uncertainty and sensitivity analysis...introduction: sensitivity analysis framework step a...

52
Uncertainty and Sensitivity Analysis Computational Methods for Safety and Risk Analysis A+B

Upload: others

Post on 12-Apr-2020

19 views

Category:

Documents


0 download

TRANSCRIPT

Uncertainty and Sensitivity Analysis

Computational Methods for Safety and Risk Analysis A+B

1. Introduction & framework

2. Local approaches:

โ–ช One-factor-at-a-time sensitivities on the nominal range

o Tornado diagram to spider plot

o Elementary effect & elasticity measures

โ–ช Morrisโ€™ method

3. Global/probabilistic approaches:

โ–ช Discrete:

o Event and probability tree

o Method of discrete probabilities

โ–ช Continuous:

o Method of moments

o Regression-based method

โ€ข Input/output correlation coefficients

โ€ข SRC/SRRC

o Distribution-based method

โ€ข Variance decomposition method

โ€ข Moment-independent method

4. Model structure uncertainty

Outline

Introduction: sensitivity analysis framework

Step ASimulation

Step BQuantification of sources of uncertainty

Step CUncertainty propagation

Step DSensitivity Analysis

Description of phenomenaโž” Adoption of math models

(which are for example turned into operative computer

codes for simulations)

In practice the system under

analysis can not be

characterized exactly and the

knowledge of the undergoing

phenomena is incomplete.

โ€ข Model parameter

โ€ข Hypothesis

โ€ข Model structure

Uncertainty propagates within the model and causes

uncertainty of the model outputs

โ€ข Uncertainty analysis and propagation:

propagates the uncertainties of the input parameters and the model structure to the

model output

โ€ข Parameter prioritization:

identify the most influential inputs to the output uncertainty

โž”more information on those parameters would lead to the largest reduction in the

output uncertainty

โ€ข Parameter fixing:

determine non-influential inputs that can be fixed at certain values

โž”model simplification

โ€ข Direction of change (trend):

whether an increase in an input causes an increase (decrease) in the model output

โ€ข Insights about model structure

interactions, etc.

Introduction: objectives of sensitivity analysis

Introduction: how uncertainty propagates

๐’š = ๐‘š(๐’™)

๐’™ = (๐‘ฅ1, ๐‘ฅ2, โ€ฆ , ๐‘ฅ๐‘›) : vector of ๐‘› input parameters

๐’š : output vector correspondent to ๐’™ and ๐‘š(๐’™)

๐‘š ๐’™ : model structure

โ€ข Deterministic (e.g., advection-dispersion equation, Newton law)

โ€ข Stochastic (e.g., Poisson model, exponential model)

๐‘š(๐’™)

๐’™ = (๐‘ฅ1, ๐‘ฅ2, โ€ฆ , ๐‘ฅ๐‘›) ๐’š

๐‘š ๐’™

LOCAL APPROACHES

โ€ข Tornado diagram to spider plots

โ€ข Elementary effect & elasticity measures

โ€ข Morrisโ€™ method

โ€ข Local approaches generally focus on nominal values of the inputs, called

reference/base value

๐’™0 = ๐‘ฅ10, โ€ฆ , ๐‘ฅ๐‘›

0

observe what happens to ๐’š for small variations around ๐’™0

โ€ข The measure of the contribution of input ๐‘ฅ๐‘– is

the variation of ๐‘ฆ when ๐‘ฅ๐‘– is varied by โˆ†๐‘ฅ๐‘–?

โ€ข One-Factor-At-a-Time (OFAT)

Typically one single parameter ๐‘ฅ๐‘– is varied one at a time around its nominal

value, while maintaining the others fixed at their nominal values

Local approaches

โ€ข A graphical representation of two series of OFAT sensitivities

โ€ข For each parameter ๐‘ฅ๐‘–, a low level ๐‘ฅ๐‘–โˆ’ and high level ๐‘ฅ๐‘–

+are defined

โ€ข When no information on the distributions of ๐‘ฅ๐‘– โ€™s are available, these are the best

estimation of the bounds on the parameters

Tornado diagrams, Howard (1988)

Sensitivity Analysis: An Introduction for the Management Scientist (Borgonovo, 2017)

๐‘ฆ = ๐‘š ๐‘ฅ1 , ๐‘ฅ2, ๐‘ฅ3 = ๐‘ฅ1 + ๐‘ฅ2 + 5๐‘ฅ3

๐‘ฅ10 = ๐‘ฅ2

0 = ๐‘ฅ30 = 1, ๐‘ฅ๐‘– โˆˆ [0.5,1.5]

Spider plot of one-way sensitivity functions,

Eschenbach (1992)

โˆ†๐‘ฆ1+, โˆ†๐‘ฆ2

+

Relation between spider plot and tornado diagram

โˆ†๐‘ฆ1โˆ’, โˆ†๐‘ฆ2

โˆ’

โˆ†๐‘ฆ3โˆ’

โˆ†๐‘ฆ3+

เตฏโ„Ž(๐‘ฅ๐‘–) = ๐‘š(๐‘ฅ๐‘– , ๐ฑ~๐‘–0

Tornado diagram & spider plot

The graphs only reflects the dependence of the model on ๐‘ฅ3

๐‘ฆ = (๐‘ฅ1 โˆ’1

2)2(๐‘ฅ2 โˆ’

1

2)2 + (๐‘ฅ3 โˆ’

1

2)2

๐ฑ0 = (1

2,1

2,1

2), ๐ฑ+ = (1,1,1), ๐ฑโˆ’ = (0,0,0)

โ€ข Computed at a finite change requires only two model runs

โ€ข Its limit tend to the partial derivative of ๐‘š(๐‘ฅ) at ๐‘ฅ0

limโˆ†๐‘ฅ๐‘–โ†’0

EE๐‘–(๐ฑ0, โˆ†๐‘ฅ๐‘–) =

๐œ•๐‘ฆ

๐œ•๐‘ฅ๐‘–|๐ฑ0

Elementary Effect & Elasticity

Problem: Inputs have different unit?

