universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfjohn doyle john...

241
Universals and fundamentals Network architecture? Complexity? Robustness? Lots of appealing ideas, few fundamentals Can we change this? Theory: Fundamental laws, constraints, tradeoffs Illustrate with “simple” and familiar case studies whenever possible Start with Internet but expand our thinking outside networking John Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering Caltech

Upload: others

Post on 20-Aug-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

Universals and fundamentals

• Network architecture? Complexity? Robustness?

• Lots of appealing ideas, few fundamentals

• Can we change this?

• Theory: Fundamental laws, constraints, tradeoffs

• Illustrate with “simple” and familiar case studies

whenever possible

• Start with Internet but expand our thinking

outside networking

John Doyle

John G Braun ProfessorControl and Dynamical System, Electrical Engineering, BioEngineering

Caltech

Page 2: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

Laws, more laws, and architecture

• Conservation laws, constraints, hard limits– Important tradeoffs are between – Control, computation, communication, energy,

materials, measurement– Existing theory is fragmented and incompatible– Continuing progress on unifications

• Power laws, data, models, high variability

• Architecture= “constraints that deconstrain”– Expand “layering as optimization”– Achieving hard limits

Page 3: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

IEEE TRANS ON SYSTEMS, MAN, AND CYBERNETICS,

JULY 2010

Alderson and Doyle

Page 4: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

“Architecture”

• Most persistent, ubiquitous, and global features

of organization

• Constrains what is possible for good or bad

• Platform that enables (or prevents) innovation,

sustainability, etc,

• Existing architectures are unsustainable

• Internet, biology, energy, manufacturing,

transportation, water, food, waste, law, etc

• Theoretical foundation is fragmented,

incoherent, incomplete

Page 5: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

Component

System-level

Emergent Protocols

Architecture=

Constraints

Aim: a universal

taxonomy of complex

systems and theories

• Describe systems/components in terms of constraints on what is possible

• Decompose constraints into component, system-level, protocols, and emergent

• Not necessarily unique, but hopefully illuminating nonetheless

Page 6: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

Cat

abo

lism

Gen

es

Co-factors

Pro

teins

Pre

curs

ors

DNA

replication

Trans*

Carriers

Components and materials:

Energy, moieties

Systems requirements:

functional, efficient,

robust, evolvable

Hard constraints:

Thermo (Carnot)

Info (Shannon)

Control (Bode)

Compute (Turing)

Protocols

Constraints

Diverse

Diverse

Universal

Control

Page 7: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

In the real (vs virtual) world

What matters:

• Action

What doesn’t:

• Data

• Information

• Computation

• Learning

• Decision

• …

Page 8: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

Multiscale

Physics

Systems

Biology &

Medicine

Network

Centric,

Pervasive,

Embedded,

Ubiquitous

Core

theory

challenges

My

interests

Sustainability?

Page 9: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

Systems

Biology &

Medicine

Robustness? Fragility?

Human complexity?

Core

theory

challenges

Page 10: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

Robust Fragile

Human complexity

Metabolism

Regeneration & repair

Healing wound /infect

Obesity, diabetes

Cancer

AutoImmune/Inflame

Page 11: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

Robust Fragile

Mechanism?

Metabolism

Regeneration & repair

Healing wound /infect

Fat accumulation

Insulin resistance

Proliferation

Inflammation

Obesity, diabetes

Cancer

AutoImmune/Inflame

Fat accumulation

Insulin resistance

Proliferation

Inflammation

Page 12: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

Robust Fragile

What’s the difference?

Metabolism

Regeneration & repair

Healing wound /infect

Obesity, diabetes

Cancer

AutoImmune/Inflame

Accident or necessity?

Fat accumulation

Insulin resistance

Proliferation

Inflammation

Fluctuating

energy

Static

energy

Page 13: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

Robust Fragile

What’s the difference?

Metabolism

Regeneration & repair

Healing wound /infect

Obesity, diabetes

Cancer

AutoImmune/Inflame

Fat accumulation

Insulin resistance

Proliferation

Inflammation

Controlled

Dynamic

Uncontrolled

Chronic

Low mean

High variabilityHigh mean

Low variability

Page 14: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

Robust Fragile

Restoring robustness

Controlled

Dynamic

Uncontrolled

Chronic

Low mean

High variabilityHigh mean

Low variability

Page 15: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

Robust

Metabolism

Regeneration & repair

Healing wound /infect

Fat accumulation

Insulin resistance

Proliferation

Inflammation

Fluctuating

energy

Controlled

Dynamic

Low mean

High variability

Mechanism?

