unit1 maths

Upload: kisha-raveendran

Post on 05-Apr-2018

276 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/31/2019 UNIT1 maths

    1/26

    1

    UNIT-I

    ORDINARY DIFFERENTIAL EQUATIONS

    Higher order differential equations with constant coefficients Method of variation ofparameters Cauchys and Legendres linear equations Simultaneous first order

    linear equations with constant coefficients.

    The study of a differential equation in applied mathematics consists of three phases.

    (i) Formation of differential equation from the given physical situation, calledmodeling.

    (ii) Solutions of this differential equation, evaluating the arbitrary constantsfrom the given conditions, and

    (iii) Physical interpretation of the solution.

    HIGHER ORDER LINEAR DIFFERENTIAL EQUATIONS WITH

    CONSTANT COEFFICIENTS.

    General form of a linear differential equation of the nth order with constant

    coefficients is

    XyKdx

    ydK

    dx

    ydK

    dx

    yd

    nn

    n

    n

    n

    n

    n

    =++++

    ..............2

    2

    21

    1

    1

    .. (1)

    Where KnK

    K ...............,.........21 , are constants.

    The symbol D stands for the operation of differential

    (i.e.,) Dy = ,dx

    dysimilarly D ...,,

    3

    33

    2

    22 etc

    dx

    ydyD

    dx

    dy

    y

    ==

    The equation (1) above can be written in the symbolic form

    (D XyKDK nnn

    =+++ )..........11 i.e., f(D)y = X

    Where f (D) = D nnn

    KDK+++

    ...........

    1

    1

    Note

    1. = XdxXD1

    2. dxXeeXaD

    axax

    =

    1

    3. dxXeeXaD

    axax

    =+

    1

    (i) The general form of the differential equation of second order is

  • 7/31/2019 UNIT1 maths

    2/26

    2

    (1)

    Where P and Q are constants and R is a function of x or constant.

    (ii)Differential operators:

    The symbol D stands for the operation of differential

    (i.e.,) Dy = ,dx

    dyD

    2

    22

    dx

    ydy =

    D

    1Stands for the operation of integration

    2

    1

    DStands for the operation of integration twice.

    (1)can be written in the operator formRQyPDyyD =++

    2 (Or) ( RyQPDD =++ )2

    (iv) Complete solution = Complementary function + Particular Integral

    PROBLEMS

    1. Solve (D 0)652 =+ yD Solution: Given (D 0)65

    2=+ yD

    The auxiliary equation is m `0652 =+ m

    i.e., m = 2,3xx BeAeFC 32. +=

    The general solution is given byxx BeAey 32 +=

    2. Solve 0362

    2

    =+ ydx

    dy

    dx

    yd

    Solution: Given ( ) 0362 =+ yDD The auxiliary equation is 01362 =+ mm

    i.e.,2

    52366 =m

    = i23

    Hence the solution is )2sin2cos(3 xBxAey x +=

    3. Solve (D 0)12 =+ given y(0) =0, y(0) = 1

    RQydx

    dyP

    dx

    yd=++

    2

    2

  • 7/31/2019 UNIT1 maths

    3/26

    3

    Solution: Given (D 0)12 =+

    A.E is 012 =+m

    M = i

    Y = A cosx + B sinx

    Y(x) = A cosx + B sinx

    Y(0) = A =0

    Y(0) =B =1

    A = 0, B = 1

    i.e., y = (0) cosx + sinx

    y = sinx

    3. Solve xeyDD 22 )134( =+ Solution: Given xeyDD 22 )134( =+

    The auxiliary equation is 01342 =+ mm

    im 322

    3642

    52164 ===

    ( )xBxAeFC x 3sin3cos. 2 +=

    P.I. = xeDD

    2

    2 134

    1

    +

    = xe2

    1384

    1

    +

    = xe2

    9

    1

    y = C.F +P.I.

    y = ( )xBxAe x 3sin3cos2 + + xe29

    1

    5. Find the Particular integral of y- 3y + 2y = exx e2

    Solution: Given y- 3y + 2y = e xx e2

    xx eeyDD 22 )23( =+

    P.Ix

    eDD 23

    121

    +=

    = xe431

    1

    +

    = xe0

    1

    =x xeD 32

    1

    = x xe32

    1

    =x

    xe

  • 7/31/2019 UNIT1 maths

    4/26

    4

    P.I ( )xeDD

    2

    22 23

    1

    +=

    = - xe2

    264

    1

    +

    = - x xeD2

    32

    1

    = - x xe2

    34

    1

    = - xe x2

    P.I. = P.I 21 .IP+

    = xxe + (- xe x2 )

    = -x( xe + ex2 )

    6. Solve xydx

    dy

    dx

    ydcosh254

    2

    2

    =+

    Solution: Given xydx

    dy

    dx

    ydcosh254

    2

    2

    =+

    The A.E is m 0542 =+ m

    m = i=

    22

    20164

    C.F = e ( )xBxAx

    sincos

    2+

    P.I = ( )

