unit table

10
Fundamental Physical Constants and Conversion Factors Bruce M. Moskowitz 1. INTRODUCTION SI is the servant of man, not his master P. Vigoureux [I9711 This section provides a summary of important unit s for geomagnetism nd geoelectricty. n addition, a summary of conversion fact ors and fundamental unit s of relevance to earth and planetary science are presented or reference. Despite the sentiment expressed above by Vigoureux, it still seems hat plenty of us slave over SI units in geom ag- netism. There is probably no other scientifi c discipline in which the topic of units generates so much endless discus- sion and confusion than in magnetism. Before the late 1970’s, practically all the geophysical literature in geo- magnetism an d paleomagnetism sed he Gaussian CGS sys- tem of un its. The CGS system is a perfectly sound, ntem- ally consist ent, system of units, but, like all system s of units and dimensions, s totally arbitrary. As the name implies, the cgs system is based on three base units: centimeter, gram, and second. All other units ar e derived fr om these three. The Gaussian cgs system is based on two earlier systems, the electrostatic units (esu) and electromagnetic units (emu). Electrostatic units were defined by Coulomb’s law describing the force between two electrical charges. Similarly, electromagnetic units were define d by the force between two magnetic charges or two current-carrying wires. One consequence f this dichotomy is that the dimen- B. M. Mosk owiiz, Unive rsity of Minnesota, Institute for Rock Magnetism, 100 Union Street, SE, Minneapolis, MN 55455 Global Earth Physics A Handbook f Physical onstants AGU Reference helf 1 sions of electric charge and other related quantities are different in the esu and emu systems. The Gaussian system is a mixture of these wo subsets and uses he emu system to describe magnetic quantities and the esu system to describe electrical quantit ies. As a result of combining the emu and esu syst em into the Gaussian system, the velocity of light in vacuum appears explicitly in some equations dealing wit h magnetic and electric effect s. This resulted in a cumbersome set of units wi th “inconvenient” magnitudes for pra ctical electrical units such as the volt, ohm, and ampere. The Sys teme nte rnational, or SI system of units, are now the recommended (and required!) u nits for scientific and commercial use, as decided by international committees an d journal editors. The SI system, or MKSA, is also totally arbitrary an d is bas ed on four base units: meter, kilogram, second, and ampere. The introducti on of the ampere as a base unit instead of a derived unit h as some great advan- tages. Besides doing away with the emu and esu systems, the SI system incorporating ampere as a base unit also eliminates all those weird ‘lab” and “st at” emu and esu units, such as abampere and statcoulomb. The price we pay for this “unit-f ication”, however, becom es p parent or workers in magnetism. Sudd enly actors of 4~ d isappe ar rom, or re- appear elsewhe re n, formu lae. Further, the permeability of free space p,,) and he permittivity of free space E&, which were dimensionless, qual o unity, and often i gnored in the cgs world, now take on dimensions and num erical values much different from unity. L ikewise, the magnitudes of various magnetic parameters hat we deal wit h every day in the laboratory have changed, some becoming much larger, others smaller, and all somewhat unfamiliar. This short section provide s a brief review of the cgs and SI system of units in magnetism (also see 2,5-8). Copyright 1995 by the America n Geoph ysical Union. 34 6

Upload: 987651234

Post on 05-Apr-2018

224 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Unit Table

8/2/2019 Unit Table

http://slidepdf.com/reader/full/unit-table 1/10

Fundamental Physical Constants and Conversion Factors

Bruce M. Moskowitz

1. INTRODUCTION

SI is the servant of man, not his masterP. Vigoureux [I9711

This section provides a summary of important units forgeomagnetism nd geoelectricty. n addition, a summary ofconversion factors and fundamental units of relevance toearth and planetary scienceare presented or reference.