Page 16: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

Brain

Heart

Muscle

Liver

GI

Glu

Triglyc

Fat

Glyc

Glyc

FFA

Glycerol

Oxy

Lac/ph

Out

fast slow

high

low

pri

ori

tydynamics

Control?

• Energy• Inflammation• Coagulation

Evolved for large energy variation and

moderate trauma

Page 17: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

Robust Yet Fragile

Human complexity

Metabolism

Regeneration & repair

Microbe symbionts

Immune/inflammation

Neuro-endocrine

Complex societies

Advanced technologies

Risk “management”

Obesity, diabetes

Cancer

Parasites, infection

AutoImmune/Inflame

Addiction, psychosis…

Epidemics, war…

Catastrophes

Obfuscate, amplify,…

Accident or necessity?

Page 18: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

Robust Fragile Metabolism

Regeneration & repair

Healing wound /infect

Obesity, diabetes

Cancer

AutoImmune/Inflame Fat accumulation

Insulin resistance

Proliferation

Inflammation

• Fragility Hijacking, side effects, unintended…

• Of mechanisms evolved for robustness

• Complexity control, robust/fragile tradeoffs

• Math: New robust/fragile conservation laws

Accident or necessity?

Both

Page 19: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

SlowFast

Wasteful

Efficient

log

log

Example design space:

Speed versus efficiency

Faster

Ch

ea

pe

r

Design tradeoffs

Magic

Page 20: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

• Each focuses on one dimension

• Important tradeoffs are across these dimensions

• Need “clean slate” theories

• Progress is encouraging

• (Old mysteries are also being resolved)

wa

ste

ful

fragile?

slow

?

• Thermodynamics (Carnot)

• Communications (Shannon)

• Control (Bode)

• Computation (Turing)

Standard system theories are severely limited

Page 21: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

Robust

• Secure

• Scalable

• Evolvable

• Verifiable

• Maintainable

• Designable

• …

Fragile

• Not …

• Unverifiable

• Frozen

•…

Most dimensions are robustness

Collapse for visualization

fragile

Page 22: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

fragile

Page 23: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

wasteful

fragile

Conservation laws

waste time

waste

resources

• Important tradeoffs are across these dimensions

• Speed vs efficiency vs robustness vs …

• Robustness is most important for complexity

• Collapse efficiency dimensions

Page 24: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

Conservation laws

wasteful

fragile

?

?

?

?

Page 25: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

Bad

theory?

???

?

?

Bad

architectures?

wasteful

fragile

gap?

Page 26: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

Sharpen

hard bounds

Case studies

wasteful

fragile

Conservation

laws

Page 27: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

Architecture Good architectures

allow for effective

tradeoffs

wasteful

fragile

Page 28: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

Sharpen

hard bounds

bad

Find and

fix bugs

Complementary

approaches

wasteful

fragile

Case studies

Page 29: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

bad

Find and

fix bugs

wasteful

fragile

Page 30: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

Architectures

• Case studies

– Internet

– Bacterial biosphere

• Principles,

foundations

• Theory

Fun reading,

great picture

Page 31: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

Resources

Deconstrained

Applications

Deconstrained

Theoretical framework: Constraints that deconstrain

Enormous progress

• Layering as optimization

decomposition

• Optimal control

• Robust control

• Game theory

• Network coding

2 2min

arg max , ,

argmax ,s sv

R R dt

L R

x L v

x

v

x c x c

x v p p x c

p

Lake Arrowhead December

Page 32: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

Theoretical

framework: Constraints that

deconstrain

Enormous progress• Layering as optimization

• Optimal control

• Robust control

• Game theory

• Network coding

• Many robustness issues left unaddressed

• Secure, verifiable, manageable, maintainable, etc

• Architecture/policy, not part of control/dynamics

• How to expand the theory?

Page 33: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

RNADNA Protein

From Pathways

Metabolic

pathways

“Central dogma” Network

architecture?

To Layers?