The unit of EE depends on that of ๐‘ฅ๐‘–, since it is the percentage variations

around the base case of each parameter on the horizontal axis.

โ€ข Elasticityโž” normalizing the EE

๐‘ ๐‘– =โˆ†๐‘ฆ

๐‘ฆ/โˆ†๐‘ฅ๐‘–๐‘ฅ๐‘–

=โˆ†๐‘ฆ

โˆ†๐‘ฅ๐‘–ยท๐‘ฅ๐‘–๐‘ฆ= EE๐‘– ยท

๐‘ฅ๐‘–๐‘ฆ

โ€ข Results depend on the base point ๐‘ฅ0

Elementary Effect (EE)

EE๐‘–(๐ฑ0, โˆ†๐‘ฅ๐‘–): =

โˆ†๐‘ฆ

โˆ†๐‘ฅ๐‘–=

เตฏ๐‘š(๐‘ฅ10, โ€ฆ , ๐‘ฅ๐‘–

0 + โˆ†๐‘ฅ๐‘– , โ€ฆ , ๐‘ฅ๐‘›0) โˆ’ ๐‘š(๐ฑ0

โˆ†๐‘ฅ๐‘–

Idea of Morris method:

Generalize EE approach by varying the base point over the support of X and

averaging the results

EE & Morrisโ€™ method

Assume that the inputs are independent uniformly distributed in

0,1 ๐‘›, i.e. ๐‘‹๐‘– ~๐‘–.๐‘–.๐‘‘

๐‘ˆ 0,1

1. Define a grid of equally spaced (๐‘ + 1) points in each

dimension:

grid๐‘– = {0,1

๐‘,2

๐‘, โ€ฆ , 1}, ๐‘– = 1โ€ฆ๐‘›,Grid = grid1 โŠ—โ‹ฏโŠ— grid๐‘›

2. Select randomly ๐‘ different points {๐ฑ1, โ€ฆ , ๐ฑ๐‘— , โ€ฆ , ๐ฑ๐‘}

in the grid, and compute the EEijin each point and each

dimension.

๐ฑ๐‘—

The mean (๐œ‡๐‘–) and the standard deviation (๐œŽ๐‘–) of these ๐‘ ๐ธ๐ธ๐‘–๐‘—

are used as

sensitivity measures of ๐‘‹๐‘–.

๐œ‡๐‘– =1

๐‘

๐‘—=1

๐‘

EE๐‘–๐‘—, ๐œŽ๐‘–

2 =1

๐‘ โˆ’ 1

๐‘—=1

๐‘

EE๐‘–๐‘—โˆ’ ๐œ‡๐‘–

2

โ€ข ๐œ‡๐‘– close to 0 means ๐‘‹๐‘– is non-influential

โ€ข a small ๐œŽ๐‘– means ๐‘‹๐‘– has negligible non-linear effects

โ€ข a large ๐œŽ๐‘– means that the parameter has non-linear effects and/or strong

interactions with other inputs

EE & Morris

EE๐‘–๐‘—(๐ฑ๐‘— , โˆ†) =

๐‘š(๐‘ฅ1๐‘—, โ€ฆ , ๐‘ฅ๐‘–

๐‘—+ โˆ†,โ€ฆ , ๐‘ฅ๐‘›

๐‘—) โˆ’ ๐‘š(๐ฑ๐‘—)

โˆ†

โ€ข Local approaches aim at detecting the important input parameters of a model

based on the knowledge of the range of the inputs (no probabilistic setting)

โ€ข Relative low computational cost (model runs):

2๐‘› + 1 for Tornado diagram

๐‘›๐‘ for Spider plot

๐‘(๐‘› + 1) for Morrisโ€™ method (can be reduced)

โ€ข Morrisโ€™ method (also regarded as semi local,) also provides an idea about

parameters with nonlinear effect and/or interactions with others

Notes

GLOBAL APPROACHES

โ€ข Discrete:

Event and probability tree

Method of Discrete Probabilities

โ€ข Continuous:

Method of moments

Regression-based method

Distribution-based method

โ€ข Inputs and outputs are random variables: ๐‘ฟ, ๐‘Œ

โ€ข Focus on determining the influence of inputs to the output uncertainty

distribution ๐‘“๐’€(๐’š)

โ€ข ๐‘“๐’€(๐’š) contains all relevant information on the uncertainty of the model

response regardless the values of the input

Global approaches

Global vs Local

โ€ข Global approaches account for the whole input variability range

Local approaches account for small variations around nominal values

โ€ข Global approaches account for interactions between the inputs

Local approaches consider variations of one input at a time

Better results at a higher computational expense

Discrete global approaches:

Event & probability tree (1)

The input variability ranges are discretized in levels

Different scenarios are organized in a tree

โ€ข node = uncertain parameter

โ€ข branch = one possible level of the parameter

โ€ข consider all possible combinations

โ€ข scenario = value of the model output obtained in correspondence of the

values of the โ€œbranchesโ€

๐‘‹10.3 1.71.0

๐‘‹20.5 1.51.0

โ€ข Assign discrete probabilities to the branches

o if discrete probability distributions โ†’ straightforward

o if continuous probability distributions โ†’ discretize

o probabilities of the branches are conditional on the values of the

โ€œpreviousโ€ branches

โ€ข Evaluate the probability of the scenarios y (product of conditional

probabilities)

Uncertainty

Propagation

Discrete global approaches:

Event & probability tree (2)

Discrete global approaches:

Event & probability tree (3)

โ€ข Extract sensitivity information (see sensitivity on the nominal range)

Sensitivity

Analysis

โ€ข It considers interactions between the inputs

โ€ข Problem: combinatorial explosion!