Despite the sentiment expressedabove by Vigoureux, itstill seems hat plenty of us slave over SI units in geom ag-netism. There is probably no other scientific discipline inwhich the topic of units generatesso much endlessdiscus-sion and confusion than in magnetism. Before the late1970’s, practically all the geophysical literature in geo-

magnetismandpaleomagnetism sed he GaussianCGS sys-tem of un its. The CGS system is a perfectly sound, ntem-ally consistent,systemof units, but, like all systemsof unitsand dimensions, s totally arbitrary. As the name implies,the cgs system is based on three base units: centimeter,gram, and second. All other units are derived from thesethree. The Gaussian cgs system is based on two earliersystems, the electrostatic units (esu) and electromagneticunits (emu). Electrostatic units were defined by Coulomb’slaw describing the force between two electrical charges.Similarly, electromagneticunits were defined by the forcebetween two magnetic charges or two current-carryingwires. One consequence f this dichotomy is that the dimen-

B. M. Mosk owiiz, Unive rsity of Minnesota, Institute for Rock

Magnetism, 100 Union Street, SE, Minneapolis, MN 55455

GlobalEarthPhysicsA Handbook f Physical onstants

AGU Reference helf 1

sions of electric charge and other related quantities aredifferent in the esu and emu systems.The Gaussiansystem

is a mixture of these wo subsetsand uses he emu systemto describe magnetic quantities and the esu system todescribeelectrical quantities. As a result of combining theemu and esu system into the Gaussiansystem, the velocityof light in vacuum appears explicitly in some equationsdealing with magnetic and electric effects. This resulted ina cumbersomeset of units with “inconvenient” magnitudesfor practical electrical units such as the volt, ohm, andampere.

The Sys teme nternational, or SI system of units, are nowthe recommended (and required!) units for scientific andcommercial use,as decidedby internationalcommitteesandjournal editors. The SI system, or MKS A, is also totally

arbitrary and is based on four base units: meter, kilogram,second,and ampere. The introduction of the ampere as abase unit instead of a derived unit has some great advan-tages. Besidesdoing away with the emu and esu systems,the SI system incorporating ampere as a base unit alsoeliminatesall those weird ‘lab” and “stat” emu and esuunits,such as abampereand statcoulomb. The price we pay forthis “unit-fication”, however, becomes pparent or workersin magnetism.Suddenly actors of 4~ d isappear rom, or re-appearelsewhere n, formulae. Further, the permeability offree space p,,) and he permittivity of free space E&, whichwere dimensionless, qual o unity, and often ignored in thecgs world, now take on dimensionsand numerical values

much different from unity. L ikewise, the magnitudes ofvarious magnetic parameters hat we deal with every day inthe laboratory have changed,some becoming much larger,others smaller, and all somewhat unfamiliar. This shortsection provides a brief review of the cgs and SI system ofunits in magnetism (also see2,5-8).

Copyright 1995 by the America n Geoph ysical Union. 346

Page 2: Unit Table

8/2/2019 Unit Table

http://slidepdf.com/reader/full/unit-table 2/10

MOSKOWI’IZ 347

2. THE REALLY IMPORTANT MAGNETIC TERMS

Following Shive [7] and Payne151, here are four funda-mental magnetic quantities:

B= magnetic induction, or flux density

H= magnetic field strength, or magnetizing orceM= magnetizationper unit volumeJ= magnetic polarization, or magnetization

In the SI system, the relationsh ip between B, H, M, andJ is given by

B=bH+J (1)

B=k(H+M) (2)

J=l4&f (3)

where h is 47cxl@’Newton/Ampere2 nd s called he perm-eability of free space. In free space a magnetic fieldproducesa magnetic nduction given by B=p&I. If the spaceis filled by any magnetic material the magnetization willproducean additionalmagnetic nduction given by p,,M. Thetotal induction is the sum of these wo contributions and isgiven by equation (2). Equations (1) and (2) are usuallyassociated espectively with the names of Kenne lly andSommerfeldand represent wo alternative definitions of themagnetic moment of a current loop. By equation (l), thedimensionsof B and J are the sameand he appropriateunitis the Weber/m2 or tesla. Similarly, by equation (2), thedimensionsof H and M are the same and the appropriate

unit is the amperem-l, or Ani’. Equation (2) is the officiallyrecognized SI convention. Another related quantity is thevolume m agnetic susceptibility K) and is de fined as

K=!!J

=-H ~3

(4)

The volume magnetic susceptibility is dimensionless.In the cgs system, he relationshipbetweenB, H, M, and

J is given by

B=H+4zJ (5)

J=M (6)

