undergraduate research presentation

15
Study of Cationic Polylactides as a Gene Delivery System to Combat Against Prostate Cancer CE 498 Undergraduate Research and Creative Activity David Huang April 26 th , 2013

Upload: david-huang-eit

Post on 13-Apr-2017

189 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Undergraduate Research Presentation

Study  of  Cationic  Polylactides  as  a  Gene  Delivery  System  to  Combat  Against  Prostate  

Cancer  

CE  498  Undergraduate  Research  and  Creative  Activity  David  Huang  April  26th,  2013  

Page 2: Undergraduate Research Presentation

Introduction    What  is  prostate  cancer?  

  Cancer  of  the  prostate  gland    Effects:    

  Impotence  and  infertility    Incontrollable  urine  flow    Weakening  of  bone  structure    Death  

  Angiogenesis    Cause  of  growth  of  aggressive  tumors  

  Provides  oxygen  and  nutrition      Stimulators  induce  angiogenesis  

  Interleukin-­‐8  (IL-­‐8)    Vascular  endothelial  growth  (VEGF)    Transforming  growth  factor  (TGB)-­‐β  

Page 3: Undergraduate Research Presentation

Introduction    What  is  a  polylactide  (PLA)?  

  Polymer  of  lactic  acid  and  other  derivatives    Main  monomers:  lactic  acid  and  cyclic  di-­‐ester  (lactide)  

  Eco-­‐friendly  material    Biodegradable      Derived  from  renewable  resources  

  Form  typically  by  ring-­‐opening  polymerization  with  metal  catalysts    

 

  Wide  Range  of  Uses      Medical  supplies:  degradable  stitches,  screws,  

pins,  rods    Compostable  packaging    Clothes  

Page 4: Undergraduate Research Presentation

Gene  Therapy    Use  of  gene  therapy  to  combat  cancer  

  Recent  popularity    High  specificity  

  siRNA  used  to  silence  molecular  pathways  

  Cons  of  gene  therapy    Inadequate  cellular  absorption    Small  retention  time  in  body    Susceptible  to  breakdown  

  Needs  delivery  system  

Page 5: Undergraduate Research Presentation

Use  of  Well-­‐Defined  Cationic  Polylactides  for  siRNA  Delivery    Protects  siRNA  from  biological  harm  

  Improve  cell  uptake    Positive  charges  of  cationic  polylactides  enhances  endocytosis  

  Adjustable  degradation  rate  

  Low  toxicity  

Page 6: Undergraduate Research Presentation

Synthesis  of  Well-­‐Defined  Cationic  Polylactides  

  Achieved  using  organocatalyzed  ring  opening  polymerization  and  thiol-­‐ene  click  reaction  

  Step  1:  ROP  of  allyl-­‐functionalization  lactide  (LA)  with  L-­‐Lactic  Acid      Benzyl  alcohol  (BnOH):  initiator    4-­‐dimethylaminopyridine  (DMAP)  as  

organocatalyst    Reaction  done  in  dichloromethane  

(DCM)    Reaction  Conditions:  

  35  degrees  Celsius    Time:  One  week    90%  conversion  

Page 7: Undergraduate Research Presentation

Synthesis  of  Well-­‐Defined  Cationic  Polylactides  

  Step  2:  UV-­‐induced  thiol-­‐ene  click  reactions  to  attach  tertiary  amine  group    Tertiary  amine  group:  2-­‐(diethylamino)ethanethiol  hydrochloride,  

(DEAET)    Photo-­‐initiator:  2,2’-­‐dimethoxy-­‐2-­‐phenylacetophenone  (DMPA)    Reaction  Conditions  

  UV  irradiation    Room  temperature    Time:  30  minutes  

Page 8: Undergraduate Research Presentation

Synthesis  of  Well-­‐Defined  Cationic  Polylactides  

  Adjust  [ene]0:[SH]0:[DMPA]0  ratio  to  produce  cationic  polylactides  with  different  amount  of  tertiary  amine  groups  

  Four  CPLAs  with  different  mole  %  of  amine-­‐polymer  backbone  units    Composition  determined  by  1H  NMR  

  CPLA-­‐9,  CPLA-­‐18,  CPLA-­‐30,  CPLA-­‐50    Suffix  number=mole  fraction  

Page 9: Undergraduate Research Presentation

Confirmation  of  Well-­‐Defined  Cationic  Polylactides  Structure  

  1H  NMR  analysis  of  polylactide  made  in  first  step  

  1H  NMR  analysis  of  well-­‐defined  CPLA  made  in  2nd  step  

Page 10: Undergraduate Research Presentation

Confirmation  of  Well-­‐Defined  Cationic  Polylactides  Structure  

  Gel  permeation  chromatography    Used  to  check  change  in  hydrodynamic  

volume  between  PLA  and  CPLA    Results  of  GPC:  

  Showed  no  significant  change  in  volume  

  Concluded  no  crosslinking  

  Concluded  no  side  reactions  

Page 11: Undergraduate Research Presentation

Study  of  CPLA’s  Degradation  

  Tests  done  at  samples  of  1.0  mg/ml  

  Tests  done  with  continual  GPC  analysis    Ran  at  two  temperatures  

  37  degrees  Celsius    25  degrees  Celsius  

  Data  collected  at  4  hour  intervals  from  1st  -­‐13th    hour  and  at  the  168th  hour  

Page 12: Undergraduate Research Presentation

Study  of  CPLA’s  Degradation  

  Results  of  Tests    Faster  Degradation  Rate  at  37oC    Faster  Degradation  Rate  at  higher  amine  mole  %  

Page 13: Undergraduate Research Presentation

Study  of  CPLA’s  Toxicity    Tests  conditions  

  PC3  cells  treated  with  all  4  different  CPLAs    Time  incubated:  48  hours  

•  Tests  Results  –  Low  toxicity  –  Most  toxic  was  CPLA-­‐50  at  highest  dosage  

Page 14: Undergraduate Research Presentation

Use  of  CPLA  for  Gene  Delivery  

  Successful  Nanoplexes  Formed  

  Nanoplexes  formed  by  electrostatic  interaction    CPLA/siRNA  mass  ratio  20:1    Time:  30  minutes  

TEM  image  of  CPLA-­‐50-­‐IL5  siRNA  Nanoplex  

Page 15: Undergraduate Research Presentation

Conclusion  

  Synthesizing  CPLA  with  low  toxicity  is  possible  

  Degradation  rate  can  be  altered  to  control  gene  release  

  Use  of  Well-­‐Defined  CPLA  with  encapsulated  IL-­‐8-­‐siRNA  can  provided  an  alternative  treatment  for  prostate  cancer