    +

    ++=

    ++

    254

    12cosh2

    54

    122

    xx ee

    DDx

    DD

    = xx eDD

    eDD

    ++

    +

    ++

    54

    1

    54

    122

    =541541 +

    ++

    xx ee

    =210

    xx ee

    IPFCy .. +=

    = e ( )xBxAx sincos2 + -210

    xx ee

    Problems based on P.I = ( ) axDf

    oraxDf

    cos)(

    1sin

    )(

    1

    Replace D 22 aby

    7. Solve xy

    dx

    dy

    dx

    yd3sin23

    2

    2

    =++

  • 7/31/2019 UNIT1 maths

    5/26

    5

    Solution: Given xydx

    dy

    dx

    yd3sin23

    2

    2

    =++

    The A.E is m 0232 =++ m

    (m+1)(m+2) = 0

    M = -1, m = -2

    C.F = Ae xx Be 2

    +

    P.I = xDD

    3sin23

    12

    ++

    = xD

    3sin233

    12

    ++(Replace D 22 aby )

    = xD

    D

    Dx

    D3sin

    )73(

    )73(

    73

    13sin

    73

    1

    +

    +

    =

    = xD

    D3sin

    )7()3(

    7322

    +

    = xD

    D3sin

    499

    732

    +

    = xD

    3sin49)3(9

    732

    +

    = xD

    3sin130

    73

    +

    = ( )xxD 3sin7)3(sin3130

    1+

    = ( )xx 3sin73cos9130

    1+

    IPFCy .. +=

    Y = Ae xx Be 2

    + ( )xx 3sin73cos9130

    1+

    8. Find the P.I of (D xsin)12 =+

    Solution: Given (D xsin)12

    =+

    P.I. = xD

    sin1

    12+

    = xsin11

    1

    +

    = x xD

    sin2

    1

    = xD

    xsin

    1

    2

    = xdxx

    sin2

    P.I =-

    2

    cosxx

  • 7/31/2019 UNIT1 maths

    6/26

    6

    9. Find the particular integral of (D xxy sin2sin)12 =+

    Solution: Given (D xxy sin2sin)12

    =+

    =- ( )xx cos3cos2

    1

    = - xx cos2

    13cos

    2

    1+

    P.I1 =

    +x

    D3cos

    2

    1

    1

    12

    = x3cos19

    1

    2

    1

    +

    = x3cos16

    1

    P.I 2 =

    +

    xD

    cos2

    1

    1

    12

    = xcos11

    1

    2

    1

    +

    = xD

    x cos2

    1

    2

    1

    = xdxx

    cos4

    = xx

    sin

    4

    P.I = x3cos16

    1+ xx

    sin4

    Problems based on R.H.S = e axeoraxaxax cos)(cos ++

    10. Solve (D xeyDx 2cos)44 22 +=+

    Solution: Given (D xeyD x 2cos)44 22 +=+

    The Auxiliary equation is m 0442 =+ m

    (m 2 ) 2 = 0

    m = 2 ,2C.F = (Ax +B)e x2

    P.I 1 =xe

    DD

    2

    2 44

    1

    +

    = xe2

    484

    1

    +

    = xe2

    0

    1

    = x xeD

    2

    42

    1

    = x xe2

    01

  • 7/31/2019 UNIT1 maths

    7/26

    7

    = x xe22

    2

    1

    P.I2

    =x

    DD2cos

    44

    12

    +

    = xD

    2cos442

    12

    +

    = xD

    2cos4

    1

    =

    x

    D2cos

    1

    4

    1

    =8

    2sin

    2

    2sin

    4

    1 xx=

    IPFCy .. +=

    y = (Ax +B)e x2

    8

    2sin x

    Problems based on R.H.S = x

    Note: The following are important

    .......1)1( 321 ++=+ xxxx .................1)1( 321 ++++= xxxx ..............4321)1( 322 ++=+ xxxx ..............4321)1( 322 ++++= xxxx

    11. Find the Particular Integral of (D xy =+ )12

    Solution: Given (D xy =+ )12

    A.E is (m 0)12 =

    m = 1

    C.F = Ae xx Be+

    P.I = xD 1

    12

    = xD21

    1

    = [ ] xD 121 = ( ) xDD .........1 22 +++ = [ ]...........000 +++ x = - x

    12. Solve: ( ) 3234 2 xyDDD =+

  • 7/31/2019 UNIT1 maths

    8/26

    8

    Solution: Given 3234 2 xyDDD =+

    The A.E is m 02 234 =+ mm

    m 0)12( 22 =+ mm

    0)1( 22 =mm

    m = 0,0 , m = 1,1C.F = (A + Bx)e xx eDxC )(0 ++

    P.I = 3234 2

    1x

    DDD +

    =( )[ ]