(๐‘› inputs, ๐‘˜ levels โ†’ ๐‘˜๐‘› combinations)

โ€ข To reduce computational cost โž” discrete probability method

๐‘ฆ = ๐‘š(๐‘ฅ1, ๐‘ฅ2)

๐‘ฅ1

๐‘ฅ2 = 0.5

๐‘ฅ2 = 1

๐‘ฅ2 = 1.5

0.3 1.71.0

Discrete global approaches:

Discrete probability method (1)

Consider the simple model ๐‘Œ = ๐‘š(๐‘‹, ๐‘)

1. The pdfโ€™s ๐‘“๐‘‹ (๐‘ฅ) and ๐‘“๐‘(๐‘ง) are discretized in ๐‘› and ๐‘  intervals of amplitude ๐‘–and ๐‘—โž” two sets of pairs < ๐‘ฅ๐‘– , ๐‘๐‘– >,< ๐‘ง๐‘—, ๐‘ž๐‘— >, ๐‘– = 1, 2, โ€ฆ , ๐‘›, ๐‘— = 1, 2, โ€ฆ , ๐‘ 

๐‘๐‘– = เถฑ๐›ฅ๐‘–

๐‘“๐‘‹(๐‘ฅ)๐‘‘๐‘ฅ ๐‘ฅ๐‘– =1

๐‘๐‘–เถฑ๐›ฅ๐‘–

๐‘ฅ๐‘“๐‘‹๐‘‘๐‘ฅ ๐‘– = 1,2, . . . ๐‘›

๐‘ž๐‘— = เถฑ๐›ฅ๐‘—

๐‘“๐‘(๐‘ง)๐‘‘๐‘ง ๐‘ง๐‘— =1

๐‘ž๐‘—เถฑ๐›ฅ๐‘—

๐‘ง๐‘“๐‘๐‘‘๐‘ง ๐‘— = 1,2, . . . ๐‘ 

Exp(ฮป) = exp(1)

0.63 0.23 0.09 0.03 0.02

2. Build the matrix of the ๐‘› ร— ๐‘  output values:

๐‘ฆ๐‘–๐‘— = ๐‘š(๐‘ฅ๐‘– , ๐‘ง๐‘—), ๐‘– = 1, 2, โ€ฆ , ๐‘›, ๐‘— = 1, 2, โ€ฆ , ๐‘  with probabilities ๐‘Ÿ๐‘–๐‘— = ๐‘๐‘–๐‘ž๐‘—

3. Condense the discrete distribution of ๐‘ฆ as:

๐‘Ÿ๐‘™ =๐‘ฆ๐‘–๐‘—โˆˆ๐‘™

๐‘Ÿ๐‘–๐‘— ๐‘ฆ๐‘™ =1

๐‘Ÿ๐‘™

๐‘ฆ๐‘–๐‘—โˆˆ๐‘™๐‘Ÿ๐‘–๐‘—๐‘ฆ๐‘–๐‘— ๐‘™ = 1,2, . . . , ๐‘ก โ‰ช ๐‘›๐‘ 

Discrete global approaches:

Discrete probability method (2)

independence of inputs!

fX

fZ

rij

yijxi

zj

pi

qj

fY

rl yl

(25 values)

(5 values)

Discrete global approaches:

Discrete probability method (3)

โ€ข Combinatorial explosion avoided

โ€ข Info about dependences is lost in condensation process

๐‘ฆ = ๐‘ฅ โ‹… ๐‘ง where ๐‘ฅ = ๐‘Ž โ‹… ๐‘ and ๐‘ง = ๐‘ + ๐‘

fX

fZ

fW

fX,Z fX,Z,W

(25 values)

(5 values)

(5 values)

(25 values) (5 values)

5 values instead of

25*5 = 125

๐‘Ž

๐‘

๐‘

๐‘ฅ

๐‘ง

๐‘ฅ (condensed)

๐‘ง (condensed)

๐‘ฆ

indep OK indep?

GLOBAL APPROACHES

โ€ข Discrete:

Event and probability tree

Method of Discrete Probabilities

โ€ข Continuous:

Method of moments

Regression-based method

Distribution-based method

The procedure consists in drawing from the assigned pdfโ€™s ๐‘“๐‘ฟ(๐’™) a sequence of ๐‘ samples of each of the ๐‘› input parameters

๐ฑ๐‘— = (๐‘ฅ1๐‘—, ๐‘ฅ2

๐‘—, โ€ฆ , ๐‘ฅ๐‘›

๐‘—), ๐‘— = 1โ€ฆ๐‘ .

In correspondence of each of the ๐‘  generated vectors of input values, we

evaluate the model and thus obtain a sequence of output values

๐‘ฆ๐‘— = ๐‘š(๐ฑ๐‘—), ๐‘— = 1โ€ฆ๐‘ .

The sequences ๐’™๐‘— , {๐‘ฆ๐‘—} can be analysed using classical statistical techniques

for uncertainty and sensitivity analysis

Continuous global approaches:

Random sampling (Monte Carlo-based methods) (1)

๐‘ฆ

๐‘“๐‘Œ ๐‘ฆ :pdf of ๐‘Œ

โ€ข It covers the space of the input parameters by random sampling from the

corresponding probability distributions

โ€ข It provides a direct estimation of the output uncertainty via the corresponding

distribution ๐‘“๐‘Œ(๐‘ฆ)

โ€ข It is an approximated method, but its accuracy can be assessed and improved

by increasing the sample size s.

e.g. the RMSE of approximating mean using MC method is O sโˆ’1/2

Continuous global approaches:

Random sampling (Monte Carlo-based methods) (2)

Global approaches:

The method of moments (1)

Consider the first-order approximation of the two moments of the distribution of

๐‘Œ: ๐”ผ[๐‘Œ] and ๐•[๐‘Œ] , with

เต๐‘ฅ๐‘–0 = ๐”ผ ๐‘‹๐‘–

๐‘ฆ0 = ๐‘š ๐’™๐ŸŽ

Idea of the method of moments:

If the variations of the ๐‘‹๐‘– โ€™s around their mean value are small, the model

function ๐‘š may be approximated by a Taylor series expansion.

