 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1

P2(n) 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1

P3(n) 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1

P4(n) 1 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1

P5(n) 1 -1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1

AIs bs,j 

UTRAN Signalling  

Page 297: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 297/359

6 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1

7 1 1 -1 -1 -1 -1 1 1 -1 -1 1 1 1 1 -1 -1 1 1 -1 -1 -1 -1 1 1 -1 -1 1 1 1 1 -1 -1

8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

9 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1

10 1 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1 1 1

11 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1

12 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1 1 1 1 1

13 1 1 -1 -1 1 1 -1 -1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 1 1 -1 -1 1 1 -1 -1

14 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1 1 1 1 1 1 1 -1 -1 -1 -1

15 1 1 -1 -1 -1 -1 1 1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 1 1 -1 -1 -1 -1 1 1

( )

P6(n) 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1

P7(n) 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1 1

P8(n) 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1

P9(n) 1 -1 1 -1 1 -1 1 -1 -1 1 -1 1 -1 1 -1

P10(n) 1 1 -1 -1 1 1 -1 -1 -1 -1 1 1 -1 -1 1

P11(n) 1 -1 -1 1 1 -1 -1 1 -1 1 1 -1 -1 1 1

P12(n) 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1

P13(n) 1 -1 1 -1 -1 1 -1 1 -1 1 -1 1 1 -1 1

P14(n) 1 1 -1 -1 -1 -1 1 1 -1 -1 1 1 1 1 -1

P15(n) 1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 1 -1 -1

▪ a j is formed by incrementing s from 0 to 15, whichever „s‟ is used bythe UE will have a value 1, the rest will be 0

AICH signature patterns

▪ Example lets choose P8(n) = AI8 

115151221111001

0,15150,220,110,000

.....

.....

b AI b AI b AI b AI a

b AI b AI b AI b AI a

UTRAN Signalling  

Page 298: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 298/359

31,151531,2231,1131,0031

2,15152,222,112,002

1,15151,221,111,001

.....

.

.....

.....

b AI b AI b AI b AI a

b AI b AI b AI b AI a

bbbba

0,80,880 1 bb AI a As all other elements have AI = 0

▪ Therefore „a‟ will select the AICH „b‟ signature pattern corresponding to thetransmitted RACH preamble

AICH signature patterns

▪ Continuing

▫ a0 to a31 has been found.

▫ „a‟ is then spread and modulated as bits with a SF of 256

UTRAN Signalling  

Page 299: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 299/359

▫ a is then spread and modulated as bits, with a SF of 256 

▫ The modulation scheme halves the bit rate ie 1 symbol for 2

bits

▫ 32 × 256 ÷ 2 = 4096 chips + 1024 chips per slot = 5120

chips

▫ 5120 × 15 = 76800 chips in 20msec = 3,840,000 chips

▫ Once the UE has detected the AICH, the UE becomes part

of the active set for that cell.

PRACH

▪ The PRACH consists of two parts

▫ A preamble

▪ To initiate access▫ A message

UTRAN Signalling  

Page 300: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 300/359

A message

▪ Which can contain a request for a dedicated channel or asmall packet of user data

2 frames = 20 ms 

1 PRACH slot = 2 normal timeslots 1 PRACH preamble = 4096 chips 

PRACH  Message 

Acquisition Indicator Channel AICH

▪ The AICH indicates whether the PRACH preamble has beenreceived.

▪ If the Node-B receives the preamble it mirrors the preamblesignature back on the AICH

UTRAN Signalling  

Page 301: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 301/359

g

2 frames = 20 ms 

1 PRACH slot = 1.25ms 

1 PRACH preamble = 4096 chips 

PRACH  

AICH  

Message 

1 PRACH preamble = 4096 chips 

Page 302: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 302/359

UTRAN Synchronisation

Node Synchronisation 

▪ Node Synchronisation is required to provide a common timingreference among different Node Bs.

▪ In the UTRAN a common timing reference among all the nodes

UTRAN Sychronisation  

Page 303: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 303/359

g gis not provided.

▪ To minimise delay and buffering on the air interface, Uu,

estimates of the timing differences between RNC and Node Bs,are made without the need to compensate for the phasedifferences between RNC's and Node B's clocks.