    3

    22 21

    1x

    DDD +

    = ( )[ ] 3122

    211

    xDDD

    +

    = ( ) ( ) ( )[ ]...............222113

    22

    222 ++ DDDDDD

    D

    = [ ] 34322

    43211

    xDDDDD

    ++++

    = [ ]241861 232

    +++ xxxD

    =

    +++ x

    xxx

    D24

    2

    18

    3

    6

    4

    1 334

    =

    2

    24

    6

    18

    12

    6

    20

    2345xxxx

    +++

    = 2345

    123220

    xxxx

    +++

    IPFCy .. +=

    y = (A + Bx)e xx eDxC )(0 ++ + 2345

    123220

    xxxx

    +++

    Problems based on R.H.S = xeax

    P.I = xaDf

    exeDf

    axax

    )(1

    )(1

    +=

    13. Obtain the particular integral of ( xeyDDx 2cos)522 =+

    Solution: Given ( xeyDD x 2cos)522 =+

    P.I = xeDD

    x 2cos52

    12

    +

    =

    ( ) ( )( )1Re2cos

    5121

    1

    2

    =

    +++

    placeDbyDxDD

    ex

  • 7/31/2019 UNIT1 maths

    9/26

    9

    = xDDD

    ex 2cos

    52212

    12

    +++

    = xD

    ex 2cos4

    12

    +

    = xex 2cos44

    1+

    = xD

    xex 2cos2

    1

    = xdxxex

    2cos2

    P.I =4

    2sin xxex

    14. Solve ( xeyD

    x

    sin)2

    22 =+

    Solution: Given ( xeyD x sin)2 22 =+

    A.E is (m 0)12

    =+

    m = -2, -2

    C.F. = (Ax + B)ex2

    P.I =( )

    xeD

    x sin2

    1 22

    +

    = e( )

    xD

    x sin22

    12

    2

    +

    = e xD

    x sin12

    2

    = e xx sin

    1

    12

    = -e xx sin2

    IPFCy .. +=

    y = (Ax + B)e x2 - e xx sin2

    Problems based on f(x) = x axxorax nn cos)(sin

    To find P.I when f(x) = x axxorax nn cos)(sin

    P.I = axxoraxxDf

    nn cos)(sin)(

    1

    VDfdD

    dV

    DfxxV

    Df

    +=

    )(

    1

    )(

    1)(

    )(

    1

    i.e.,( )

    VDfDf

    DfV

    DfxxV

    Df

    =

    )(

    1

    )()(

    1)(

    )(

    1 '

    [ ]V

    DfDfV

    DfxxV

    Df 2

    '

    )()(

    )(1

    )(1 =

  • 7/31/2019 UNIT1 maths

    10/26

    10

    15. Solve (xx xexeyDD 32 sin)34 +=++

    Solution: The auxiliary equation is m 0342 =++ m

    m= -1,-3

    C.F =A xx Bee 3

    +

    P.I ( )xeDD

    x sin)34(

    121

    ++=

    =( ) ( )[ ]

    xDD

    sin3141

    12

    ++

    = e( )

    xDD

    x sin2

    12+

    = e( )

    xD

    Dx sin41

    212

    +

    +

    = [ ]xxe x

    sincos25

    +

    P.I( )

    xDD

    e x

    3)3(4)3

    12

    3

    2++++

    =

    = e( )

    xDD

    x

    2410

    12

    3

    ++

    = xDDe x

    123

    24

    101

    24

    ++

    = xDex

    12

    5124

    3

    =

    12

    5

    24

    3

    xe x

    General solution is IPFCy .. +=

    y = Axx Bee 3 + [ ]xx

    e xsincos2

    5+

    +

    12

    5

    24

    3

    xe x

    16 Solve xxydx

    dy

    dx

    yd cos22

    2

    =++

    Solution: A.E : m 0122 =++ m

    m = -1,-1

    C.F =xeBxA + )(

    P.I = )cos()1(

    12

    xxD +

    =( ) ( )

    ( )xDD

    Dx cos

    1

    1

    1

    )1(222

    +

    +

    +

  • 7/31/2019 UNIT1 maths

    11/26

    11

    =( ) ( )

    ( )xDDD

    x cos12

    1

    1

    22

    ++

    +

    =( )

    ( )xDD

    x cos121

    1

    1

    2

    ++

    +

    =2

    sin

    1

    2 x

    Dx

    +

    =2

    sin xx

    =1

    sin

    2

    sin

    +D

    xxx

    =( )