The constant p,, s arbitrarily set to unity and is dimension-less. Therefore, the dimensions or B, H, J, and M are thesame. The volume susceptibility is given by equation (4)and s alsodimensionless.However, just because he dimen-

sions of thesequantities are the same, here is no reason ohave he samenames or the units. The name or B is gauss(G). for H is oersted (Ge), and for M and J is emukm3.Often H and M are both given in gaussand no distinctionis made betweenJ andM. Since n free spaceB=H (in cgs),gauss s frequently used o express he magnitudeof H. Yetthis concealsa subtle difference betweenM (and H) and he

induction J (and B), or flux density, it produces.By equa-tion (5), one emu/cm3unit of magnetizationwill produce amagnetic nduction B of 47rJgauss.The “correct” procedu rewould be to assignM or J units of emu/cm3,and he quant-ity 47cJ nits of gauss.This is rarely done n the geophysicalliterature, but is common in engineeringand physics.

3. CONVERSION ADVENTURES

The conversion actors between B. H, M and J in SI and

cgs are as follows:

B: lT=l@GH: 1 Am-’ = 47cxlO-3 eM: 1 Am-’ = 10e3 mu cmm3J: 1 T = 1@/47t mu cms3

Bight away we seea problem with converting emu cm” tothe appropriateSI unit. Do we use he conversion or M orJ? Although B and H, and, J and M, are used nterchange-ably in CGS system, we need o be more precisewhen con-verting to SI. For example, the earth’s magnetic field isapproximately 0.5 G, or 0.5 Oe. However, in S I

0.5 G = 5x10-’ T or 50 PT

0.5 Oe = 39.8 Ani’

It is much easier to convert gauss to tesla (move thedecimal point 4 places) han to convert oersted o Ani’. Soit is not too surprising that the current practice used bygeophysicists s to report both B and H in free space ie.. inthe absence f m agnetizedmaterial, M=O) in tesla.We havenot decided suddenly hat the B field is more fundamentalthan the H field just that it is more convenient o use theunits of B. When we now talk about an alternating “magnet-ic field” or someother H field of say 10 millitesla (mT), wereally mean an induction of p,,H=lO mT. However, this israrely noted. The correspondingprocedure or J (and M) in

cgs is to convert emu cme3 o ti’ by moving the decimalthree places and call the result the magnetizationper unitvolume, magnetization,or the intensity of magnetization.

To summarizebriefly, when using cgs units, we usuallydeal with the magnetization J and the magnetic field H.When we convert to SI units, we use the magneticmoment

Page 3: Unit Table

8/2/2019 Unit Table

http://slidepdf.com/reader/full/unit-table 3/10

348 CONSTANTS AND CONVERSION FACTORS

TABLE 1. Conversion factors for Magnetic Quantities

Magnetic Term Symbol SI Unit CGS Unit Conversion Factor

Magnetic induction

Magnetic field

Magnetization

Magnetic polarization

Magnetic moment

Magnetic moment perunit mass

Volume magneticsusceptibility (K=M/H)

Mass magneticsusceptibility (x=KIp)

Molar magneticsusceptibility &qM*)

Magnetic permeability

(p=BM)

Magnetic flux

Magnetic scalar potential;Magnetomotive force

Magnetic vector potential

Magnetic pole strength

Demagnetizing actor

Magnetostriction constant

Anisotropy constantMagnetostatic energyEnergy product

B

H

M

J

m

0

K

x

Xm

P

A

P

N

a

K K,, Ku

&Lx

ted-im gauss G)

A mm’ oersted (Oe)

A mm’ emu cm”

T G

Am2 emu = G cm3

A m2 kg-’ emu g-’

dimensionless dimensionless

m3 kg-’ emu Oe-’ g-’

m3 mole’ emu Oe-’ g-’ mol.’