From this approximation, ๐”ผ[๐‘Œ] and ๐•[๐‘Œ] may be estimated.

Taylor expansion of ๐‘š at ๐’™๐ŸŽ

๐‘ฆ = ๐‘š(๐’™0) +

๐‘–=1

๐‘›

(๐‘ฅ๐‘– โˆ’ ๐‘ฅ๐‘–0)

๐œ•๐‘ฆ

๐œ•๐‘ฅ๐‘– ๐’™0+1

2

๐‘–=1

๐‘›

๐‘—=1

๐‘›

(๐‘ฅ๐‘– โˆ’ ๐‘ฅ๐‘–0)( ๐‘ฅ๐‘— โˆ’ ๐‘ฅ๐‘—

0)๐œ•2๐‘ฆ

๐œ•๐‘ฅ๐‘–๐œ•๐‘ฅ๐‘— ๐’™0+โ‹ฏ

Global approaches:

The method of moments (2)

Compute two moments of the distribution of ๐‘Œ: ๐”ผ[๐‘Œ] and ๐• ๐‘Œ , with เต๐‘ฅ๐‘–0 = ๐”ผ ๐‘‹๐‘–

๐‘ฆ0 = ๐‘š ๐’™๐ŸŽ

๐”ผ[๐‘Œ] โ‰ˆ ๐”ผ ๐‘š ๐’™0 +๐‘–=1

๐‘›

๐”ผ ๐‘‹๐‘– โˆ’ ๐‘ฅ๐‘–0 ๐œ•๐‘ฆ

๐œ•๐‘ฅ๐‘– ๐’™0

+1

2

๐‘–=1

๐‘›

๐‘—=1

๐‘›

๐”ผ ๐‘‹๐‘– โˆ’ ๐‘ฅ๐‘–0 ๐‘‹๐‘— โˆ’ ๐‘ฅ๐‘—

0 ๐œ•2๐‘ฆ

๐œ•๐‘ฅ๐‘–๐œ•๐‘ฅ๐‘— ๐’™0

0 ๐‘๐‘œ๐‘ฃ[ ๐‘ฅ๐‘– , ๐‘ฅ๐‘—]

โ‰ˆ ๐‘š(๐’™0) +1

2

๐‘–=1

๐‘›

๐‘—=1

๐‘›

แ‰ƒ๐‘๐‘œ๐‘ฃ แ‰‚๐‘‹๐‘– , ๐‘‹๐‘—๐œ•2๐‘ฆ

๐œ•๐‘ฅ๐‘–๐œ•๐‘ฅ๐‘— ๐’™0

only if the model is linear, we have ๐”ผ[๐‘Œ] โ‰ˆ ๐‘ฆ0 = ๐‘š(๐’™0)

Global approaches:

The method of moments (3)

๐•[๐‘Œ] = ๐”ผ[(๐‘Œ โˆ’ ๐‘ฆ0)2] โ‰ˆ ๐”ผ

๐‘–=1

๐‘›

๐‘‹๐‘– โˆ’ ๐‘ฅ๐‘–0 ๐œ•๐‘ฆ

๐œ•๐‘ฅ๐‘– ๐’™0

2

Since ฯƒ๐‘–=1๐‘› ๐‘ง๐‘–

2= ฯƒ๐‘–=1

๐‘› ๐‘ง๐‘–2 + 2ฯƒ๐‘–=1

๐‘› ฯƒ๐‘—=๐‘–+1๐‘› ๐‘ง๐‘–๐‘ง๐‘—, we have

๐•[๐‘Œ] โ‰ˆ

๐‘–=1

๐‘›

๐”ผ ๐‘‹๐‘– โˆ’ ๐‘ฅ๐‘–0 2 ๐œ•๐‘ฆ

๐œ•๐‘ฅ๐‘– ๐’™0

2

+ 2

๐‘–=1

๐‘›

๐‘—=๐‘–+1

๐‘›

๐”ผ ๐‘‹๐‘– โˆ’ ๐‘ฅ๐‘–0 ๐‘‹๐‘— โˆ’ ๐‘ฅ๐‘—

0 ๐œ•๐‘ฆ

๐œ•๐‘ฅ๐‘– ๐’™0

๐œ•๐‘ฆ

๐œ•๐‘ฅ๐‘— ๐’™0

๐•[๐‘‹๐‘–] ๐‘๐‘œ๐‘ฃ[ ๐‘‹๐‘– , ๐‘‹๐‘—]

So that

๐• ๐‘Œ = ๐”ผ[ ๐‘Œ โˆ’ ๐‘ฆ02]

โ‰… ๐‘–=1

๐‘›

๐• ๐‘‹๐‘–๐œ•๐‘ฆ

๐œ•๐‘ฅ๐‘– ๐‘ฅ0

2

+ 2๐‘–=1

๐‘›

๐‘—=๐‘–+1

๐‘›

๐‘๐‘œ๐‘ฃ[ ๐‘ฅ๐‘– , ๐‘ฅ๐‘—]๐œ•๐‘ฆ

๐œ•๐‘ฅ๐‘– ๐‘ฅ0

๐œ•๐‘ฆ

๐œ•๐‘ฅ๐‘— ๐‘ฅ0

Input independence

Global approaches:

The method of moments (4)