    1

    sin1

    2

    sin2

    D

    xDxx

    =

    2

    sincos

    2

    sin xxxx +

    The solution is y =xeBxA + )( +

    2

    sincos

    2

    sin xxxx +

    17. Solve ( ) xyD 22 sin1 =+ Solution: A.E : m 012 =+

    m = i

    C.F =A cosx +B sinx

    P.I = x

    D

    2

    2sin

    1

    1

    +

    =

    + 2

    2cos1

    1

    12

    x

    D

    =

    +

    +x

    De

    D

    x 2cos1

    1

    1

    1

    2

    12

    0

    2

    =

    + x2cos

    3

    11

    2

    1

    = x2cos6

    1

    2

    1+

    =y A cosx +B sinx + x2cos61

    21 +

    18. Solve ( ) xexxxydx

    yd++= 1sin

    2

    2

    Solution: A.E : m 012 =

    m = 1

    C.F = A xx Bee +

    P.I ( ) )(

    )(

    1

    )(

    )('

    )(

    11 V

    DfDf

    DfxxV

    Df

    ==

  • 7/31/2019 UNIT1 maths

    12/26

    12

    =( )

    ( )xDD

    Dx sin

    1

    1

    1

    222

    =2

    sin

    1

    22

    x

    D

    Dx

    =( )

    +

    12

    cos2

    2

    sin2D

    xxx

    =2

    cos

    2

    sin xxx

    P.I ( ) xexD

    2

    221

    1

    1+

    =

    =( )[ ]

    )1(11

    1 22

    xD

    ex ++

    = e

    ( ))1(

    2

    1 22

    xDD

    x+

    +

    =( )

    12

    932 23 xxxex +

    y = A xx Bee + +

    ( )12

    932 23 xxxex +

    19. Solve xxeydx

    yd x sin2

    2

    =

    Solution: A.E : m 012 =

    m = 1 C.F = A xx Bee +

    P.I =( )

    xxeD

    x sin1

    12

    = e( )[ ]

    ( )xxD

    x sin11

    12+

    = e( )

    ( )xxDD

    x sin2

    12+

    = e ( ) ( )

    +

    + xD

    D

    xDDx

    x

    sin12

    22

    sin2

    122

    sin ,sin xx = 1,122

    === putD

    = e( )

    ( )

    +

    x

    D

    Dx

    Dxx sin

    12

    22sin

    12

    12

    = e( )

    ( )( )

    ( )

    +

    +

    +

    144

    sin22sin

    41

    2122 DD

    xDx

    D

    Dxx

    Put D 12 =

    = e( ) ( )( )

    ++

    + x

    D

    DDx

    Dxx sin

    169

    4322sin

    5

    21

    2

  • 7/31/2019 UNIT1 maths

    13/26

    13

    = e [ ]

    +++

    x

    D

    DDxx

    xx sin169

    628cos2sin

    5 2

    2

    = e ( )( )

    ++

    x

    Dxx

    xx sin25

    214cos2sin

    5

    P.I = e ( ) ( )

    ++

    25

    cos2sin14cos2sin

    5

    xxxx

    xx

    Complete Solution is

    y = A xx Bee + +

    e ( )( )

    ++

    25

    cos2sin14cos2sin

    5

    xxxx

    xx

    METHOD OF VARIATION OF PARAMETERS

    This method is very useful in finding the general solution of the second orderequation.

    Xyadx

    dya

    dx

    yd=++ 212

    2

    [Where X is a function of x] .(1)

    The complementary function of (1)

    C.F = c 2211 fcf +

    Where c 21 ,c are constants and f 21andf are functions of x

    Then P.I = Pf 21 Qf+

    P =

    dxffff

    Xf

    2

    '

    1

    1

    21

    2

    Q =

    dxffff

    Xf

    2

    '

    1

    '

    21

    1

    IPfcfcy .2211 ++=

    1. Solve xyD 2sec42 =+

    Solution: The A.E is m 042 =+

    m = i2

    C.F = C xCx 2sin2cos 21 +

    f x2cos1= f x2sin2=

    f x2sin2'

    1 = f x2cos2'

    2=

    f xxfff 2sin22cos2 222'

    1

    '

    21 +=

    = 2 xx 2sin2cos22

    +

    = 2 [ ]1 = 2

    P =

    dxffff

    Xf

    2

    '

    1

    1

    21

    2

  • 7/31/2019 UNIT1 maths

    14/26

    14

    = dxxx

    2

    2sec2sin

    = dxx

    x2cos

    12sin

    2

    1

    =

    dxx

    x

    2cos

    2sin2

    4

    1

    = )2log(cos4

    1x

    Q =

    dxffff

    Xf

    2

    '

    1

    '

    21

    1

    = dxxx

    2

    2sec2cos

    = dxx

    x2cos

    12cos

    2

    1

    = dx21

    = x2

    1

    P.I = Pf 21 Qf+

    = )2log(cos4

    1x (cos2x) + x

    2

    1sin2x

    2. Solve by the method of variation of parameters xxy

    dx

    ydsin

    2

    2

    =+

    Solution: The A.E is m 012 =+

    m = i

    C.F = C xCx sincos 21 +

    Here xf cos1 = xf sin2 =

    xf sin'1 = xf cos'