Synchronisation 

▪ Time Alignment

RNC 

CN 

UTRAN Sychronisation  

Page 304: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 304/359

▪ Transport ChannelSynch

▪ Radio InterfaceSynch

Node  B

Node  B

UE 

TDD only

Time Alignment Synchronisation 

▪ The time alignment handling procedure over Iu relates to the

control of DL transmission timing in the CN nodes in order tominimise the buffer delay in the SRNC.

UTRAN Sychronisation  

Page 305: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 305/359

▪ The SRNC invokes this procedure whenever a Iu User PlaneProtocol Data Unit, PDU, is inappropriately timed.

▪ The SRNC indicates to the CN by means of a Time Alignmentcontrol frame.

▪ The delay is by a number of +/- 500µsec steps.

Time Alignment Synchronisation 

CN 

ACK

Timing Alignment n × 500µs

▪ A supervision timer TTA is started after the SRNC sends a timingalignment control frame

1ms 

UTRAN Sychronisation  

Page 306: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 306/359

SRNC 

TTA 

or

NACK

If TTA expires then the SRNC will sendanother timing alignment control FrameTTA starts

Transport Channel: RNC - Node B Synchronisation 

▪ RNC - Node B synchronisation is used for determining gooddownlink DL and uplink UL offset values.

▪ Measurements of node offsets can be made at the start or

restart, as well as during normal operation, to supervise thestability of the nodes.

UTRAN Sychronisation  

Page 307: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 307/359

y

▪ Procedure:- 

▫ the RNC sends a DL Node Synchronisation control frame to NodeB containing the parameter t1.

▫ Upon reception of a DL Synchronisation control frame, the NodeB shall respond with UL Synchronisation Control Frame to theRNC, indicating t2 and t3, as well as t1.

Conference Call Example

▪ Assume Conference call in Dallas

▪ You are in England, the time difference is 6 hours

▪ You must control the meeting ( ie CRNC )

Page 308: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 308/359

▪ You send out email requests for staff to meet at 6pm

▪ The meeting room can be thought of as the Node B

▪ The staff meeting in the room are the UE‟s, they aresynchronised with England time as is the Node B

▪ You ( CRNC ) need to be in your office delivering your speech at12 noon

RNC - Node B Synchronisation 

SRNC 4094 4095 0 1 2

3

RFN

t1 t4

UTRAN Sychronisation  

Page 309: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 309/359

Node B 

UL Node Synch

[t1=4094.3, t2=201.2, t3=202.25 ]

200 201 202 203 204 205

BFN

DL Node Synch [t1=4094.3]t2 t3

RNC - Node B Synchronisation 

SRNC 

▪ These two paths ( t2 - t1 ) + ( t4 - t3) give the Round Trip Delay RTD

4094 4095 0 1 23

RFN

t1 t4

UTRAN Sychronisation  

Page 310: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 310/359

Node B 

200 201 202 203 204 205

BFN

t2 t3

[t1=4094.3, t2=201.2, t3=202.25, t4=2.3 ]

(t2-t1) + (t4-t3) = (t4-t1) – (t3-t2)

So 2.3 – 4094.3 = -4092 + 4096 = 4, 202.25 – 201.2 = 1.05

Therefore RTD = 4 – 1.05 = 2.95 x 10 msec = 29.5 msec

Transport Channel Synchronisation 

▪ The Transport Channel (or L2) synchronisation, provides anL2 common frame numbering between UTRAN and UE.

▪ This frame number is the Connection Frame Number(CFN) and it is associated at L2 to every transport block

UTRAN Sychronisation  

Page 311: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 311/359

(CFN), and it is associated at L2 to every transport blockset, TBS and passed to L1.

▪ The CFN is not transmitted in the air interface for eachTBS, but is mapped by L1 to the cell System FrameNumber, SFN of the first radio frame used for thetransmission of the TBS (the SFN is broadcast at L1 in thebroadcast channel, BCH).

▪ The mapping is performed via the Frame_offset parameter.

▪ In case of soft handover, the Frame_offsets of the differentradio links are selected in order to have a timedtransmission of the diversity branches in the air interface.

Counters and parameters 

▪ Counters and parameters as used in the different UTRANsynchronisation procedures.