Page 34: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

TCPIP

Physical

MAC

Switch

MAC MAC

Pt to Pt Pt to Pt

Diverse applications

Layered architectures

Page 35: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

Architecture resources• Networking

– John Day, Patterns in Network Architecture

– Content Centric (CCN, Xerox Parc, Jacobson)

– Publish-Subscribe (PSIRP)

– Lawyers: Zittrain, Choo

• Biology (many, but here’s a few)

– Gerhart and Kirschner (the big picture)

– De Duve (if you want to quickly learn biochemistry)

– Zimmer (if you want to learn about bacteria)

• Systems

– Donella Meadows

What follows is an attempt to paraphrase this work.

Page 36: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

great title

emphasis

added

Page 37: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

App AppApplications

Router

3.5 views of network architecture:

1. Information theory

2. Operating systems

– Programming languages

3. Control and dynamical systems

– Optimization, operations research

Page 38: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

App

Diverse hardware

Operating

systems

Diverse applications

3.5 views of network architecture:

1. Information theory

2. Operating systems

– Programming languages

3. Control and dynamical systems

– Optimization, operations research

Page 39: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

Operating systems

• OS allocates and shares diverse

resources among diverse applications

• “Strict layering” is crucial

• e.g. clearly separate

– Application name space

– Logical (virtual) name/address space

– Physical (name/) address space

• Name resolution within applications

• Name/address translation across layers

Page 40: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

Ring 0

Ring 1

Ring 2

Etc…

Start at

SW/HW

interface within a

single

processor

Functional

Register

Logic

Circuit

Physical

Page 41: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

Ring 0

Ring 1

Ring 2

Etc…

Start at

SW/HW

interface within a

single

processor

“Rings” are HW defined

levels of “protection”

Page 42: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

Ring 0

Ring 1

Ring 2

Etc…

Functional

Register

Logic

Circuit

Physical

Hardware

is also

layered

Page 43: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

LibLib

Router

App

DIF

Lib

App

IPC

DIF

DIF DIF

Lib LibDIF

Leading to a

picture like this

Want to explore the

fundamentals of layering

Page 44: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

kernel

Hardware

App1 App2

Minimal toy model

Ring 0

Ring 1

Page 45: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

App1 App2

local

libIPC= InterProcess

Communication

A function

call can be

• Local

• Library (system)

• IPC

user

IPC

Within a single processor

Page 46: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

kernel

Hardware

App1 App2

local

lib

user

IPC

Within a single processor

Ring 0

Ring 1

Page 47: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

kernel

HW

Xfer Ctrl Mgmt

Within-layer functions are

• Data transfer (fastest)

• Control (middle)

• Management (slowest)App1

lib

user

Page 48: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

The kernel layer functions are

• Data transfer (fastest time scale)

– Within memory (and memory hierarchies)

– Between devices and memory

– Between memory and computing elements

• Control (middle time scales)

– Scheduling/Multiplexing resources

– In time and space

• Management (slowest time scale)

– What resources are available?

– Where are they? kernel

HW

Xfer Ctrl Mgmt

Page 49: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

kernel

HW

App1

libXfer Ctrl Mgmt

Layers have cross-sublayers

… but it’s not

clear how to

draw them.

Page 50: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

Xfer Ctrl Mgmt

Layers have cross-sublayers

… but it’s not

clear how to

draw them.

Page 51: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

Other examples

Clothing

Lego

Money

Cell biology

Page 52: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

Shirt

Slacks

Jacket Tie

T-Shirt

Socks

ShoesCoatShorts

Soft layering

Page 53: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

Wool

Cotton

Nylon

Silk

Polyester

Rayon

Shirt

Slacks

Jacket Tie

T-Shirt

Socks

ShoesCoatShorts

Modularity?

Page 54: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

Wool Cotton NylonSilk Polyester Rayon

Cloth

Shirt

Slacks

Jacket Tie

T-Shirt

Socks

ShoesCoatShorts

Sewing

Page 55: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

Shirt

Slacks

Jacket Tie

T-Shirt

Socks

ShoesCoatShorts

Robust to variations in

• weather

• activity

• appearance requirements

• wear and tear

• cleaning

System constraints

Page 56: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

Cloth

Thread

Fiber

Garments

Xform

Xform

Xform

Universal strategies?

Prevents unraveling of lower layers

Page 57: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

Cloth

Thread

Fiber

Garments

Xform

Xform

Xform

Universal strategies?

Garments have

limited access to

threads and fibers

constraints on

cross-layer

interactions

quantization

for robustness

Even though

garments seem

analog/continuous

Prevents unraveling of lower layers

Page 58: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

Wool

Cotton

Nylon

Silk

Polyester

Rayon

Shirt

Slacks

Jacket Ti

e

T-Shirt

Socks

ShoesCoatBoxers

The

hourglass?