    2 =

    1sincos 222'

    1

    '

    21 =+= xxffff

    P =

    dx

    ffff

    Xf

    2

    '

    1

    1

    21

    2

    = dxxxx

    1)sin(sin

    = xdxx2sin

    =( )

    dxx

    x2

    2cos1

    = ( ) dxxxx 2cos21

    = + xdxxxdx 2cos2

    1

    2

    1

  • 7/31/2019 UNIT1 maths

    15/26

    15

    =

    +

    4

    2cos)1(

    2

    sin

    2

    1

    22

    1 2 xxx

    x

    = xxxx

    2cos8

    12sin

    44

    2

    ++

    Q =

    dxffff

    Xf

    2

    '

    1

    '

    21

    1

    = dxxxx

    1

    )(sin)(cos

    = xdxxx cossin

    = dxx

    x2

    2sin

    = xdxx 2sin21

    =

    4

    2sin)1(

    2

    2cos

    2

    1 xxx

    = xxx

    2sin8

    12cos

    4+

    P.I = Pf 21 Qf+

    = xxxx

    xxxxx

    sin2sin8

    12cos

    4cos2cos

    8

    12sin

    44

    2

    +

    +

    ++

    4. Solve (D xeyD 22 )44 =+ by the method of variation of parameters.Solution: The A.E is 0442 =+ mm

    ( ) 02 2 =m m = 2,2

    C.F = ( ) xeBAx 2+

    = xx BeAxe 22 + xxef

    2

    1 = xef

    2

    2 = xx exef 22'1 2 += ,

    xef 2'2 2=

    ( ) ( )xxxx

    exeeexffff22222'

    12

    '

    21 22 +=

    = 2x ( ) ( ) ( )222222 2 xxx eexe

    = ( ) [ ]12222 xxe x

    = ( )22xe = xe4

    P=

    dxffff

    Xf

    2

    '

    1

    1

    21

    2

    =

    dx

    e

    ee

    x

    xx

    4

    22

  • 7/31/2019 UNIT1 maths

    16/26

    16

    = xdx =

    Q =

    dxffff

    Xf

    2

    '

    1

    '

    21

    1

    = dxeexex

    xx

    4

    22

    = xdx

    =2

    2x

    P.I = xxx ex

    ex

    ex 22

    22

    22

    22=

    y = C.F + P.I

    = (Ax +B) ex2

    +x

    ex 2

    2

    2

    5. Use the method of variation of parameters to solve ( ) xyD sec12 =+ Solution: Given xyD sec1

    2=+

    The A.E is 012 =+m

    m = i

    C.F = xcxc sincos 21 +

    = 2211 fcfc +

    xfxf sin,cos 21 ==

    xfxf cos,sin '2

    '

    1=

    1sincos22

    2

    '

    1

    '

    21 =+= xxffff

    P=

    dxffff

    Xf

    2

    '

    1

    1

    21

    2

    = dxxx

    1secsin

    = dxxx

    cos

    sin

    =

    xdxtan

    = log (cos x)

    Q =

    dxffff

    Xf

    2

    '

    1

    '

    21

    1

    = dxxx

    1seccos

    = dx = x

    P.I = 21 QfPf +

    = xxxx sincos)log(cos + y = xcxc sincos 21 + + xxxx sincos)log(cos +

  • 7/31/2019 UNIT1 maths

    17/26

    17

    6. Solve axyaD tan22 =+ by the method of variation of parameters.Solution: Given ( ) axyaD tan22 =+

    The A.E is 022 =+ am

    aim = C.F = axcaxc sincos 21 +

    axfaxf sin,cos 21 ==

    axafxaf cos,sin '2'

    1 ==

    )sin(sincoscos'

    12

    '

    21 axaaxaxaxaffff =

    = axaaxa 22 sincos +

    = )sin(cos22 axaxa +

    = a

    P.I = 21 QfPf +

    P=

    dxffff

    Xf

    2

    '

    1

    1

    21

    2

    = dxa

    axax

    tansin

    = dxaxax

    a cos

    sin12

    =

    dxax

    ax

    a cos

    cos112

    = ( )

    dxaxaxa

    cossec1

    = ( )

    +

    a

    axaxax

    aa

    sintanseclog

    11

    = ( )[ ]axaxaxa

    sintanseclog12

    +

    = ( )[ ]axaxaxa

    tanseclogsin1

    2+

    Q = dxffffXf

    2'

    1'

    21

    1

    = dxaaxax tancos

    = axdxa sin1

    = axa

    cos1

    2

    21. QfPfIP +=

    = ( )[ ] [ ]axaxa

    axaxaxaxa

    cossin1

    tanseclogsincos1

    22

    +

  • 7/31/2019 UNIT1 maths

    18/26

    18

    = ( )[ ]axaxaxa

    tanseclogcos1

    2+

    IPFCy .. +=

    = axcaxc sincos 21 + ( )[ ]axaxax

    a

    tanseclogcos1

    2+

    7. Solve xydx

    ydtan

    2

    2

    =+ by the method of variation of parameters.