▪ BFN & RFN, Node B and RNC Frame Number counter. These are theNode B/RNC common frame number counters BFN/RFN can be

UTRAN Sychronisation  

Page 312: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 312/359

Node B/RNC common frame number counters. BFN/RFN can beoptionally frequency-locked to a Network sync reference.

▫ Range: 0 to 4095 frames, 12 bits.

▪ SFN Cell System Frame Number counter. SFN is sent on BCCH onLayer 1. SFN is used for paging groups and system informationscheduling etc.

▫ In FDD SFN = BFN adjusted with T_cell.

Counters and parameters 

▪ CFN, Connection Frame Number, is the frame counter used forthe L2/transport channel synchronisation between UE andUTRAN.

▫ A CFN value is associated to each TBS and it is passed together withit through the MAC-L1 SAP.

UTRAN Sychronisation  

Page 313: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 313/359

▪ CFN provides a common frame reference (at L2) to be used e.g.for synchronised transport channel reconfiguration.

▫ Range: 0 to 255 frames, 8 bits.

▫ When used for PCH the range is 0 to 4095 frames, 12 bits.

Counters and parameters 

▪ Frame_offset is a radio link specific L1 parameter used to map the CFN intothe SFN that defines the specific radio frame for the transmission on the airinterface.

▪ At the L1/L2 interaction, the mapping is performed as:▫ LSB8(SFN) = CFN + Frame_offset (from L2 to L1)

UTRAN Sychronisation  

Page 314: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 314/359

▫ CFN = LSB8(SFN) - Frame_offset (from L1 to L2)

▫ The resolution of all three parameters is 1 frame.

▫ Frame_offset and CFN have the same range (8 bits, 0…255) and only the 8 leastsignificant bits of the SFN are used.

▫ The operations are modulo 256. ie 0 .. 255

▪ In the UTRAN, the Frame_offset parameter is calculated by the SRNC andprovided to the Node B.

Counters and parameters 

▪ OFF The parameter OFF is calculated by the UE and reportedto the UTRAN only when the UTRAN has requested the UE tosend this parameter.

UTRAN Sychronisation  

Page 315: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 315/359

▪ In the neighbouring cell list, the UTRAN indicates for each cellif the Frame_offset is already known by the UTRAN or shall bemeasured and reported by the UE.

▫ OFF has a resolution of 1 frame and a range of 0 to 255.

Counters and parameters 

▪ The DOFF (Downlink-Offset) is used to define Frame_offset and Chip_offsetduring the first radio link RL setup.

▫ The resolution should be good enough to spread load over the Iub and Node B (basedon certain load distributing algorithms).

UTRAN Sychronisation  

Page 316: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 316/359

▫ In addition it is used to spread out the location of the Pilot Symbol in order to reducethe peak downlink power since the Pilot symbol is transmitting at the slot boundary(the largest chips for one symbol is 512 chips).

▪ The SRNC sends a DOFF parameter to the UE when the new RL makes the UEchange its state to the dedicated channel state.

▫ Resolution: 512 chips; Range :0 to 599 (<80ms).

Counters and parameters 

▪ The Chip_offset is used as the offset for the DL DPCH relative to thePCCPCH timing.

▫ The Chip_offset parameter has a resolution of 1 chip and a range of 0 to 38399 (<

10ms).▫ The Chip_offset parameter is calculated by the SRNC and provided to the Node B.

UTRAN Sychronisation  

Page 317: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 317/359

▪ Frame_offset + Chip_offset (sent via NBAP) are rounded together to theclosest 256 chip boundary in Node B.

▪ The 256 chip boundary is used regardless of the used spreading factor, alsowhen the spreading factor is 512. The rounded value (which is calculated inNode B) controls the DL DPCH air-interface timing.

Counters and parameters 

▪ The reported Tm parameter has a resolution of 1 chip and a range of 0to 38399. The Tm shall always be sent by the UE.

▪ T_cell represents the Timing delay used for defining the start of SCH,CPICH and the downlink Scrambling Code(s) in a cell relative to BFN.

UTRAN Sychronisation  

Page 318: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 318/359

▪ The main purpose is to avoid having overlapping SCHs in different cellsbelonging to the same Node B.