H rn-’ G Oe-’

Weber 05%)

A

maxwell @Ix)

gilbert

Wb rn-’

Am

dimensionless

dimensionless

J m”

emu = G cm

emu = G cm2

dimensionless

dimensionless

erg cme3

lT=l@G

1 A rn-’ = 47c 10e3Oe

1 A me’ = 10e3 mu cme3

1 T = 104/4x emu cmm3

1 A m2 = lo3 emu

1 A m2 kg-’ = 1 emu g-’

l(S1) = 1/4X (cgs)

1 m3 kg-’ = 10’/47cemu Oe-’ g-’

1 m3 mol.’ = 106/47cmuOe-‘g-’ mol-’

1 H m-’ = 10’/47tG Oe-’

lWb=l@Mx

1 A = 4~00 gilbert

1 Wb me’ = lo6 emu

lAm=lOemu

l(S1) = 4n (cgs)

l(S1) = l(cgs)

1 J me3 10 erg cme3

A=ampere; H=Henry=Newton/Ampere; M’=molecular weight; Tesla=Weber/m$ p=density (1 kg/m’=l@ g/cm)). Volume mag-

netic susceptibilit y in cgs units is sometimes given as emu cm-’ Oe-’ or G/Oe, both are dimensionless. Mass magnetic

susceptibil ity in cgs units is sometimes given as emu g-t, emu g-r oe-‘, emu g-G’, G cm3 g-‘, or cm3 g-‘. The csg unit gamma

y = 10.’ Cl = 10m9T = 1 nanotesla (nT). The SI units are based on the Sommerfeld convention which gives the unit of magnetic

moment as A m’. The Kennelly convention gives the unit of magnetic moment as Wb m.

per unit volume, or simply the magnetization M and themagnetic induction B. As shown by Shive [7], when we

convert to SI, J (gauss)and H (Oe) are first converted o M(emu/cm3)and B (gauss) n cgs. Then we use he SI conver-

sion scheme o convert M and B in cgs to their correspond-ing SI units of A/m and tesla. For example, to convert amagnetizationof 10e3G nd a magnetic ield of 100 oe fromcgs to SI, we do the following:

Page 4: Unit Table

8/2/2019 Unit Table

http://slidepdf.com/reader/full/unit-table 4/10

MOSKOWI’IZ 349

TABLE 2. ConversionFactors for Electrical Quantities

Quantity Symbol SI Unit CGS

emu unit

CGSesu unit

Electric Charge

Current

Electric Potential(emf)

Resistance

Capacitance

Inductance

Conductance

Charge density

Current density

Electric Field

Displacementvector

Electric Polarization

Electrical conductivity

Electrical Resistivity

Electric permittivity

9

I

V

R

C

L

G

Pe

Je

E

D

P

ts

P

E

1 Coulomb (C)

1 Ampere (A)

1 volt (V)

1 ohm (f2)

1 farad (F)

1 Henry 0-O

1 siemen S)

1 C m“

1 A mm2

1 Vm-’

1 C me2

1 C rn-’

1 S me’

1Rm

1 Fm-’

0.1 abcoulomb

0.1 abampere

lo* abvolt

lo9 cm .S’

lo9 s2cm-’

lo9 cm

10e9 m-’ s

10“ abcoul cme3

10.’ abamp cm-’

lo6 abvolt cm~’

47rxlO-’abcoul cm-’

lo” abcoul cm-’

18” cm-’ s

10” cm2 s“

lo-” cm-’ s2

0. c statcoulomb

O.lc statampere

1086’ statvolt

109c2 cm-’

10e9c2m

109cW22cm-’

10-9c-2m s-r

l@‘c statcoul cm3

10e5c tatamp cm-’

lo66’ statvolt cm-’

47rxlO~‘c tatcoul cm-’

10% statcoul cm-’

1@llc2 $1

10”c-2 s

lO%? esu

The table is arranged so that one SI unit equals the corresponding number of units in emu and esu. Quantities in each row,

therefore, stands for the identical amount expressed in different units. The symbol c stands for the magnitude of the speed

of light in vacua expressed in cmkec (=2.99792458~10’~). For example, 1 coulomb = 0.1~ statcoulomb = 3~10~ statcoulomb.

The Gaussian units for electri cal quantities consist mostl y of the es units in the last column.