    Solution: The A.E is 012

    =+m im =

    C.F = xcxc sincos 21 +

    Here xfxf sin,cos 21 ==

    xfxf cos,sin '2'

    1 ==

    1sincos 22'12'

    21 =+= xxffff

    P=

    dxffff

    Xf

    2

    '

    1

    1

    21

    2

    = dxxx

    1

    tansin

    = dxxx

    cos

    sin 2

    = dxx

    x

    cos

    cos1 2

    = ( )dxxx

    cossec

    = xxx sin)tanlog(sec ++

    Q =

    dxffff

    Xf

    2

    '

    1

    '

    21

    1

    = dxxx

    1tancos

    = dxsin= xcos

    21. QfPfIP +=

    = )tanlog(seccos xxx + IPFCy .. +=

    = xcxc sincos 21 + )tanlog(seccos xxx +

    8. Solve by method of variation of parameters 144 22

    '''+=+ xy

    xy

    xy

    Solution: Given 144 2

    2

    '''+=+ xy

    xyy

    i.e., 24'''2 44 xxyxyyx +=+

    i.e.,2422

    44 xxyxDDx +=+ .(1)Put x = ze

  • 7/31/2019 UNIT1 maths

    19/26

    19

    Logx = logze

    = z

    So that XD = D '

    1''2= DDDx

    (1) ( )[ ] ( ) ( )24'''

    441zz

    eeyDDD +=+ z

    eeyDD z22 4'' 45 +=+

    A.E is 0452 =+ mm

    ( )( ) 014 = mm 4,1=m

    zz ececFC 24

    1. +=

    Here zz efef == 24

    1 ,zz efef == '2

    4'

    1 ,zzz eeeffff 555'12

    '

    21 34 ==

    21. QfPfIP +=

    P=

    dxffff

    Xf

    2

    '

    1

    1

    21

    2

    =[ ]

    + dx

    e

    eeez

    zzz

    5

    24

    3

    = +

    dxe

    eez

    zz

    5

    35

    3

    = [ ]dze z

    +2

    1

    3

    1

    =

    +

    23

    1 2zez

    =zez 2

    6

    1

    3

    1

    Q =

    dzffff

    Zf

    2

    '

    1

    '

    21

    1

    =( )

    +dz

    e

    eeez

    zzz

    5

    344

    3

    = + dzeee

    z

    zz

    5

    68

    31

    = ( ) + dzeezz3

    3

    1

    =

    +

    zz

    ee

    33

    1 3

    = zz ee3

    1

    9

    1 3

    zzzzz eeeeezIP

    +

    =

    3

    1

    9

    1

    6

    1

    3

    1. 342

  • 7/31/2019 UNIT1 maths

    20/26

    20

    = zzzz eeeze 2424

    3

    1

    9

    1

    6

    1

    3

    1

    IPFCy .. +=

    =zz

    ecec 24

    1 + +zzzz

    eeeze2424

    3

    1

    9

    1

    6

    1

    3

    1

    = ( ) ( ) ( )3

    1

    9

    1

    6

    1

    3

    1)(

    424

    2

    4

    1 ++zzzzz eeezecec ( )2ze

    = ( ) ( )29

    log3

    244

    2

    4

    1

    xxx

    xecec zz ++

    DIFFERENTIAL EQUATIONS FOR THE VARIABLE COEFFICIENTS

    (CAUCHYS HOMOGENEOUS LINEAR EQUATION)

    Consider homogeneous linear differential equation as:

    )1(............................1

    11

    1 Xyadx

    ydxa

    dx

    yda nx

    nn

    n

    nn

    =+++

    (Here as are constants and X be a function of X) is called Cauchys

    homogeneous linear equation.

    )(.............. 011

    1

    1 xfyadx

    dyxa

    dx

    yda

    dx

    ydxa

    n

    n

    nn

    nn

    n =++++

    is the homogeneous linear equation with variable coefficients. It is also known

    as Eulers equation.

    Equation (1) can be transformed into a linear equation of constant Coefficients

    by the transformation.

    xzorex z log)(, ==

    Then

    dz

    dy

    xdx

    dz

    dz

    dy

    dx

    dyDy

    1===

    ==dz

    d

    dx

    dD ,

    ===dzdxD

    dxdx

    Similarly

    =

    =

    dz

    dy

    xdx

    d

    dx

    dy

    dx

    d

    dx

    yd 12

    2

    =dx

    dz

    dz

    dy

    dz

    d

    xdz

    dy

    xdz

    dy

    dx

    d

    xdz

    dy

    x

    +=

    +

    111122

    2

    2

    222

    2 11

    dz

    yd

    dz

    dy

    xdx

    yd+=

    dzdy

    dzyd

    dxydx =

    2

    2

    2

    2

    2

  • 7/31/2019 UNIT1 maths

    21/26

    21

    ( )1222 == Dx Similarly,

    ( )( )2133 = Dx

    ( )( )( )32144 = Dx and soon.