▫ A SCH burst is 256 chips long.

▫ SFN in a cell is delayed T_cell relative to BFN.

▫ Resolution: 256 chips. Range: 0 .. 9 x 256 chips.

Counters and parameters 

▪ t1 RNC specific frame number (RFN) that indicates the time whenRNC sends the frame through the SAP to the transport layer.

▪ t2 Node B specific frame number (BFN) that indicates the time

UTRAN Sychronisation  

Page 319: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 319/359

t2 Node B specific frame number (BFN) that indicates the timewhen Node B receives the corresponding DL synchronisationframe through the SAP from the transport layer.

▪ t3 Node B specific frame number (BFN) that indicates the timewhen Node B sends the frame through the SAP to the transportlayer.

Counters and parameters 

▪ TOAWS (Time of Arrival Window Startpoint) is the window startpoint.

▫ DL data frames are expected to be received after this window startpoint.

▫ TOAWS is defined with a positive value relative Time of Arrival WindowEndpoint (TOAWE).

▫ A data frame arriving before TOAWS gives a Timing Adjustment Control frameresponse The resol tion is 1 ms the range is {0 CFN length/2 1 ms}

UTRAN Sychronisation  

Page 320: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 320/359

response. The resolution is 1 ms, the range is: {0 .. CFN length/2 –1 ms}.

▪ TOAWE (Time of Arrival Window Endpoint) is the window endpoint.

▫ DL data frames are expected to be received before this window endpoint.

▫ TOAWE is defined with a positive value relative Latest Time of Arrival (LTOA).

Counters and parameters 

▪ LTOA (Latest Time of Arrival) is the latest time instant a Node Bcan receive a data frame and still be able to process it.

▫ Data frames received after LTOA can not be processed (discarded).

▫ LTOA is defined internally in Node B to be a processing time beforethe data frame is sent in air-interface.

Th i ti (T ) ld b d d i d d t

UTRAN Sychronisation  

Page 321: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 321/359

▫ The processing time (Tproc) could be vendor and service dependent.

▪ TOA (Time of Arrival) is the time difference between theTOAWE and when a data frame is received.

▫ A positive TOA means that data frames are received beforeTOAWE.

▫ A negative TOA means that data frames are received after TOAWE.

Counters and parameters 

▪ Data frames that are received after TOAWE but before LTOA(TOA+TOAWE>=0) are processed by Node B.

UTRAN Sychronisation  

Page 322: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 322/359

▫ TOA has a resolution of 125 µs.

▫ TOA is positive when data frames are received before TOAWE.

▫ The range is: {0 .. +CFN length/2 –125 µs}.

▫ TOA is negative when data frames are received after TOAWE.

▫ The range is: { –125 µs .. –CFN length/2}.

Transport Channel Synchronisation ▪ The DL Data frame number is calculated with the delay in mind. So the

RNC assumes the Node B will process the data at CFN 202.

RNC 

194 195 196 197 198 199

CFN

DL Data Frame 202  UL Data Frame 202 

UTRAN Sychronisation  

Page 323: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 323/359

Node B 

200 202

1235

204

1237 SFN

UE DL 

CFN

CFN

200

1233

202 204

CFN to SFN is the frame offset

8Lsb(SFN) - CFN = 8

Receiving Window

TOA

Synchronisation Example 

UTRAN Sychronisation  

Page 324: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 324/359

Synchronisation Example 

UTRAN Sychronisation  

Page 325: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 325/359

Frame arrives too early

Synchronisation Example 

UTRAN Sychronisation  

Page 326: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 326/359

Frame arrives too late

FDD Radio Interface Synchronisation 

▪ FDD Radio Interface Synchronisation makes sure that the

UE gets the correct frames when receiving from severalcells.

UTRAN Sychronisation  

Page 327: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 327/359

▪ The UE measures the Timing difference between its DPCHand SFN in the target cell when doing handover and reportsit to SRNC.

▪ SRNC sends this Time difference value in two parametersFrame_offset and Chip_offset over Iub to Node B.

FDD Radio Interface Synchronisation 

▪ Example: The following set of timing diagrams show an examplewith two cells connected to one UE where handover is done fromsource cell (Cell 1) to target cell (Cell 2).