J(cgs) = 10m3 = M(cgs) = 10e3mu cmm3

= M(S1) = 1 Am-’

H(cgs) = 100 Oe = B(cgs) = 100 G = B(SI) = 10 mT

This is the official conversion scheme ecommendedbythe International Association of Geomagnetism nd Aeron-omy (IAGA) in 1973; unfortunately, the world outsidegeo-magnetismusesa different convention. n most physicsandengineering esearchpapers hat use SI un its, a direct con-version using the Sommerfeld convention [equation (2)] is

employed. In this case, he magnetizing ield and magnet-ization are given in Am-‘. For example,a magnetic ield of100 Oe (CGS) would be given as 8000 ti’ (SI) in aphysics ournal, but as 10 mT (SI) in a geophysicsournal.

Various parametersand conversion actors are presentedin the following tables. Tables 1 and 2 summarizesconver-

sion factors for magnetic and e lectrical units, respectively.An extensive ist of fundamentalequations n electromagnet-ism in both SI and CGS is given by Payne161 nd the erratapublished later [7]. In Tables 3 to 6, conversion factorsdealing with pressure, energy, spectroscopy units andfundamental physical constantsare summarized.

Page 5: Unit Table

8/2/2019 Unit Table

http://slidepdf.com/reader/full/unit-table 5/10

350 CONSTANTS AND CONVERSION FACTORS

TABLE 3. Convers ion Factors for Pressure Units

atm bar dyne cm-’ kg mV2 lb in-* Pascal

psi Pa

1 atm= 1 1.01325 1.01325

x106

lo6

1.033227

x104

1.0197

x104

1.0197

x10-*

1

14.695595 1.01325

I xl@

lo5bar= 9.86923

x10-l

1

1 dyne cm-*= 9.86923

x1o-7

1o-6

1 kg m-*= 9.678 9.8067

XW x1o-5

1 lb in-” 0.068046 6.8948

x10’*

10“

14.504

10-l1.4504x1o-5

1.423

x1o-3

1

98.067 9.8067

6.8948

xl@

10

7.0306

x10*

1.019

x10-l

6.8348

x10)

1Pascal= 9.869

x1o-6

1.450

xlOA

The SI pressure unit i s the Pascal (Pa) = 1 Newton mm*.

1 Torr = 1 mm Hg = 1.33322~10~~ bar =133.3 Pa.

1 Kilobar = 100 MPa.

TABLE 4. Conversio n Factors for Energy Units

erg joule calorie Cg) watt& BTU ev

lo-’ 2.39006 2.778 9.4845 6.242

xW8 x18” x10-” x10”

1 2.39006 2.778 9.4845 6.242

x10-l x1o-4 x1o-4 x10’*

4.184 1 1.1622 3.9683 2.612

x1o-3 x1o-3 x1019

1 erg= 1

1 joule= lo7

1 calorie 4.184

(id= x107

1 watt-k 3.60XlO’O

3600 860.421 1 3.4144

1 BTU= 1.05435XlO’O

1054.35 25 1.99576 2.92875

x10“

1

1 eV= 1.602 1.602 3.829 4.450 1.519

x10-‘* x10-19 x10-” x10= x10-=

2.247

x10**

6.581

x10*’

1

The calorie (g) is the thermochemical calorie as defined by the U.S. National Bureau of Standards.

1 joule = 1 watt-xc.

1 atomic mass unit = 1.492~10-‘~ joule.

Page 6: Unit Table

8/2/2019 Unit Table

http://slidepdf.com/reader/full/unit-table 6/10

MOSKOWITZ 351

TABLE 5. Conversion Factors for Frequencyand Energy Units used n Spectroscopy”

HZ cm-’ J mol-’ eV

1 Hz= 1 3.3356x10-” 3.9915xlo-1o 4.1353x10-‘s

1 cm-‘= 2.9979~10” 1 11.9660 1.2397~10~

1 J mole’= 2.5053~10’ 83567x18’ 1 1.o36ox1o-5

1 eV= 2.4182~10’~ 8.0663~10~ 9.6522~10~ 1

‘Conversion factors taken from [3]. 1 Kayser = 1 cm-’

TABLE 6. FundamentalPhysical Constants”

