understanding process requirements for additive

27
Dr.-Ing. Dipl.-Phys. Thomas Rechtenwald Understanding Process Requirements for Additive Manufacturing on the example of a Beam-Based Process for Plastic Powders GAFOE 2013

Upload: others

Post on 02-Oct-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Understanding Process Requirements for Additive

Dr.-Ing. Dipl.-Phys. Thomas Rechtenwald

Understanding Process Requirements for Additive Manufacturing on the example of a Beam-Based

Process for Plastic Powders

GAFOE 2013

Page 2: Understanding Process Requirements for Additive

2

Content

FIT GroupIntroduction to the processTypical implementation of the process (SoA)

– Preheating– Powder coating

Economical and technical challenges for AM Solution statements for AM

– Powder shuttle technology– Enhanced recyclability

Conclusions and road map

Page 3: Understanding Process Requirements for Additive

FIT Group

• Additive Engineering• Additive serial production (direct und indirect)• Medical applications / individual implants• Innovative tool cooling (Skin Freeze)

• Concept and design models• Technical prototypes• Prototype tooling and injection molding

Software for Additive ManufacturingData preparation and data repairSelective Space StructuresAutomated tool path planning and machinery control

• SMS high productive additive manufacturingStick Deposition Modeling (SDM), Fabbster Kit

Fabbster Kit 11.1

Page 4: Understanding Process Requirements for Additive

4

Additive Processing

3D CAD Modell

Generate layer and contur data

Set upapparatus

Pre processing Processing Post processing

e.g. Selective Laser Sinteringor Selective Laser Melting

Surface finish

Unpacking, cleaning and

identifying parts

[W.B.Wasserstrahl-Schneidtechnik GmbH]

[e.g. EOSINT P380EOS GmbH]

Blood conseve container for centrifuge, Q: EOS

Thermoplastic parts, typicalPolyamid 12z. B. PA2200

CO2 -Laser

Coating device

Building platform with Z-axis

Storage container

Heater

Scanner

[FhG UMSICHT]

[Prechtl.]

Page 5: Understanding Process Requirements for Additive

5

Selective Laser Sintering (SLS, thermoplastics)Selective Laser Melting (SLM, metals)

SLS (plastics)CO2 -Laser

Coating device

Building platform with Z-axis

Storage container

IR Heaters forpreheating

2D-Scanner

System

Laser treatment

Powder coating

Preheating

Cooling

Pre processing

Post processing

SLM (metal)

Laser treatment

Powder coating

Cooling

Pre processing

Post processing

Laye

r gen

erat

ion

Batch wise process (job by job)

Page 6: Understanding Process Requirements for Additive

6

Laser sintering of semicrystalline thermoplastics

Crystalline and amorphous regions Temperature interval between melting and crystallization, Tm - Tc = 20…30 KShrinkage (2-3 %) during crystallization at Tc

Curl due to inhomogeneous cooling

⇒ Quasi-isothermal laser sintering

Hea

t flo

wen

doex

o

Temperature

Glas transition, Tg

coldcrystallization

Melting, Tm

Meltcrystallization Tc

Base line

Under normal pressure

Tc

[Ehrenstein]

TemperatureSp

ecifi

c vo

lum

e

[Domininghaus]

5 mm5 mm

Sphärolith

Sphärolithradius

Kristallines PolymerSphärolith

Sphärolithoberfläche

Amorphes Polymer

Sphärolith

Sphärolithradius

Kristallines PolymerSphärolith

Sphärolithoberfläche

Amorphes Polymer

[ McCrum et al.]

SpherulitheLamella /crystalline region

Spherulithe radius

Spherulithe surfaceAmorphous region

Curl

Page 7: Understanding Process Requirements for Additive

7

SoA - Temperature vs. time during coating

Powder coating influence the critical thermal household Heating the coating device reduce temperature minima

300

310

320

330

340

350

360

30 45 00 15 30 45Zeit

Tem

pera

tur

ohne undmit erweiterter Temperaturführung

s

°C

mit erweiterterter ohne erweiterterterTemperaturführung

TP = 340 °CPL = 13,4 WvS = 4,5 m/shS = 0,2 mm

During powder coating from left side

Directly after powder coating form left side

Top view building platform

X

Y

coatingdevice

X

Y

coatingdevice

Time

Tem

pera

ture

Thermography picture Thermography picture5 cm5 cm

with without modified coating device

without /with modified coating device

PEEK 150PF / 1,0 wt% carbon black

0 15 30 45 60 75

Page 8: Understanding Process Requirements for Additive

8

SoA – Preheating of coated powder layers

8

The sensor for preheating control is measuring only average temperatureSystematic deviations due to degraded IR heater and coating device: 20 -> 5 °CArbitrary deviations due to powder properties: 8 -> 3 °C