UTRAN Sychronisation  

Page 328: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 328/359

BFN - Node B Frame Number

SFN - System Frame Number SFN is delayed by Tcell relative to BFN. Tcell is used to

skew cells in the same Node B in order to avoid

colliding with synchronisation channel SCH bursts.

FDD Radio Interface Synchronisation 

UTRAN Sychronisation  

Page 329: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 329/359

DL - DownLink

DPCH - Dedicated Physical Channel

CFN - Connection Frame Number Chip_offset 2.6ms about a quarter of a frame  

FDD Radio Interface Synchronisation 

UTRAN Sychronisation  

Page 330: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 330/359

Tp1 is the propagation delay between Node B and the UE

TUE Tx The time when UE transmits on the UL DPCH

T0 is a constant of 1024 chips ( 266µs ) 

FDD Radio Interface Synchronisation 

UTRAN Sychronisation  

Page 331: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 331/359

OFF is 2 frames

Tm is 3840chips

Tm - measured at UE at handover,

Tm has a range of 0 - 38399 chips

FDD Radio Interface Synchronisation 

UTRAN Sychronisation  

Page 332: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 332/359

Frame_offset = 2

Chip_offset = 10240Tp - Propagation delay in uplink 

FDD Radio Interface Synchronisation ▪ How to determine Tm at UE

▫ Select a time instant where frame N starts at DL SFN2 e.g. frame number

2058, the time from that time instant to the next frame border of DL

DPCHnom equals Tm (if these are in phase with each other, Tm is zero).▫ In the example Tm is 3840 which is 1ms

UTRAN Sychronisation  

Page 333: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 333/359

▪ How to determine OFF at UE

▫ The difference between the frame number selected for time instant (2058)and the frame number starting at instant (8) mod 256 frames equals OFF.

▪ Example:▫ (2058 – 8) mod 256 = 2, another example is (2056 – 6) mod 256 = 2.

UTRAN Signalling

Page 334: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 334/359

UTRAN Signalling

UTRAN Signalling Procedures 

▪ The signalling procedures shown in the following sections do not represent thecomplete set of possibilities.

▪ The standard specifies a set of EPs for each interface, which may be combined indifferent ways in an implementation.

UTRAN Signalling  

Page 335: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 335/359

▪ Therefore these sequences are at present merely examples of a typicalimplementation.

System Information Broadcasting 

3.  BCCH:System Information

1. System Information Update Request

UE Node B RNC CN

NBAPNBAP

RRCRRC

2. System Information Update Response NBAPNBAP

UTRAN Signalling  

Page 336: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 336/359

1. The RNC forwards a request to node B via a Node B application part NBAP message„System Information Update Request’.Parameters: Master/Segment Information Block(s) (System information to be broadcasted), BCCHmodification time.

4.  BCCH: System Information RRCRRC

5.  BCCH:System Information RRCRRC

2. The Node B confirms the ability to broadcast the information sendingSystem Information Update Response message to the RNC via NBAP.(If the Node B cannot Broadcast the information as requested, SystemInformation Update Failure is returned to the RNC).

3./4./5. The information is broadcast via BCCH, on the air interface byRRC message System Information.Parameters: Master/Segment Information Block(s) (System information).

Paging for a UE in RRC Idle Mode 

▪ This example shows how paging is performed for an UE in radio resource controlRRC Idle Mode.

▪ The UE may be paged for both CS and PS services.

UTRAN Signalling  

Page 337: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 337/359

▪ Since the UE is in RRC Idle Mode, the location is only known at CN level andtherefore paging is distributed over a defined geographical area (Location Area).

Paging for a UE in RRC Idle Mode 

UE Node B

1.1

Node B

2.1

RNC

1

RNC

2

CN

RANAPRANAP 1. Paging

RANAP RANAP1. Paging

UTRAN Signalling  

Page 338: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 338/359

2. PCCH : Paging Type 1

3. PCCH : Paging Type 1

1. CN initiates the paging of a UE over a LA spanning two RNCs (i.e.RNC1 and RNC2) via RANAP message Paging.Parameters: CN Domain Indicator, Permanent NAS UE Identity,Temporary UE Identity, Paging Cause.