โ€ข Approximation

โ€ข Partial derivative computation

That is

๐• ๐‘Œ = ๐”ผ[ ๐‘Œ โˆ’ ๐‘ฆ02] โ‰ˆ

๐‘–=1

๐‘›

๐• ๐‘‹๐‘–๐œ•๐‘ฆ

๐œ•๐‘ฅ๐‘– ๐‘ฅ0

2

The sensitivity indices based on Taylor expansion is given by

๐‘ˆ๐‘€ ๐‘‹๐‘– = ๐‘†๐‘ก๐‘‘ ๐‘‹๐‘–๐œ•๐‘ฆ

๐œ•๐‘ฅ๐‘– ๐‘ฅ0

Or

๐‘ˆ๐‘š(๐‘‹๐‘–) =

๐œ•๐‘ฆ๐œ•๐‘ฅ๐‘–

|๐ฑ=๐œ‡๐—

2

๐œŽ๐‘‹๐‘–2

๐•[๐‘Œ]

Continuous global approaches:

Pearsonโ€™s Input/output correlation coefficients, 1880s

Idea of correlation coefficients:

If a parameter ๐‘‹๐‘– strongly influences the output, there must be some correlation

between ๐‘Œ and ๐‘‹๐‘–

๐œŒ๐‘‹๐‘–,๐‘Œ =cov[๐‘‹๐‘– , ๐‘Œ]

๐œŽ๐‘‹๐‘–๐œŽ๐‘Œ.

Advantages:

โ€ข the existence of a linear trend can be visually checked via scatterplot

โ€ข ๐œŒ๐‘‹๐‘–,๐‘Œ โˆˆ โˆ’1,1 โž”positive / negative values indicate the increasing / decreasing trend of

the input/output mapping.

Drawbacks:

โ€ข only measures a linear relationship between ๐‘‹๐‘– and ๐‘Œ,

โ€ข in case of nonlinearity (or even non monotonic), the correlation coefficient may be

close to zero even if the parameter ๐‘‹๐‘– is influential.

Idea of the regression-based method:

Fitting a linear approximation around the mean values ๐œ‡๐‘ฟ, look at the

proportion of the variance of ๐‘Œ induced by ๐‘‹๐‘–.

Continuous global approaches:

Regression-based method (1)

๐‘Œ = ๐›ฝ0 + ๐›ฝ1๐‘‹1 +โ‹ฏ+ ๐›ฝ๐‘›๐‘‹๐‘› + ๐œ–

Principle of least squares:

๐›ƒ = argmin๐”ผ ๐œ–2 = argmin๐”ผ ๐‘Œ โˆ’

๐‘–=1

๐‘›

๐›ฝ๐‘–๐‘‹๐‘– โˆ’ ๐›ฝ0

2

The Ordinary Least Squares (OLS) solution of ๐›ƒ

๐›ƒ = (๐›ฝ0, โ€ฆ , ๐›ฝ๐‘›)โŠค = (๐•โŠค๐•)โˆ’1๐•โŠค๐ฒ

where

๐• =1 ๐‘ฅ1

1 โ‹ฏ ๐‘ฅ๐‘›1

โ‹ฎ โ‹ฑ โ‹ฎ1 ๐‘ฅ1

๐‘  โ‹ฏ ๐‘ฅ๐‘›๐‘ 

, ๐ฒ =๐‘ฆ1

โ‹ฎ๐‘ฆ๐‘ 

The Standard Regression Coefficients SRC๐‘– associated with ๐‘‹๐‘– is given as:

SRC๐‘–: = ๐›ฝ๐‘–๐œŽ๐‘‹๐‘–๐œŽ๐‘Œ

Continuous global approaches:

Regression-based method (2)

Under assumptions

โ€ข the input variables are independent,

โ€ข ฯต is independent of the inputs,

the variance decomposition of ๐‘Œ is given by

๐•[๐‘Œ] =

๐‘–=1

๐‘›

๐›ฝ๐‘–2๐•[๐‘‹๐‘–] + ๐œŽ๐œ–

2.

Thus, ๐›ฝ๐‘–2๐•[๐‘‹๐‘–] is the proportion of the variance of ๐‘Œ induced by ๐‘‹๐‘–.

โ€ข The sum of SRC๐‘–2 is the proportion of variance explained by the linear

regression. It is linked to the coefficient of determination ๐‘…2:

๐‘…2: = 1 โˆ’๐œŽ๐œ–2

๐œŽ๐‘Œ2 =

๐‘–=1

๐‘›

SRC๐‘–2

โ€ข SRC๐‘– โˆˆ โˆ’1,1 : a value close to 1 indicates that ๐‘‹๐‘– has a major contribution to

the variance of Y , and a value close to 0 implies little influence.

โ€ข When inputs are independent, ๐œŒ๐‘‹๐‘–,๐‘Œ coincides with the SRC๐‘– .

Continuous global approaches:

Regression-based method (3)

Notes

โ€ข When the model is linear or accurately approximated by a linear model:

โ–ช Importance measures based on Taylor series expansion

โ–ช Input/output correlation coefficients

โ–ช Standard regression coefficients

โ€ข In case of non linear, yet monotonic models the rank transform shall be used:

โ€ข Input/output rank correlation coefficients

โ€ข Standard Rank Regression Coefficients (SRRC)

โ€ข For more general situations, one may consider distribution-based methods.

GLOBAL APPROACHES

โ€ข Discrete:

Event and probability tree

Method of Discrete Probabilities

โ€ข Continuous:

Method of moments

Regression-based method

Distribution-based method

Let us consider the following simple model (2 inputs):

๐‘Œ = ๐‘š ๐‘‹1, ๐‘‹2To what extent does the variance of ๐‘Œ decreases when we fix ๐‘‹1 = ๐‘ฅ1

โˆ—?