Quantity Symbol Value SI Units

Universal Constants

Speedof light in vacuum C

Permeability of vacuum PO

Permittivity of vacumn Eo

Newtonian constant of gravitationPlanck constant

in electron volts, h/(e]hl2n

G

h

h

in electron volts, h/{e)Planck mass, (%c/G)~

Planck length, h&c = (hG/c3)”Planck time, &/c = @G/c’)%

Physicochemical constants

Avogadro constantAtomic mass constant, m(d2)/12

in electron volts, rr$/( e)FaradayconstantMolar Planck constant

NAmu

Molar gas constantBoltzmann constant,WA

in electron volts, k/(e)in hertz, hY?rin wavenumbers,WC

Molar volume (ideal gas), RT/p

(at 273.15 K, 101 325 Pa)

Loschmidt constant,NA/Vm

F

N,hN,hc

R

k

VIII

no

299 792 4584n x 1o-7

l/d= 8.854 187 817

6.672 59(85)6.626 075 5(40)4.135 669 2(12)1.054 572 66(63)6.582 122 O(20)2.176 71(14)

1.616 05(10)5.390 56(34)

6.022 136 7(36)1.660 540 2( 10)931.494 32(28)96 485.309(29)3.990 313 23(36)0.119 626 58(11)8.314 510(70)1.380 658(12)

8.617 385(73)2.083 674(18)69.503 87(59)22 414.10(19)

2.686 763(23)

m set-’N A-2

lo-l2 F m*’10.” m3kg”sece2lo-% .I setlo-*’ eV setlo-” J setlo-l6 eV setlo-* kg

1O-35lo-” set

1O23mol-’10-n kgMeVC mol-’lo-“J set mol-’J m mol.’J mol’ K-’1O-uJ K-’

10.’ eV K-’10” Hz K-’m-’ K-1

cm3 mol.’

102’me3

Page 7: Unit Table

8/2/2019 Unit Table

http://slidepdf.com/reader/full/unit-table 7/10

352 CONSTANTS AND CONVERSION FACTORS

TABLE 6. (continued)

Quantity Symbol Value SI Units

Stefan-Boltzmannconstant,

(7c?60)k4/X3C2First radiation constant, 211./x?Second adiation constant, hclkWien displacement aw constant,

LT=c,/4.965 114 23...

Electromagnetic constants

Elementary charge

Magnetic flux quanttmr, h/2eJosephson requency-voltagequotientQuantizedHall conductanceQuantized Hall resistance,

hle2=~c/2aBohr magneton, e)1/2m,

in electron volts, uB,/{e)in hertz, pelhin wavenumbers,ur,/hcin kelvins, pe/k

Nuclear magneton, eb/2m,in electron volts, pN/(e}in hertz, GIN/hin wavenumbers,pNlhcin kelvin& pNlk

Atomic constants

Fine-structure constant, we2/2hinverse fine-structure constant

Rydberg constant, m,ca2/2hin hertz, R,cin joules, R,hcin eV, R.Jcl(e}

Bohr radius, cr/4rrR,Hartree energy, e2145ce&,=2R~c

in eV, Ed(e)Quantum of circulation

Electron Constants

Massin atomic mass units

in electron volts, m,c?{e)Electron-muon mass ratio

(T

Cl

c2

b

e

eh

Qo

2elhe2/h

R,

PB

PN

aa-’

R,

a0

Eh

h/2m,

5.670 51(19) 10.” W m’ZK’

3.741 774 9(22) 1@16 m20.014 387 69(12) mK

2.897 756(24) 10e3m K

1.602 177 33(49)2.417 988 36(72)2.067 834 61(61)4.835 976 7(14)3.874 046 14(7)25 812.805 6(12)

9.274 015 4(31)5.788 382 63(52)1.399 624 18(42)46.686 437(14)0.671 709 9(57)5.050 786 6(17)3.152 451 66(28)

7.622 591 4(23)2.542 622 81(77)3.658 246(31)

7.297 353 08(33)137.035989 5(61)10 973 731.534(13)3.289 841 949 9(39)2.179 874 l(13)13.605 698 l(40)0.529 177 249(24)4.359 748 2(26)27.211 396 l(81)3.636 948 07(33)

9.109 389 7(54)5.485 799 03(13)0.510 999 06(15)4.836 332 18(71)

lo-l9 clOI A J-’lo-IS WblOI Hz V“

1o-5sR

lo-” J T-’lo-’ eV T’10” Hz T’me’ T’K T’

lo-=’ J T-’lOmEV T’MHz T’lo-’ me’ T’1O-4 T’

lo-’

m-’