    =xD

    ( )122 = Dx

    ( )( )2133 = Dx

    and so on.

    1. Solve )sin(log42

    22 xy

    dx

    dyx

    dx

    ydx =++

    Solution: Consider the transformation

    xzorex z log)(, ==

    =xD

    ( )122 = Dx

    ( ) )sin(log4122 xyxDDx =++ ( ) ( )zy sin412 =+

    R.H.S = 0 : ( ) 012 =+ y

    A.E : imm ==+ ,012

    C.F = A cosz + B sinz

    C.F = A cos (log x) +B sin (log x)

    P.I = ( )zsin41

    12+

    = zzzz

    cos22

    cos4 =

    P.I = )cos(loglog2 xx

    Complete solution is:y = A cos (log x) +B sin (log x) )cos(loglog2 xx

    y = ( ) )cos(loglog2)cos(loglog2 xxxxA

    2. Solve xxydx

    dyx

    dx

    ydx log24

    2

    22

    =++

    Solution: Given ( ) xxyxDDx log2422 =++ (1)Consider: xzorex z log)(, ==

    =xD

    ( )122

    = Dx (1): ( )( ) zey z=++ 241

  • 7/31/2019 UNIT1 maths

    22/26

    22

    zzey =++ 232

    A.E : 0232 =++ mm

    M = - 2, -1

    C.F =12 loglog2

    +=+ xxzz BeAeBeAe

    C.F =xBA +

    2

    P.I =( )

    ( )zez23

    12

    ++

    =e( ) ( )

    zz

    2131

    12

    ++++

    =( )

    zez

    65

    12

    ++

    = z

    ez1

    2

    6

    5

    16

    ++

    =

    =

    6

    5

    66

    51

    6z

    ez

    e zz

    =

    6

    5log

    6

    log

    xe x

    =

    6

    5log

    6x

    x

    Complete solution is y = C.F +P.I

    =x

    B

    x

    A+2 +

    6

    5log

    6x

    x

    3. Solve ( giventhatxyxDDx ,)43( 222 =+ y(1) = 1 and y(1) = 0

    Solution: Given222 43 xyxDDx =+ (1)

    Take xzorex z log)(, ==

    =xD

    ( )122 = Dx

    (1): ( ) zey 22 44 =+ A.E : 2,2,0442 ==+ mmm

    C.F = ( ) ( ) 22 log xxBAeBzA z +=+

    P.I =( )

    ( )( )

    )1(22

    1

    2

    12

    22

    2+

    =

    zz ee

    = ( )11

    2

    2

    ze

    P.I =

    2

    22 ze z

  • 7/31/2019 UNIT1 maths

    23/26

    23

    =( )

    2

    log22 xx

    (2)

    Complete solution is : y = ( ) 2log xxBA + +( )

    2

    log22 xx

    Apply conditions: y(1) =1,y(1) = 0 in (2)A = 1, B = -2

    Complete solution is y = ( ) + 2log21 xx ( )

    2

    log22 xx

    EQUATION REDUCIBLE TO THE HOMOGENEOUS LINEAR

    FORM (LEGENDRE LINEAR EQUATION)

    It is of the form:

    ( ) ( ) )(...........1

    1

    11 xfyA

    dxydbxaA

    dxydbxa nn

    n

    nn

    n

    n =+++++

    ..(

    1)

    nAAA ....,..........,.........21 , are some constants

    It can be reduced to linear differential equation with constant

    Coefficients,

    by taking: )log()( bxazorebxa z +==+

    Consider givesdz

    dD

    dx

    d,, ==

    ( ) ( ) ( )ybDybxadzdy

    bdx

    dy

    bxa =+=+

    Similarly ( ) ( )ybyDbxa 1222 =+ (2)

    ( ) ( )( )21333 =+ byDbxa and so onSubstitute (2) in (1) gives: the linear differential equation of

    constant Coefficients.