๐•๐‘‹2 ๐‘Œเธซ๐‘‹1 = ๐‘ฅ1โˆ—

In general, ๐‘‹1 has a distribution of values! โž” Expectation

๐”ผ๐‘‹1 ๐•๐‘‹2 ๐‘Œเธซ๐‘‹1

Variance of the output distribution (Variance Decomposition)

๐• ๐‘Œ = ๐•๐‘‹1 ๐”ผ๐‘‹2 ๐‘Œ|๐‘‹1 + ๐”ผ๐‘‹1 ๐•๐‘‹2 ๐‘Œเธซ๐‘‹1

The lower, the more

important x1 is!

๐œ‚1 =๐•๐‘‹1 ๐”ผ๐‘‹2 ๐‘Œ|๐‘‹1

๐• ๐‘Œ

Variance-based Sensitivity index

Global approaches:

Variance decomposition method (1)

โ€ข What is ๐”ผ๐‘‹2 ๐‘Œ|๐‘‹1 ?

The expected value of the output y, computed with respect to ๐‘‹2, when ๐‘‹1 is given

๐”ผ๐‘‹2 ๐‘Œ|๐‘‹1 = ๐’ณ2๐‘š ๐‘ฅ1, ๐‘ฅ2 ๐‘“ ๐‘ฅ2|๐‘ฅ1 ๐‘‘๐‘ฅ2 โž” function of x1

๐”ผ๐‘‹2 ๐‘Œ|๐‘‹1

x1

โ€ข What is ๐•๐‘‹1 ๐”ผ๐‘‹2 ๐‘Œ|๐‘‹1 ?

๐•๐‘‹1 ๐”ผ๐‘‹2 ๐‘Œ|๐‘‹1 = เถฑ

๐’ณ1

๐”ผ๐‘‹2 ๐‘Œ|๐‘ฅ1 โˆ’ ๐”ผ[๐‘Œ]2๐‘“ ๐‘ฅ1 ๐‘‘๐‘ฅ1

The โ€œexpectedโ€ (part of) variability of the output ๐‘Œ which is due to ๐‘‹1 alone

Global approaches:

Variance decomposition method (2)

๐œ‚1 =๐•๐‘‹1 ๐”ผ๐‘‹2 ๐‘Œ|๐‘‹1

๐• ๐‘Œ

1. Sample ๐‘  random values of ๐‘‹1 from ๐‘“๐‘‹1๐‘ฅ1 : ๐‘ฅ1

1, ๐‘ฅ12, . . . , ๐‘ฅ1

๐‘—, . . . , ๐‘ฅ1

๐‘ 

2. For each ๐‘ฅ1๐‘—, ๐‘— = 1, 2, โ€ฆ , ๐‘ 

1) Sample ๐‘Ÿ values of ๐‘‹2 from ๐‘“๐‘‹2|๐‘‹1 ๐‘ฅ2|๐‘ฅ1 = ๐‘ฅ1๐‘—: ๐‘ฅ2

1, ๐‘ฅ22, . . . , ๐‘ฅ2

๐‘˜ , . . . , ๐‘ฅ2๐‘Ÿ

2) Uncertainty propagation:

evaluate the ๐‘Ÿ output values ๐‘ฆ๐‘—๐‘˜ = ๐‘š ๐‘ฅ1๐‘—, ๐‘ฅ2

๐‘˜ , ๐‘˜ = 1,2, . . . , ๐‘Ÿ

3) Estimate the expected value:

๐”ผ๐‘‹2 ๐‘Œ|๐‘‹1 = ๐‘ฅ1๐‘—โ‰ˆ เทœ๐‘ฆโˆ— ๐‘ฅ1

๐‘—=1

๐‘Ÿโ‹…

๐‘˜=1

๐‘Ÿ

๐‘ฆ๐‘—๐‘˜

End For ( j )

The double-loop Monte Carlo estimation for ๐œ‚1 =๐•๐‘‹1 ๐”ผ๐‘‹2 ๐‘Œ|๐‘‹1

๐• ๐‘Œ

Global approaches:

Variance decomposition method (3)

๐‘“๐‘‹1 ๐‘ฅ1 = เถฑ

๐‘ฅ2

๐‘“๐‘‹1,๐‘‹2 ๐‘ฅ1, ๐‘ฅ2 ๐‘‘๐‘ฅ2

๐‘“๐‘‹2|๐‘‹1 ๐‘ฅ2|๐‘ฅ1 = ฮค๐‘“๐‘‹1,๐‘‹2 ๐‘ฅ1, ๐‘ฅ2 ๐‘“๐‘‹1 ๐‘ฅ1

๐”ผ๐‘‹2 ๐‘Œ|๐‘ฅ1 = ๐‘ฅ11 , ๐”ผ๐‘‹2 ๐‘Œ|๐‘ฅ1 = ๐‘ฅ1

2 , . . . , ๐”ผ๐‘‹2 ๐‘Œ|๐‘ฅ1 = ๐‘ฅ1๐‘ 

3. Evaluate the following quantities:

๐”ผ ๐‘Œ = ๐”ผ๐‘‹1 ๐”ผ๐‘‹2 ๐‘Œ|๐‘‹1 โ‰…1

๐‘ 

๐‘—=1

๐‘ 

๐”ผ๐‘‹2 ๐‘Œ|๐‘‹1 = ๐‘ฅ1๐‘—=1

๐‘ 

๐‘—=1

๐‘ 

เทœ๐‘ฆโˆ— ๐‘ฅ1๐‘—= ว‰๐‘ฆ

๐•๐‘‹1 ๐”ผ๐‘‹2 ๐‘Œ|๐‘‹1 โ‰…1

๐‘  โˆ’ 1โ‹…

๐‘—=1

๐‘ 

เทœ๐‘ฆโˆ— ๐‘ฅ1๐‘—โˆ’ ว‰๐‘ฆ

2

๐• ๐‘ฆ โ‰…1

๐‘  โ‹… ๐‘Ÿ โˆ’ 1โ‹…

๐‘—=1

๐‘ 

๐‘˜=1

๐‘Ÿ

๐‘ฆ๐‘—๐‘˜ โˆ’ ว‰๐‘ฆ2

โ€ข no hypotheses on the model

โ€ข Problem: computational cost!