Dress Shirt Slacks Lingerie Coat Scarf Tie

Garments

Cloth

Sewing

Wool Cotton NylonSilk Polyester

Material technologies

Rayon

Horizontal networks of fibers

Ver

tica

l d

ecom

posi

tion

Horizontal networks of garments

Page 59: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

Dress Shirt Slacks Lingerie Coat Scarf Tie

Garments

Cloth

Sewing

Wool Cotton NylonSilk Polyester

Material technologies

Rayon

Thread

Fiber

Page 60: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

Cloth available

Cloth

Thread

Fiber

Garments

Sewing Xform Ctrl MgmtUniversal

functions?

Page 61: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

Xfer Ctrl Mgmt

• Transfer or transform (fastest)

– Domain specific (data, power, goods, etc)

– Depends on demand and supply

• Control (middle)

– Schedule/MUX resources in time and space

– Flow and error control

• Management (slowest)

– What resources are available?

– Where are they?

– Cost? Risk? etc

Universal functions?

Page 62: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

Xform Ctrl Mgmt

• Transfer or transform (fastest)

– Transform cloth to garments

– Depends on demand and supply

• Control (middle)

– Schedule/MUX resources in time and space

– Flow and error control

• Management (slowest)

– What resources are available?

– Where are they?

– Cost? Risk? etc

Sewing function?

Page 63: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

Xform Ctrl Mgmt

Domain

specific,

local

Network,

universal?

• Ctrl and Mgmt just aspects of a single

problem on different time scales :

• More complex as the “Net” part grows

• Will be focus/goal of a unified theory

• From physics to information to

computation to control

Xform

Xform

Xform

Page 64: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

Cloth

Thread

Fiber

Garments

Xform Ctrl Mgmt

Universal

functions?

Xform Ctrl Mgmt

Xform Ctrl Mgmt

Xform Ctrl Mgmt

Page 65: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

Cloth

Thread

Fiber

Garments

Xform Ctrl Mgmt

Networked,

universal,

layeredXform Ctrl Mgmt

Xform Ctrl Mgmt

Xform Ctrl Mgmt

Dom

ain

specific

Page 66: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

Cloth

Thread

Fiber

Garments

Xform Ctrl Mgmt

Networked,

universal,

layeredXform Ctrl Mgmt

Xform Ctrl Mgmt

Xform Ctrl Mgmt

Dem

an

d

Su

pp

ly

Page 67: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

Cloth

Thread

Fiber

Garments

Xform

Xform

Xform

Universal strategies?

Garments have

limited access to

threads and fibers

constraints on

cross-layer

interactions

quantization

for robustness

Even though

garments seem

analog/continuous

Prevents unraveling of lower layers

Page 68: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

Cloth

Thread

Fiber

Garments

Scalable

Sustainable?

Page 69: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

Fiber

Geographically diverse sources

Diverse fabric

Functionally diverse garments

General

purpose

machines Diverse Thread

Fragilities?

Page 70: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

Cloth

Thread

Fiber

Garments

Fragilities?

Page 71: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

kernel

HW

lib2

system

App

lib1

“user”

The process

is naturally

recursive

(“hypervisor”)

lib3

App

or lib

Ring 0

Ring 1

Ring 2

Page 72: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

kernel

HW

system

App1

“user”

The process

is naturally

recursiveXfer Ctrl Mgmt

Xfer Ctrl Mgmt

Page 73: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

Layers are

naturally

recursiveXfer Ctrl Mgmt

Xfer Ctrl Mgmt

Layers have sublayers

Page 74: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

kernel

HW

Driver2

lib

Driver2

system

App1

App3

lib

“user”

Driver1

Driver1

Design

choices

effect

performance/

robustness

Page 75: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

IPC facility

HW

App1 App2IPC

Xfe

r Mgmt/Ctrl

Xfe

r

IPC facilityXfe

r Mgmt/Ctrl

Xfe

r

kernel

system

“user”

Black box,

virtualization

Page 76: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

IPC facility

HW

App1 App2IPC

IPC facility

kernel

system

“user”

Black box,

virtualization

Page 77: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

All these

signals are

“virtual”

The only “real” signals are not shown

Page 78: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

kernel

HW

Lib1 Lib2

Driver3

lib

IPC

? ?