2. Paging of UE performed by cell1 using Paging Channel PCCH PagingType 1 message.3. Paging of UE performed by cell2 using Paging Type 1 message. The UE detects page message from RNC1 (as example) and the procedure for

non-access stratum NAS signalling connection establishment follows. NAS

message transfer can now be performed. 

NAS Signalling Connection Establishment 

▪ This example shows establishment of a non-access stratum NASSignalling Connection.

▪ This establishment could be requested by the terminal by itself (forexample to initiate a service) or could be caused by a paging from

UTRAN Signalling  

Page 339: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 339/359

the CN.

NAS Signalling Connection Establishment 

UE Serving

RNC

CN

1. RRC Connection Establishment

RRCRRC2.  DCCH  : Initial Direct Transfer

UTRAN Signalling  

Page 340: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 340/359

RANAP RANAP

3. Initial UE Message

1. Radio resource control RRC Connection isestablished.2. UE sends RRC Initial Direct Transfer to SRNC.Parameters: Initial NAS Message CN node indicator (it indicates the

correct CN node into which the NAS message shall be forwarded). 

3. SRNC initiates signalling connection to CN, and sends theRANAP message Initial UE Message.Parameters: NAS PDU

The NAS signalling connection between UE and CN can now be usedfor NAS message transfer.

RRC Connection Establishment 

▪ The following example shows establishment of a RRCconnection in a dedicated transport channel (DCH)state 

UTRAN Signalling  

Page 341: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 341/359

Dedicated transport Channel DCH Establishment 

Parameters: Signalling link termination,T l dd i i f i

UTRAN Signalling  

Page 342: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 342/359

1. The UE initiates set-up of an RRC connection by sending RRC messageConnection Request on common control channel CCCH.

Parameters: Initial UE Identity, Establishment cause, Initial UE Capability. 

2. When a DCH is set-up, a NBAP message Radio Link Setup Request is sent to Node B. 

3. Node B responses with NBAP message Radio Link Setup Response. 4.SRNC initiates set-up of Iub Data Transport bearer using ALCAP protocol.This request contains the AAL2 Binding Identity to bind the Iub DataTransport Bearer to the DCH. The request for set-up of Iub Data Transportbearer is acknowledged by Node B.

Transport layer addressing information(AAL2 address, AAL2 Binding Identity)for the Iub Data Transport Bearer.

Node B allocates resources, starts physical layer PHY receptionThe SRNC decides to use a DCH for this RRC connection, allocates aradio network temporary identity RNTI and radio resources for the RRCconnection.

DCH Establishment 

Parameters: Initial UE Identity,RNTI, Capability update

Requirement, Transport FormatSet, Transport FormatCombination Set, frequency, DL

UTRAN Signalling  

Page 343: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 343/359

5./6.The Node B and SRNC establish synchronism for the Iub and IurData Transport Bearer by means of exchange of the appropriate DCHFrame Protocol frames Downlink Synchronisation and Uplink

Synchronisation.

7. Message RRC Connection Setup is sent on CCCH from SRNC toUE. 

8. Message RRC Connection Setup Complete is sent on DCCH fromUE to SRNC.

Parameters: Integrity information, ciphering information. 

Then Node B starts downlink DL transmission.

scrambling code (FDD only),Time Slots (TDD only), UserCodes (TDD only), Power

control information. 

Soft Handover (FDD) 

▪ Radio Link Addition (Branch Addition)

▫ This example shows establishment of a radio link via a Node Bcontrolled by a RNC other than the serving RNC.

▫ This is the first radio link to be established via this RNS, thus macro-

UTRAN Signalling  

Page 344: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 344/359

diversity combining/splitting with already existing radio links withinDRNS is not possible.

Radio Link Addition (Branch Addition) 

If this is the first radio link

via the DRNC for this UE,a new Iur signallingconnection is established.

UTRAN Signalling  

Page 345: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 345/359

1. SRNC requests DRNC for radio resources by sending RNSAP messageRadio Link Setup Request.

Parameters: Cell id, Transport Format Set per DCH, Transport Format Combination Set,

frequency, UL scrambling code 

SRNC decides to setup a radio link RL via a new cell controlled by another RNC.