10” Hzlo-l8 JeVlo”’ mlo-l8 JeV10e4m* sec.’

lO-” kg1o-4uMeV10“

Page 8: Unit Table

8/2/2019 Unit Table

http://slidepdf.com/reader/full/unit-table 8/10

MOSKOWITZ 353

TABLE 6. (continued)

QWIltity SphOl Value SI Units

Electron-proton mass atio

Electron-deuteronmass ratioElectron-a-particle mass ratioSpecific chargeMolar massCompton wavelength, h/m,cClassica l radius, (~*a,,Thomson cross section, (8x/3)r,*Magnetic moment

in Bohr magnetonsin nuclear magnetons

Magnetic moment anomaly,

PJPB-g-factor, 2(l+u,)

Electron-muon magnetic moment ratioElectron-proton magnetic moment ratio

Muon Constants

Massin atomic mass unitsin electron volts, m,cV(e)

Muon-electron mass atioMolar massMagnetic moment

in Bohr magnetonsin nuclear magnetons

Magnetic moment anomaly,[yJ(eh/2mJ]- 1

g-factor, 2(1+&lMuon-proton magnetic moment ratio

Proton Constants

Massin atomic massunitsin electron volts, %c?(e)

Proton-electronmass ratioProton-muon mass atioSpecific charge

Molar massCompton wavelength, WqcMagnetic moment

in Bohr magnetonsin nuclear magnetons

Shieldedproton moment (H,O,

5.446 170 13(11)

2.724 437 07(6)1.370 933 54(3)-1.758 819 62(53)5.485 799 03(13)2.426 310 58(22)2.817 940 92(38)0.665 246 16(18)928.477 Ol(31)1.001 159 652 193(10)1838.282000(37)1.159 652 193(10)

2.002 319 304 386(20)

206.766 967(30)658.210 688 l(66)

1.883 532 7(11)0.113 428 913(17)105.658 389(34)206.768 262(30)1.134 289 13(17)4.490 451 4(15)4.841 970 97(71)8.890 598 l(13)1.165 923 O(84)

2.002 331 846(17)3.183 345 47(47)

1.672 623 l(10)1.007 276 470(12)938.272 31(28)1836.152701(37)8.880 244 4(13)9.578 830 9(29)

1.007 276 470(12)1.321 410 02(12)1.410 607 61(47)1.521 032 202(15)2.792 847 386(63)1.410 571 38(47)

1o-4

1o-4lo-”10” C kg-’low7 g moI’lo-‘* mlo-l5 mlo-% m*lo-= J T’

1o-3

lo-” kg

LeV

10e4 g mol.’10% J T’1o-3

1o-3

Wn kgU

MeV

10’ C kg-’

lo-’ kg mol“lo-” mlo-% J T-ilo-’

lo-% J T’

Page 9: Unit Table

8/2/2019 Unit Table

http://slidepdf.com/reader/full/unit-table 9/10

354 CONSTANTS AND CONVERSION FACTORS

TABLE 6. (continued)

QlKUltity SplhOl Value SI Units

spherical sample, 25°C)Diamagnetic shielding correction forprotons (H,O, spherical sample ,25”C),1 c$‘/).$Gyromagnetic ratio

uncorrected H,O, sphericalsample, 25°C)

Neutron Constants

massin atomic mass units

in electron volts, q+3(e)Neutron-electron mass ratio

Neutron-proton mass ratioMolar massCompton wavelength, h/qcMagnetic moment

in Bohr magnetonsin nuclear magnetons

Neutron-electron magnetic momentratioNeutron-proton magnetic moment ratio

Deuteron Constants

massin atomic mass unitsin electron volts, m&*/(e)

Deuteron-electronmass ratioDeuteron-proton mass ratioMolar massMagnetic moment

in Bohr magnetonsin nuclear magnetons

Deuteron-electronmagnetic momentENiO

Deuteron-proton magnetic momentratio

Conversion Factors and Units

Electron volt, (e/C)J= e] JAtomic mass unit (unified),

q=m(C’2)/12

Standardatmosphere

25.689(15) lo’6

26 752.212 8(81) 104set“ T’26 751.525 5(81) 104see-’T’