Mgmt, Control, DataXDriver3

Driver2

system

App1 App2

App3IPC

lib

“user”

Essential

tradeoffs

appear

even here

Higher

layer

De

sig

n c

ho

ice

Lower

layer

Page 79: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

Slow, Wasteful

Fast, Efficient

Log(w

aste

)

Higher

layer

Lower

layer

Page 80: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

Slow, Wasteful

Fast, Efficient

Expand dimensions

SlowFast

Wasteful

Efficient

log

log

Page 81: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

SlowFast

Wasteful

Efficient

log

log

Design

tradeoffs

Page 82: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

SlowFast

Wasteful

Efficient

log

log

SW

HW

DNA

RNA

protein

Tradeoffs are universal,

but the details are not.

Page 83: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

SlowFast

Wasteful

Efficient

log

log

DNA

Neurons

CMOS

Computational hardware substrates

Page 84: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

HARDHARDHARD for computers

for us

SlowFast

Wasteful

Efficient

log

log

DNA

Neurons

CMOS

Brains

Some tasks:

Page 85: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

SlowFast

Wasteful

Efficient

log

log

DNA

Neurons

CMOS

Brains

What makes this possible?

Network

architecture

Cells

Page 86: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

SlowFast

Wasteful

Efficient

log

log

DNA

RNA

ProteinNetwork

architecture

Cells

Page 87: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

Physiology

Organs

Cells

Layered architectures

Page 88: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

Physiology

Organs

Layered architectures

Cells

Page 89: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

Physiology

Organs

Meta-layers

Prediction

Goals

Actions

errors

ActionsCo

rte

x

Page 90: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

Which blue line is longer?

Page 91: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

Which blue line is longer?

Page 92: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

Which blue line is longer?

Page 93: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

Physiology

Organs

Meta-layers

Prediction

Goals

Actions

errors

ActionsFrom

Information to

“Outformation” to

“Actformation”?

Page 94: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

SlowFast

Wasteful

Efficient

log

log

Example design space:

Speed versus efficiency

Faster

Chea

per

Design tradeoffs

Magic?

Page 95: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

Meta-layers

Fast,

Limited

scope

Slow,

Broad

scope

Unfortunately, we’re not

sure how this all works.

Page 96: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

slow

narrow

fast

broad

scope

Fast,

Limited

Slow,

Broad

Faster,

Broader?

HARDHARDHARD for computers

for us

Page 97: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

HARDHARDHARD for computers

for us

SlowFast

Wasteful

Efficient

log

log

DNA

Neurons

CMOS

Brains

Some tasks:

Page 98: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

SlowFast

Wasteful

Efficient

log

log

gap

Page 99: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

SlowFast

Wasteful

Efficient

log

log

Page 100: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

SlowFast

Wasteful

Efficient

log

log

bad

Page 101: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

Existing hard limits have restrictive

assumptions and few dimensions

• Thermodynamics (Carnot)

• Communications (Shannon)

• Control (Bode)

• Computation (Turing)

New, promising unifications but need much more

Page 102: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

• Thermodynamics (Carnot)

• Communications (Shannon)

• Control (Bode)

• Computation (Turing)

• Each focuses on few dimensions

• Important tradeoffs are across these areas

• Speed vs efficiency vs robustness vs …

Page 103: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

SlowFast

Wasteful

Efficient

log

log

bad

Page 104: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

Log(w

aste

)

Log(fragility)

HW only(fragile, fast)

SW/HW mix(robust, slow)

bad

Page 105: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

Log(w

aste

)

Log(fragility)

Higher

layer

Lower

layer

Mix

Page 106: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

Log(w

aste

)

Log(fragility)

Higher

layer

Lower

layer

Good

Mix

bad

Page 107: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

Log(w

aste

)

Log(fragility)

Higher

layer

Lower

layer

???

Example?

Page 108: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

kernel

HW

lib

App1user

Don’t cross layers

Direct

access to

physical

memory

Robust

• Secure

• Scalable

• Verifiable

• Evolvable

• Maintainable

• Designable

• …

???