    Solve ( ) ( ) xyyxyx 612'32''32 2 =++ Solution: This is Legendres linear equation:

    ( ) ( ) xyyxyx 612'32''32 2 =++ .(1)

    Put z = log (2x + 3) , 32 += xez

    ( ) 232 =+ Dx

    ( ) ( )dz

    dDx ==+ ,432 22

    2

    Put in (1) : ( ) 931264 2 = zey R.H.S =0

    A.E : 01264 2 = mm

    4

    573,

    4

    57321

    =

    += mm

    C.F = zmzm BeAe 21 + C.F = 21 )32()34(

    mmxBxA +++

  • 7/31/2019 UNIT1 maths

    24/26

    24

    P.I 1 =1264

    32

    ze= ( )32

    14

    3+ x

    P.I 2 =1264

    92

    ze

    =43

    129 =

    Solution is

    y = ( )( ) ( )

    +

    +++ 45734/573

    3232 xBxA ( )3214

    3+ x

    4

    3

    SIMULTANEOUS FIRST ORDER LINEAR EQUATIONS WITH

    CONSTANT COEFFICIENTS

    1. Solve the simultaneous equations, 023,232 2 =++=++ yx

    dt

    dyeyx

    dt

    dx t

    Solution: Given 023,232 2 =++=++ yxdt

    dyeyx

    dt

    dx t

    Using the operator D =dt

    d

    ( ) teyxD 2232 =++ (1)

    ( ) 023 =++ yDx .(2)Solving (1) and (2) eliminate (x) :

    ( ) )3....(..........654)2()2()1(3 22 teyDDD =++ A.E : 0542 =+ mm

    m = 1,-5

    C.F =tt BeAe 5+

    P.I =t

    t

    eDD

    e 22

    2

    7

    6

    54

    6=

    +

    y =tt BeAe 5+

    te2

    7

    6

    put in (1) : x = ( )[ ]yD 23

    1+

    x =ttt eBeAe 25

    7

    8++

    solution is :

    x = ttt eBeAe 25

    7

    8++

    y =tt BeAe 5+

    te2

    7

    6

    2. Solve giventhattxdt

    dyty

    dt

    dx,cos,sin =+=+ t=0, x = 1, y =0

    Solution: Dx + y = sin t ..(1)

    x + Dy = cost (2)Eliminate x : (1) (2)D ttyDy sinsin2 +=

  • 7/31/2019 UNIT1 maths

    25/26

    25

    )3.....(..........sin212 tyD =

    1,012 == mm

    C.F = Aett Be+

    P.I = tt

    D

    tsin

    11

    sin)2(

    1

    sin2

    2

    =

    =

    y = Aett Be+ + sint

    (2) : x = cost D(y)

    x = cost - ( )tBeAedt

    d tt sin++

    x = tBeAet tt coscos +

    x =tt BeAe +

    Now using the conditions given, we can find A and B

    BAxt +=== 11,0

    BAyt +=== 00,0

    B =2

    1, A =

    2

    1

    Solution is

    x = tee tt cosh2

    1

    2

    1=+

    y = tttee tt sinhsinsin2

    1

    2

    1=++

    3. Solve txdt

    dy

    tydt

    dx

    cos2,sin2 ==+

    Solution: Dx + 2y = -sin t ..(1)

    - 2x +Dy = cos t ...(2)

    (1) )(cossin24)2(2 2 tDtyDyD +=++

    ( ) tD sin342 =+ 2,042 imm ==+

    C.F = tBtA 2sin2cos +

    P.I = tt

    D

    tsin

    41

    sin3

    4

    sin32

    =+

    =

    +

    y = tBtA 2sin2cos + - sin t

    (2) : x = [ ]tDy cos2

    1

    x = ( )

    + tttBtA

    dt

    dcossin2sin2cos

    2

    1

    x = A cos2t +Bsin2t cost

    Solution is :

    x = A cos2t +Bsin2t cost

    y = tBtA 2sin2cos + - sin t

  • 7/31/2019 UNIT1 maths

    26/26

    26

    4. Solve txdt

    dy

    dt

    dxty

    dt

    dy

    dt

    dx2sin2,2cos2 =+=+

    Solution: Dx + (-D +2)y = cos 2t ..(1)

    (D 2)x +Dy = sin 2t (2)

    Eliminating y from (1) and (2)

    ( ) ttxDD 2cos2sin2222

    +=+

    R.H.S = 0 0222

    =+ mm m = i1

    C.F = ( )tBtAe t sincos +

    P.I1 =( )

    D

    t

    DD

    t

    +=

    +

    1

    2sin

    22

    2sin22

    =( )

    41

    )2(sin2sin2sin

    1

    12

    +

    =

    tDtt

    D

    D

    =

    5

    2cos22sin tt

    P.I 2 = ( )tDD

    2cos22

    12

    +

    =( )

    10

    2sin22cos tt+

    x = ++ )sincos( tBtAe t 5

    2cos22sin tt ( )

    10

    2sin22cos tt+

    (1) +(2) ttxydt

    dx2sin2cos222 +=+

    2y = cos2t +sin 2t + 2x -dt

    dx2

    y =

    ++

    dt

    dxxtt 222sin2cos

    2

    1(3)

    Substitute x in (3)

    y = ( )2

    2sinsincos

    ttBtAe t

    Solution is :

    x = ++ )sincos( tBtAet

    5

    2cos22sin tt ( )

    10

    2sin22cos tt+

    y = ( )2

    2sinsincos

    ttBtAe t