=> Process control has to be improved

Start of preheating

End of preheating

Tem

pera

turi

n °C

Tem

pera

ture

in °

C

Pixle (horicontally)

After powder coating from left to right

During preheating

X

Y

coatingdevice

Top view building platform

Left side of thebuilding platform

Right side of thebuilding platform

fedcba

5 cma 5 cmf

Page 9: Understanding Process Requirements for Additive

9

SoA - powder coating of thin layers

Controlled, homogeneouspowder coating

PA 2200 / 1 wt% carbon black

Uncontrolledpowder coating

PEEK 150PF, unfilled (without carbon black)

a) b)

1 10 1000123456789

PEEK 150 PF PA 2200

Volu

men

in %

Korngröße in μmParticel size in µm

9 -% 7 -6 -5 -4 -3 -2 -1 -0 -

1 10 100

Vol

ume

PEEK 150PF, dav = 63 µmPA 2200, dav = 55 µm

a) Polyamide PA 2200,regular shape

b) PEEK 150PF, irregular shape

Page 10: Understanding Process Requirements for Additive

SoA - Conclusion

Rapid Prototyping

100% recyclability Thermal degradation of material, requires refreshing 40%

Total process time and cooling

n. a.Reduce number of materials to several polymers

5sQuasi-isothermal laser sintering

Excellent properties due to fine material structure

Suspected for material degradation 5sLaser treatment (thermal short time activation)

n. a.Deviations critical for process stability

5 sPreheating (Pyrometer)

Nearly all metal powder materials fulfill requirements

high effort on material is necessary to fulfill requirements

5 sPowder coating (roller, doctor blade)

Typical manuallyPartly automatedPowder feeding

Partly automatedMostly automatedPre processing

250.000 € / 20 €/kg350.000 € / 60 €/kgInvestment / Material

SLM (metal)SLS (plastics)Time

Page 11: Understanding Process Requirements for Additive

Additive Manufacturing

1. Reduce material costs per part2. Reduce investment cost3. Shorten time for layer generation4. Reduce manual work5. Improve process and quality control6. Enlarge material diversity

Economical and technical challenges

Page 12: Understanding Process Requirements for Additive

Solution statements at sintermask

New powder coating device for cost-efficient polymer powders (Powder-Shuttle Technology)Simultaneous light exposure techniques (mask technology)Process and quality control

Page 13: Understanding Process Requirements for Additive

Fast and reproducible powder coating of powders with reduced free flow ability

Powder-Shuttle-Technology

Sword

Openingsword over powder bed

Closed sword over powder bed

open sword over powder

bed

part

Powder bed

Platform

Shuttle and sword besides

powder bed

Page 14: Understanding Process Requirements for Additive

Powder Shuttle Technology

Page 15: Understanding Process Requirements for Additive

Materials

Materials UnitCalculation

PA 2200(reference)

PP(model)

Average particle size d50 µm 60 117

Hausner-Factor(powder free flow ability)

ρpowder / ρtap

1,15 ± 0,01(high)

1,41 ± 0,03(cohesive)

Range of preheating temperature (DSC meas.)

°CTm,1 – Tc,1

30 25

Hausner-Faktor a number for powder free flow ability:HR < 1,25 – high powder free flow ability

1,25 < HR < 1,40 – reduced powder free flow ability1,40 > HR – cohesive poder

Particle size distribution

• PA2200 (reference): Narrow distribution without large amount of fine particles

• PP (model): Narrow distribution with fine particles, high mean particle size

PP (model)PA2200 (reference)

Powder coating with roller:Particle size in µm

PA2200 (reference)PP (model)

Page 16: Understanding Process Requirements for Additive

Results

Manufacturing of parts by powder shuttle and laser scanner

PP (model)Powder with reduced free flow ability

with bigger particle size

PA2200

PP + additive

PA 2200 (reference)Free flowing powder with small particle size

4 cm

4 cm

Page 17: Understanding Process Requirements for Additive

17

Material with 100% recyclability

SoA: Standard PA2200, needs 8kg new powder (about 500€) for 1kg part due to 5% average exposure per layer and refreshrate of 40%Desmosint is a new material which is based on TPU with a recyclabiltiy of 100%. It needs 1kg new powder (50 €) for 1 kg partDisadvantage: Less free flowability compared to PA2200, requires adaption of powder feeding mechanism and so far personnel controlsStatus: First parts for pilot customers show potential of the material