Page 109: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

kernel

HW

lib

App1user

Direct

access to

physical

memory

Robust

• Secure

• Scalable

• Verifiable

• Evolvable

• Maintainable

• Designable

• …

??? Separate logical names

and physical addresses

Page 110: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

App

kernel

user

In operating systems:

Don’t cross layers

In programming:

No global variables

Page 111: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

Naming and addressing

• Names to locate objects

• 2.5 ways to resolve a name

1. Exhaustive search, table lookup

2. Name gives hints

• Extra ½ is for indirection

• Address = name that involves locations

Page 112: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

Benefits of stricter layering

“Black box” effects of stricter layering

• Portability of applications

• Security of physical address space

• Robustness to application crashes

• Scalability of virtual/real addressing

• Local variables and addresses

• Optimization/control by duality?

Page 113: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

Problems with incomplete layering

“Black box” benefits are lost

• Global variables? @$%*&!^%@&

• Poor portability of applications

• Insecurity of physical address space

• Fragile to application crashes

• No scalability of virtual/real addressing

• Limits optimization/control by duality?

Page 114: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

App

kernel

user

In operating systems:

Don’t cross layers

(rings)

Direct

access to

physical

memory?

In programming:

No global variables

Page 115: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

App AppApplications

Router

Page 116: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

App App

IPC

Global

and direct

access to

physical

address!

Robust?

• Secure

• Scalable

• Verifiable

• Evolvable

• Maintainable

• Designable

• …

DNS

IP addresses

interfaces not

nodes

Page 117: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

Physical

IP

TCP

Application

Naming and addressing need to be

• resolved within layer

• translated between layers

• not exposed outside of layer

Related issues

• DNS

• NATS

• Firewalls

• Multihoming

• Mobility

• Routing table size

• Overlays

• …

Page 118: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

Embedded

virtual

actuator/

sensor

Network

cable

Controller

Lib

App

DIF

Networked/embedded/layered

Lib

Physical

plant

Page 119: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

Embedded

virtual

actuator/

sensor

Network

cable

Controller

DIF

Physical

plant

Meta-layering of cyber-phys control

Page 120: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

Architecture Good architectures

allow for effective

tradeoffs

wasteful

fragile

Page 121: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

Embedded

virtual

actuator/

sensor

DIF

Collapsing

the stack at

the edges

Lib

Physical

plant

Exploiting

the physical

Page 122: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

Architecture Good architectures

allow for effective

tradeoffs

wasteful

fragile

Exploiting

the physical

Collapsing

the stack at

the edges

Page 123: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

Architecture

is not graph

topology.

Architecture

facilitates

arbitrary graphs.

Persistent

errors and

confusion.

Page 124: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

Diverse

LINK

router router

A layered view:

Diverse but not arbitrary

Page 125: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

SOX

SFGP/

AMPATH

U. Florida

U. So. Florida

Miss State

GigaPoP

WiscREN

SURFNet

Rutgers U.

MANLAN

Northern

Crossroads

Mid-Atlantic

Crossroads

Drexel U.

U. Delaware

PSC

NCNI/MCNC

MAGPI

UMD NGIX

DARPA

BossNet

GEANT

Seattle

Sunnyvale

Los Angeles

Houston

Denver

Kansas

CityIndian-

apolis

Atlanta

Wash

D.C.

Chicago

New York

OARNET

Northern LightsIndiana GigaPoP

MeritU. Louisville

NYSERNet

U. Memphis

Great Plains

OneNetArizona St.

U.

Arizona

Qwest Labs

UNM

Oregon

GigaPoP

Front Range

GigaPoP

Texas Tech

Tulane U.

North Texas

GigaPoP

Texas

GigaPoP

LaNet

UT Austin

CENIC

UniNet

WIDE

AMES NGIX

Pacific

Northwest

GigaPoPU. Hawaii

Pacific

Wave

ESnet

TransPAC/APAN

Iowa St.

Florida A&MUT-SW

Med Ctr.

NCSA

MREN

SINet

WPI

StarLight

Intermountain

GigaPoPAbilene Backbone

Physical Connectivity

0.1-0.5 Gbps

0.5-1.0 Gbps

1.0-5.0 Gbps

5.0-10.0 Gbps

Page 126: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

Seattle

Sunnyvale

Los Angeles

Houston

Denver

Kansas

CityIndian-

apolis

Atlanta

Wash

D.C.