(๐‘  โˆ™ ๐‘Ÿ model evaluations โ†’ around 106!)

โ€ข possible interactions considered

โž” Sobol indices

Global approaches:

Variance decomposition method (4)

เทž๐œ‚1 =๐•๐‘‹1 ๐”ผ๐‘‹2 ๐‘Œ|๐‘‹1

๐• ๐‘Œ

Contribution of ๐‘‹1 and ๐‘‹2(alone and interacting)

๐‘‹1 alone ๐‘‹2 alone

= only interaction!

Global approaches:

Variance decomposition method (5)

๐‘Œ = ๐‘š ๐‘‹1, ๐‘‹2, ๐‘‹3๐•[๐‘Œ] = ๐‘‰1 + ๐‘‰2 + ๐‘‰3 + ๐‘‰12 + ๐‘‰13 + ๐‘‰23 + ๐‘‰123

๐‘‰๐‘–= contribution of input ๐‘‹๐‘– alone

๐‘‰๐‘–๐‘—= contribution exclusively due to the interaction of ๐‘‹๐‘– and ๐‘‹๐‘—

๐‘‰123 = contribution exclusively due to the interaction of ๐‘‹1 and ๐‘‹2 and ๐‘‹3

Note that:

๐‘‰1 = ๐‘‰๐‘‹1 ๐ธ๐‘‹2,๐‘‹3 ๐‘ฆ|๐‘ฅ1๐‘‰12 = ๐‘‰๐‘‹1,๐‘‹2 ๐ธ๐‘‹3 ๐‘ฆ|๐‘ฅ1, ๐‘ฅ2 โˆ’ ๐‘‰1 โˆ’ ๐‘‰2

Example:

๐‘ฆ = ๐‘ฅ1 + ๐‘ฅ22 + ๐‘ฅ1 โ‹… ๐‘ฅ3

2

๐‘‰12 = 0, but notice that ๐•๐‘‹1,๐‘‹2 ๐”ผ๐‘‹3 ๐‘Œ|๐‘ฅ1, ๐‘ฅ2 โ‰  0

๐‘‰23 = 0๐‘‰123 = 0

Global approaches:

Functional ANOVA decomposition (1)

Global approaches:

Functional ANOVA decomposition (2)

โ€ข The index ๐‘†๐‘– corresponds to the fraction of ๐•[๐‘Œ] associated with the individual

contribution of ๐‘‹๐‘–.

Global approaches:

Functional ANOVA decomposition (3)

The first-order Sobolโ€™ indices defined as

๐‘†๐‘– =๐‘‰๐‘–๐•[๐‘Œ]

โ€ข The overall contribution of ๐‘‹๐‘– accountting also for its interactions with the

remaining inputs.

โ€ข The index ๐‘†๐‘‡๐‘– is, then, the total fractional contribution of ๐‘‹๐‘– to ๐•[๐‘Œ].

The total-order Sobolโ€™ indices

๐‘†๐‘‡๐‘– =

๐‘‰๐‘– +๐‘–โ‰ ๐‘—

๐‘˜

๐‘‰๐‘–,๐‘— +โ‹ฏ+ ๐‘‰1,2,โ€ฆ,๐‘˜

๐•[๐‘Œ]

โ€ข ฯƒ๐‘†๐ฎ = 1 and ฯƒ๐‘–=1๐‘› ๐‘†๐‘‡๐‘– โ‰ฅ 1

โ€ข ๐‘†๐‘‡๐‘– = ๐‘†๐‘– if ๐‘‹๐‘– is NOT involved in interactions with other inputs.

If this occurs for all inputs, then we have that ฯƒ๐‘–=1๐‘˜ ๐‘†๐‘– = 1

The model response is additive.

โ€ข The above decomposition requires independence assumption among inputs.

For correlated input, the decomposition is not unique any more.

โž”the generalized ANOVA decomposition.

โ€ข To study the trend, one may look at the main effect function ๐‘”๐‘–.

โ€ข To study the interactions, one may look at the higher-order Sobol indices

๐‘†๐‘–,๐‘—,โ€ฆ๐‘˜.

โ€ข The definition of ๐œ‚๐‘– in is equivalent to the first-order Sobolโ€™ indices ๐‘†๐‘– when

inputs are mutually independent.

๐œ‚๐‘– =๐•[๐”ผ[๐‘Œ|๐‘‹๐‘–]]

๐•[๐‘Œ]โ‰ก ๐‘†๐‘– =

๐‘‰๐‘–๐•[๐‘Œ]

Notes

Global approaches:

Moment-independent sensitivity measures (1)

Sensitivity measures that consider the outputโ€™s entire distribution function are

called moment-independent measures.

In general, we can consider a discrepancy operator between probability

distributions over the support of ๐‘Œ, which is evaluated at the marginal-

conditional pair โ„™๐‘Œ and โ„™๐‘Œ|๐‘‹๐‘–=๐‘ฅ๐‘–.

For example,

๐œ(โ„™๐‘Œ, โ„™๐‘Œ|๐‘‹๐‘–=๐‘ฅ๐‘–) =1

2เถฑ๐’ด

|๐‘“๐‘Œ|๐‘‹๐‘–=๐‘ฅ๐‘–(๐‘ฆ|๐‘‹๐‘– = ๐‘ฅ๐‘–) โˆ’ ๐‘“๐‘Œ(๐‘ฆ)| d๐‘ฆ.