This Iur signallingconnection will be usedfor all RNSAP signalling

related to this UE.

2. If requested resources are available, DRNC sends NBAP message Radio Link

Setup Request to Node B.

Parameters: Cell id, Transport Format Set per DCH, Transport Format Combination

Set, frequency, UL scrambling code. 

Then Node B start the uplink UL reception. 3. Node B allocates requested resources. Successful outcome is reportedin NBAP message Radio Link Setup Response.Parameters: Signalling link termination, Transport layer addressing information (AAL2

address, AAL2 Binding Identitie(s)) for Data Transport Bearer(s). 

4. DRNC sends RNSAP message Radio Link Setup Response to SRNC.Parameters: Transport layer addressing information (AAL2 address, AAL2 BindingIdentity) for Data Transport Bearer(s), Neighbouring cell information. 

Radio Link Addition (Branch Addition)

UTRAN Signalling  

Page 346: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 346/359

5. SRNC initiates setup of Iur/Iub Data Transport Bearer using access link controlapplication part ALCAP protocol.

This request contains the AAL2 Binding Identity to bind the Iub DataTransport Bearer to DCH. This may be repeated for each Iur/Iub Data Transport Bearer to be setup. 

6./7. Node B and SRNC establish synchronism for the Data TransportBearer(s) by means of exchange of the appropriate DCH Frame Protocol

frames Downlink Synchronisation and Uplink Synchronisation, relativeto already existing radio link(s). Then Node B starts DL transmission. 

8. SRNC sends RRC message Active Set Update (Radio Link Addition)to UE on dedicated control channel DCCH.

Parameters: Update type, Cell id, DL scrambling code, Power control information,Ncell information.9. UE acknowledges with RRC message Active Set Update Complete.

Soft Handover „continued‟ 

▪ Radio link Deletion (Branch Deletion)

▫ This example shows deletion of a radio link belonging to a

Node B controlled by a RNC other than the serving RNC. 

UTRAN Signalling  

Page 347: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 347/359

Radio link Deletion (Branch Deletion) 

UTRAN Signalling  

Page 348: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 348/359

1. SRNC sends RRC message Active Set Update (Radio Link Deletion) toUE on DCCH.Parameters: Update type, Cell id. 

2. UE deactivates DL reception via old branch, and acknowledges with

RRC message Active Set Update Complete. 3. SRNC requests DRNC to deallocate radio resources by sendingRNSAP message Radio Link Deletion Request.Parameters: Cell id, Transport layer addressing information. 

4. DRNC sends NBAP message Radio Link Deletion Request toNode B.Parameters: Cell id, Transport layer addressing information. 

SRNC decides to remove a radio link via an old cell controlled by another RNC.

Radio link Deletion (Branch Deletion) 

UTRAN Signalling  

Page 349: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 349/359

5. Successful outcome is reported in NBAP message Radio Link Deletion

Response. 6. DRNC sends RNSAP message Radio Link Deletion Response to SRNC. 7. SRNC initiates release of Iur/Iub Data Transport Bearer using ALCAP protocol.Node B deallocates radio resources. 

Hard Handover

▪ This example shows Inter-RNS Hard Handover

▪ A switch in the core network CN, is in a situation in which the UE is connected to two CNnodes simultaneously.

▪ The CN will end up using one Node B directly under the target RNC after the hardhandover.

▪ The Serving RNC makes the decision to perform the Hard Handover via CN.

UTRAN Signalling  

Page 350: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 350/359

▪ The SRNC also decides into which RNC (Target RNC) the Serving RNC functionality isto be relocated. 

Hard Handover with switching in the CN 

UTRAN Signalling  

Page 351: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 351/359

1./2. SRNC sends Relocation Required messages to both CN nodes.

Parameters: target RNC identifier, Information field transparent to the CN

node and to be transmitted to the target RNC.

Upon reception of Relocation Required message, the CN elementprepares itself for the switch and may also suspend data traffic between

UE and itself for some bearers

..

3./4. When CN is aware of preparation , CN node conveys aRelocation Request message to the target RNC to allocate resources.

Parameters: bearer ID's requested to be re-routed towards the CN node, fromwhich the Relocation Request originated.