Chicago

New York

Abilene Backbone

Physical Connectivity

0.1-0.5 Gbps

0.5-1.0 Gbps

1.0-5.0 Gbps

5.0-10.0 Gbps

Geography not to scale

Circa 2002

Page 127: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

0.1-0.5 Gbps

0.5-1.0 Gbps

1.0-5.0 Gbps

5.0-10.0 Gbps

Ignore

bandwidths

Page 128: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

Diverse

LINK

router router

Page 129: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

Physical/link

layer

Page 130: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

End systems

Routers

Page 131: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

links

Page 132: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

End systems

Routers

links

Page 133: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

LINK

my

computer

router router

web

serverrouter router

End systems

Routers

links

Page 134: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

Physical/link

layer

Page 135: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

Diverse

Physical/link

layer

Hardware

Page 136: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

Diverse

IP

LINK

router router

IP layer

Page 137: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

IP layer

Control:

• Routing

Page 138: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

1 hop

IP layer

Page 139: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

1 hop 2 hops

IP layer

Page 140: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

1 hop 2 hops

3 hops

IP layer

Page 141: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

IP layer

Control:

• Routing

Page 142: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

IP layer

Control:

• Routing

Page 143: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering
Page 144: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

Physical

Page 145: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

Physical

IP

Control:

• Routing

Page 146: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

Diverse

TCP

IP

LINK

router router

Page 147: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

Physical

IP

TCP

Control:

• Congestion (window)

• Loss (retransmission)

Page 148: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

Physical

IP

Control:

• Congestion (window)

• Loss (retransmission)

TCP

Page 149: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

Physical

IP

TCP

Application

Page 150: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

End systems

Application

Page 151: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

End systems

Application

Page 152: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering
Page 153: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering
Page 154: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

Physical

IP

TCP

Application

Page 155: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

Physical

IP

TCP

ApplicationWhat is the

graph of the

Internet?

Wrong

question.

Page 156: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

Physical

IP

TCP

Application

Hidden to most

users and

technologies

Page 157: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

IP

TCP/AQM

Physical

Application Diverse

Diverse

Highly

conserved

core

control

processes

Layered

MAC

Hidden to most

users and

technologies

Page 158: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

One of

the most-read

papers ever on

the Internet!

Page 159: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

24 JULY 2009 VOL 325 SCIENCE www.sciencemag.org

Page 160: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

• For decades, we tacitly assumed that the components of such complex systems as the cell, the society, or the Internet are randomly wired together.

• In the past decade, an avalanche of research has shown that many real networks, independent of their age, function, and scope, converge to similar architectures,

• a universality that allowed researchers from different disciplines to embrace network theory as a common paradigm.

• The decade-old discovery of scale-free networks was one of those events that had helped catalyze the emergence of network science, a new research field with its distinct set of challenges and accomplishments.

24 JULY 2009 VOL 325 SCIENCE www.sciencemag.org

Page 161: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

likely

random

rare

organized

robust

efficient

fragile

wasteful

“order

for free”

Reality

Fantasy

Fantasy

Page 162: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

100

101

102

103

100

101

102

power-law

degrees

High degree hub-

like core

“Scale-free”

networks and

the

“Achilles’ heel”

of the Internet

Page 163: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

High degree

hub-like core

Delete these “hubs” and the network disconnects!

Delete “non-hubs” with little effect!

Robust yet fragile!?!?!?

Page 164: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

SOX

SFGP/

AMPATH

U. Florida

U. So. Florida

Miss State

GigaPoP

WiscREN

SURFNet

Rutgers

U.

MANLAN

Northern

Crossroads

Mid-Atlantic

Crossroads

Drexel U.

U. Delaware

PSC

NCNI/MCNC

MAGPI

UMD NGIX

DARPA

BossNet

GEANT

Seattle

Sunnyvale

Los Angeles

Houston

Denver

Kansas

CityIndian-

apolis

Atlanta

Wash

D.C.

Chicago

New York

OARNET

Northern Lights

Indiana GigaPoP

MeritU. Louisville

NYSERNet

U. Memphis

Great Plains

OneNetArizona St.

U.

Arizona

Qwest Labs

UNM

Oregon

GigaPoP

Front Range

GigaPoP

Texas Tech

Tulane U.

North Texas

GigaPoP

Texas

GigaPo

P

LaNet

UT Austin

CENIC

UniNet

WIDE

AMES NGIX

Pacific

Northwest

GigaPoPU. Hawaii

Pacific

Wave

ESnet

TransPAC/APAN

Iowa St.

Florida A&MUT-SW

Med Ctr.

NCSA

MREN

SINet

WPI

StarLight

Intermountain

GigaPoP

Abilene Backbone

Physical Connectivity

0.1-0.5 Gbps

0.5-1.0 Gbps

1.0-5.0 Gbps

5.0-10.0 Gbps

Internet router-

level topology

The real Internet?