10 mm10 mm

DESMOSINT X92A

Page 18: Understanding Process Requirements for Additive

Conclusion and road map

Maskgeneration

Automation of post processing

Laser-Scanner-System

Qualification of new Materials

Powder Shuttle

Process- and quality control

Maskexposure

Extension of material diversity

Pollux ZorroAdditiveManu-

facturing

Page 19: Understanding Process Requirements for Additive

Thanks for attention

Sintermask GmbHEichenbühl 1092331 Lupburg

Germany

Page 20: Understanding Process Requirements for Additive

20

Energy per surface unit:

SS

La hv

PE⋅

=

Process window for selective laser sintering

PEEK 150PF/ 1 wt% carbon blacklaser sintered, 6 x 6x 4 mm³

1 cm

Incomplete sintered,layered structure

Totally sintered,dense structure

Dense structure,layers overmelted

10 12 15 20 30 36

345342339336333 Distortion of

single layersby curl

Melting ofpowder bed

Laser power PL = 15 W (tyical 50 W)Scan velocity vS (typical 4,5 m/s)Hatch distance hS (typical 0,3 mm)

Preheatingtemperature

in °C

Melting of parts

Energy per surface unit in kJ/m²

Page 21: Understanding Process Requirements for Additive

21

SoA - Laser treatment (laser power)

21

te is about 3 s

Lase

rleis

tung

in W

Zeit in s

Laser treatment of 5 squares, each with 2,5 cm edge length shows transition behavior after swich on the laser

X

Y

Building platform

Lase

r pow

er in

W

Time in s

2nd square 3rd square 4th square 5th square

high water content1,15

[Schulz]

Time in sLa

ser p

ower

in W

Principle transition response behavior of CO2-Lasers of different aging

Page 22: Understanding Process Requirements for Additive

22

SoA - Effect of transition response on parts

Duration of transition response tePortion of area which is affected by reduced laser power

Location of area wich is affected by less laser power

x

y

1. Layer: y-Hatch

2.Layer: x-Hatch

3. Layer: y-Hatch

4. Layer: x-Hatch Superposition

Right front corner: significantly less laser power

StartFront leftx

y

StartFront right

StartFront left

StartFront right

Treated area

Port

ion

of a

ffect

ed a

rea

0%

20%

40%

60%

80%

100%

1 100 10000Bearbeitete Fläche

Ant

eil d

er b

etro

ffene

Flä

che

1 cm² 100 cm² 1 m²

te = const. = 3 svS = 4,5 m/shS = 0,3 mm

F = 50 cm²A

Page 23: Understanding Process Requirements for Additive

Bedeutung der simultanen Belichtung

Verkürzung der Zeit für die Konsolidierung durch Optimierung des Temperatur- und ViskositätsverlaufsBelichtungszeit unabhängig vom FüllgradGeringere Maximaltemperatur,

geringere thermische Belastung des Werkstoffs

Scangeschwindigkeit: 5...12 m/s

Aktivierungszeit:0,12...0,05 ms

(Spot: ∅ 0,6 mm)1...2 s

Temperatur

Page 24: Understanding Process Requirements for Additive

Ergebnisse: Vergleich SMS und SLS

SMS-Teile haben spritzgussähnliche Eigenschaften

Page 25: Understanding Process Requirements for Additive

Selektives Maskensinternvon Funktionsbauteilen

Werkstoffauswahl und Charakterisierung

Einfluss wesentlicher Prozessparameter auf die Bauteileigenschaften

Abhängigkeit der mechanischen Eigenschaften von der Orientierung des Bauteils im Bauraum

Verarbeitung modifizierter Materialien zur Herstellung funktionalisierter Bauteile

Page 26: Understanding Process Requirements for Additive

Prozess- & Qualitätskontrolle

Thermographie: Überwachung von Schichtauftrag und Konsolidierung

Defizite aktueller Lasersinteranlagen:Schwankende MaterialeigenschaftenMangelnde Stabilität von ProzessparameternUnzureichende Prozessüberwachung

Verbesserte Reproduzierbarkeit der Bauteileigenschaften

Identifikation schlechter SchichtenRegelung des Energieeintrages

60

100

140

180°C

Thermokamera

Baufeld

Thermographieaufnahme des Baufeldes mit Bauteil

=> Nicht reproduzierbare Bauteileigenschaften

=> Häufige Prozessabbrüche

Page 27: Understanding Process Requirements for Additive

Optimierung Temperaturhaushalt PS

Ursprünglicher Temperaturabfall ∆T = 36 K reduziert auf ∆T = 18 KZiel ist ∆T = 10 K beim MaterialauftragDurch 2-Zonen Vorheizen mittels Lampen wird ∆T < 5 K

Vorher Nacher