CN indicates in the message whether it prefers point to multipoint typeof connections within CN or hard switch in CN. In this example the

latter is assumed. 

Target RNC allocates necessary resources within the UTRAN to supportthe radio links to be used after completion of the Hard Handoverprocedure.

5. Target RNC and CN node establish the new Iu transport bearers for

each Radio Access Bearer related to the CN node. 

Hard Handover with switching in the CN 

UTRAN Signalling  

Page 352: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 352/359

6./7./8. The target RNC allocates RNTI and radio resources for the RRCconnection and the Radio Link, then sends the NBAP message Radio LinkSetup Request to the target Node-B.

Parameters: Cell id, Transport Format Set, Transport Format Combination Set,frequency, UL scrambling code (FDD only), Time Slots (TDD only), User Codes (TDDonly), Power control information etc. 

Node B allocates resources, starts PHY reception, and responds withNBAP message Radio Link Setup Response. Target RNC initiates set-upof Iub Data Transport bearer using ALCAP protocol. This request containsthe AAL2 Binding Identity to bind the Iub Data Transport Bearer to the DCH.

Hard Handover with switching in the CN 

UTRAN Signalling  

Page 353: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 353/359

9./10. When RNC has completed preparation phase, RelocationRequest Acknowledge is sent to the CN elements.

Parameters: transparent field to the CN that is to be transmitted to the Source RNS.

11./12. When CN is ready for the change of SRNC, CN node sends aRelocation Command to the RNC. Message contains the transparentfield provided by Target RNC.

Parameters: information provided in the Information field from the target RNC.

Hard Handover with switching in the CN 

13 S RNC d RRC Ph sical Channel

UTRAN Signalling  

Page 354: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 354/359

13. Source RNC sends a RRC message Physical Channel

Reconfiguration to the UE. 

NOTE 1: The messages used here are only one example of the various

messages which can be used to trigger a handover, to confirm it or to

indicate the handover failure. 

The different possibilities are specified in the RRC specification (25.331) 

Hard Handover with switching in the CN 

14 /15 When target RNC has detected the UE Relocation Detect

UTRAN Signalling  

Page 355: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 355/359

•14./15. When target RNC has detected the UE, Relocation Detectmessage is sent to the CN nodes. The Target RNC switches theconnection towards the new Iu, when UE is detected.

•After the switch, UL traffic from Node-B's is routed via the newlyestablished Mobile data channel to the new MAC/RLC entities andfinally to the correct Iu transport bearer.

•DL data arriving from the new Iu link is routed to newly establishedradio link control RLC entities, to the medium access control MAC

and to the Nodes B. 

Hard Handover with switching in the CN 

UTRAN Signalling  

Page 356: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 356/359

16. When the UE switch from the old RL to the new RL, the source NodeB detect a failure on its RL and send a NBAP message Radio LinkFailure Indication to the source RNC.

17. When the RRC connection is established with the target RNC and

necessary radio resources have been allocated the UE sends RRCmessage Physical Channel Reconfiguration Complete to the targetRNC.

NOTE 1: The messages used here are only one example of the various

messages which can be used to trigger a handover, to confirm it or to

indicate the handover failure. The different possibilities are specified in the RRC specification (25.331) 

Hard Handover with switching in the CN 

UTRAN Signalling  

Page 357: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 357/359

18./19 After a successful switch and resource allocation at targetRNC, RNC sends Relocation Complete messages to the involved CNnodes. 

Note: At any phase, before the Relocation Complete message issent, the old communication link between the CN and UE is all thetime existing and working and the procedure execution can bestopped and original configuration easily restored.

20./21. The CN node initiates the release of the Iu connections to thesource RNC by sending RANAP message Iu Release Command.

Hard Handover with switching in the CN 

UTRAN Signalling  

Page 358: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 358/359

22. Upon reception of the release requests from the CN nodes the

old SRNC executes all necessary procedures to release all visible

UTRAN resources that were related to the RRC connection inquestion.

23./24. SRNC confirm the IU release to the CN nodes sending

the message Iu Release Complete. 

Page 359: UMTS System

7/29/2019 UMTS System

http://slidepdf.com/reader/full/umts-system 359/359