๐‘Œ = ๐‘‹1 + ๐‘‹2 + 5๐‘‹3, ๐‘‹๐‘– ~๐‘–.๐‘–.๐‘‘

๐’ฉ(0,1)

๐œ(๐‘‹3 = 0) =1

2เถฑ๐’ด

|๐‘“๐‘Œ|๐‘‹3=0(๐‘ฆ) โˆ’ ๐‘“๐‘Œ(๐‘ฆ)| d๐‘ฆ = 0.022

The moment-independent ๐›ฟ๐‘– sensitivity index of ๐‘‹๐‘– with respect to output

Y is defined as:

๐›ฟ๐‘–: =1

2๐”ผ๐‘‹๐‘–[เถฑ

๐’ด

|๐‘“๐‘Œ|๐‘‹๐‘–(๐‘ฆ|๐‘‹๐‘–) โˆ’ ๐‘“๐‘Œ(๐‘ฆ)| d๐‘ฆ]

Global approaches:

Moment-independent sensitivity measures (2)

Double-loop MC Estimation

๐›ฟ๐‘– represents the normalized expected shift in the distribution of ๐‘Œ provoked by

๐‘‹๐‘– . ๐›ฟ๐‘– is, historically, the first moment-independent sensitivity measure.

Properties of the ๐›ฟ๐‘– importance measure:

โ€ข Normalization: 0 โ‰ค ๐›ฟ๐‘– โ‰ค 1.

โ€ข ๐›ฟ1,2,โ€ฆ,๐‘› = 1

โ€ข Nullity implies independence: ๐›ฟ๐‘– = 0 if and only if ๐‘Œ is independent of ๐‘‹๐‘–. (Note that ๐œ‚๐‘– do not preserve this property)

โ€ข ๐›ฟ๐‘–๐‘— = ๐›ฟ๐‘– if and only if ๐‘Œ is independent of ๐‘‹๐‘—

โ€ข Invariant to transformation of ๐‘Œ: ๐›ฟ๐‘– ๐‘Œ = ๐›ฟ๐‘– ๐‘ ๐‘Œ

โ€ข Sobolโ€™ indices do not require particular assumptions on the model structure

โ€ข require independence among inputs

โ€ข not transformation-invariant to the output

โ€ข a null value of the first-order sensitivity measure does not implies that ๐‘Œ is

independent of ๐‘‹๐‘–โ€ข Moment-independent measures solve the above problem

e.g. the moment-independent measure based on Kolmogorov-Smirnov

distance

๐›ฝ๐พ๐‘†๐‘–= ๐”ผ sup

๐‘ฆโˆˆ๐’ด|๐น๐‘Œ|๐‘‹๐‘–(๐‘ฆ|๐‘‹๐‘–) โˆ’ ๐น๐‘Œ(๐‘ฆ)|

โ€ข Better results at a higher computational expense

Computational cost of double-loop MC estimation: ๐’ โˆ™ ๐’” โˆ™ ๐’“ ,

which can be improved

Notes

MODEL (STRUCTURE)

UNCERTAINTY

โ€ข The alternative model approach

โ€ข The perturbative treatment of the reference model

Model (structure) uncertainty:

The alternative model approach

Consider a set of ๐‘€ plausible models ๐‘š๐‘–, ๐‘– = 1,2, โ€ฆ ,๐‘€ , each characterized by a

set of uncertain parameters ๐’‚๐’Š with distribution (๐’‚๐’Š| ๐‘š๐‘–)

๐‘ฆ๐‘– ๐ฑ, ๐š๐‘– = ๐‘š๐‘– ๐ฑ, ๐š๐‘–

๐‘ฆ๐‘– ๐ฑ = เถฑ

๐š๐‘–

๐‘š๐‘– ๐ฑ, ๐š๐‘– ๐œ‹ ๐š๐‘–|๐‘š๐‘– ๐‘‘๐š๐‘–

Model uncertainty quantified by a discrete probability distribution

๐‘(๐‘š๐‘–), ๐‘– = 1, 2, โ€ฆ ,๐‘€

Output ๐‘ฆ estimation โž” total probability theorem

๐‘ฆ ๐ฑ =

๐‘–=1

๐‘€

๐‘ ๐‘š๐‘– เถฑ

๐š๐‘–

๐‘š๐‘– ๐ฑ, ๐š๐‘– ๐œ‹ ๐š๐‘–|๐‘š๐‘– ๐‘‘๐š๐‘–

Model (structure) uncertainty:

The perturbative treatment of the reference model

โ€ข One single model ๐‘šโˆ— is considered, typically the most plausible, and a

perturbation is directly introduced in the model output

โ€ข The perturbation is a sort of error term with which one accounts for the

structural uncertainties due to the incomplete knowledge of the

phenomenon

โ€ข In practice, one adopts additional or multiplicative perturbative terms

๐‘ฆ = ๐‘šโˆ—(๐’™, ๐’‚โˆ—) + ๐ท๐‘Žโˆ— ๐‘ฆ = ๐‘šโˆ— ๐’™, ๐’‚โˆ— ๐ท๐‘š

โˆ—

โ€ข The perturbations ๐ท๐‘Žโˆ— and ๐ท๐‘š

โˆ— are not exactly known, but they may be

described in terms of opportune probability distributions

Summary

1. Local approaches focus on sensitivities at nominal range

EE โž” Morris

2. Global/probabilistic approaches studies the entire input support

โ–ช Linear/ approximately linear

Importance factors based on Taylor series expansions

Input/output correlation coefficients

Standard regression coefficients

โ–ช Non linear, yet monotonic modelsโž” rank transform

โ–ช More general assumptions on the model

variance-based, moment-independent based sensitivities

3. Model (structure) uncertainty

QUESTIONS?

Xuefei Lu