1.674 928 6(10)1.008 664 904(14)939.565 63(28)1838.683662(40)1.001 378 404(9)1.008 664 904(14)1.319 591 lO(12)0.966 237 07(40)1.041 875 63(25)1.913 042 75(45)1.040 668 82(25)

0.684 979 34(16)

3.343 586 O(20)2.013 553 214(24)1875.61339(57)

3670.483014(75)1.999 007 496(6)2.013 553 214(24)0.433 073 75(15)0.466 975 447 9(91)0.857 438 230(24)0.466 434 546 O(91)

0.307 012 203 5(51)

1.602 177 33(49) 10.“J1.660 540 2(10) 10-n kg

101 325 Pa

10-n kgU

MeV

10e3 g mol.’10” mlo-% J T-’1o-3

10-’

10-n kg

U

MeV

10m3g motlo= J T-r10”

Page 10: Unit Table

8/2/2019 Unit Table

http://slidepdf.com/reader/full/unit-table 10/10

MOSKOWI’IZ 355

TABLE 6. (continued)

Quantity Symbol Value SI Units

Standardaccelerationof gravity

X-ray standards

Cu x-u& xu(cuKa,) 1.002 077 89(70) 10-l’ mh(CuKa,)=1537.400 xu

MO x-m& xu(MoKa,) 1.002 099 38(45) 1@13

h(MoKa,) = 707.831 xuA’: 5(wKa,)= 0.209 100 A A 1.000 014 81(92) l@‘Om

Lattice spacingof Si a 0.543 101 96(11) nm

(in vacuum, 22.5”C)a&=alJ8 d

Molar volume of Si, YmY&)0.192 015 540(40) nm12.058 817 9(89) cm3 mol.’

A4(Si)/p(Si)=NAa3/8

‘Values are the set of recommended values of fundamental physical constants resulting Erom the 1986 least-squares adjustment

[4] and recommended by CODATA, the Committee for Science and Technology of the International Council of Scientif ic Union.

Digits in parentheses indicate the standard deviation uncertainty in the last digits of the given value. (e) refers to the numerical

value only. The abbreviations for the units are: A=ampere; A=angstrom; C=coulomb; eV=electron-volt; F=farad; Hz=hertz;

J=joule; K=ke lvin; kg= kilogram; m=meter; nm= nanometer; mol= mole; N=newton; Pa=pascal; S=siemen; T=tesla; u=unified

mass unit; V=volt; W=watt; Wb=weber; Q=ohm.

Acknowledgments. This is contribution no. 9208 of the Institute for Rock Magnetism. Support for the IRM is provided by grants

fmm the Keck Foundation and the National Science Foundation.

REFERENCES

1. Anonymous, The Pressure, Strain, and

Force Handbook, vol. 27, Omega

Engineering Inc.,1991.

2. Brown, W.F., Jr., Tutorial paper on

dimensions and units, IEEE Transac-

tions on Magnetics, 20, 112-l 17, 1984.

3. Calas, G., and F.C. Hawthorne,

Introduction to spectroscopic methods,

Reviews in Mineralogy, 18, l-10, 1988.

4. Cohen, E. R., and B.N. Taylo r, The

fundamental physical constants, Physi cs

Today, 44, part 2, 9-13, 1991.

5. Payne, M.A., SI and Gaussian CGS

units, conversions and equations for use

in geomagnetism, Phys. Earth Planet.

Inr., 26, 10-16, 1981a.

6. Payne, M.A., Errata, Phys. Earth

Planet. Int., 27, 233, 1981b.

7. Shive, P.N., Suggestions for the use of

SI in magnetism, EOS Trans. AGU, 67,

25, 1986.

8. Smith, D.H., Electr ical and Magnetic

Units in the Systeme International,

Contemp. Phys., 11, 287-300, 1970.

9. Vigoureux, P., Units and Standards ofElectromagnetism, 81 pp., Wykeham

Publications LTD, London, 1971.

10. Weasf R., CRC Handbook of Chemis-

try and Physics, 54th edition, CRC

Press, Cleveland, Ohio, 1974.