(circa 2002)

Page 165: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

SOX

SFGP/

AMPATH

U. Florida

U. So. Florida

Miss State

GigaPoP

WiscREN

SURFNet

Rutgers

U.

MANLAN

Northern

Crossroads

Mid-Atlantic

Crossroads

Drexel U.

U. Delaware

PSC

NCNI/MCNC

MAGPI

UMD NGIX

DARPA

BossNet

GEANT

Seattle

Sunnyvale

Los Angeles

Houston

Denver

Kansas

CityIndian-

apolis

Atlanta

Wash

D.C.

Chicago

New York

OARNET

Northern Lights

Indiana GigaPoP

MeritU. Louisville

NYSERNet

U. Memphis

Great Plains

OneNetArizona St.

U.

Arizona

Qwest Labs

UNM

Oregon

GigaPoP

Front Range

GigaPoP

Texas Tech

Tulane U.

North Texas

GigaPoP

Texas

GigaPo

P

LaNet

UT Austin

CENIC

UniNet

WIDE

AMES NGIX

Pacific

Northwest

GigaPoPU. Hawaii

Pacific

Wave

ESnet

TransPAC/APAN

Iowa St.

Florida A&MUT-SW

Med Ctr.

NCSA

MREN

SINet

WPI

StarLight

Intermountain

GigaPoP

Abilene Backbone

Physical Connectivity

0.1-0.5 Gbps

0.5-1.0 Gbps

1.0-5.0 Gbps

5.0-10.0 Gbps

Internet router-

level topology

Page 166: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

Internet router-

level topology

0.1-0.5 Gbps

0.5-1.0 Gbps

1.0-5.0 Gbps

5.0-10.0 Gbps

Start with

Internet2

backbone

Page 167: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

0.1-0.5 Gbps

0.5-1.0 Gbps

1.0-5.0 Gbps

5.0-10.0 Gbps

Add gateway routers

and end users

Consistent with

technological

constraints on

routers and users

High throughput,

efficiency, economy

“HOT model”

Page 168: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

0.1-0.5 Gbps

0.5-1.0 Gbps

1.0-5.0 Gbps

5.0-10.0 Gbps

Low degree

mesh-like core

100

101

102

103

100

101

102

rank

degree

Page 169: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

100

101

102

103

100

101

102

power-law

degrees

Low degree

mesh-like core

High variability

edge systems

rank

Page 170: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

100

101

102

103

100

101

102

identical

power-law

degrees

High degree hub-

like coreLow degree

mesh-like core

Completely different

networks can have the

same node degrees.

Page 171: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

• Low degree core

• High performance and robustness

• Efficient, economic

• High degree “hubs”

• Poor performance and robustness

• Wasteful, expensive

See PNAS, Sigcomm, TransNet papers for details.

Nothing like the

real Internet.

Page 172: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

likely

random

rare

organized

fragile

wasteful

robust

efficient

Two separate

worlds, can we view

them together?

Page 173: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

likely

random

rare

organized

robust

efficient

fragile

wasteful

Page 174: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

likely

random

rare

organized

robust

efficient

fragile

wasteful

“order

for free”

Page 175: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

likely

random

rare

organized

robust

efficient

fragile

wasteful

“order

for free”

Reality

Fantasy

Fantasy

Page 176: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

likely

random

robust

efficient

fragile

wasteful

“order

for free”

Fantasy

• “new sciences”

• statistical physics

Page 177: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

likely

random

fragile

wasteful

randomize

• “new sciences”

• statistical physics

Page 178: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

likely

random

fragile

wasteful

• universality

• phase transition

• edge of chaos

• self-organized criticality

• scale-free networks

?

“order

for free”

order

parameter

Page 179: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

likely

random

rare

organized

robust

efficient

fragile

wasteful

“order

for free”

Reality

Fantasy

Fantasy?

Page 180: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

likely

random

rare

organized

robust

efficient

fragile

wasteful

“order

for free”

Reality

Fantasy

Fantasy

Rube Goldberg

Page 181: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

likely

random

rare

organized

robust

efficient

fragile

wasteful

“order

for free”

Reality

Fantasy

Fantasy

Page 182: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

likely

random

rare

organized

robust

efficient

fragile

wasteful

This is a

fake

tradeoff

Page 183: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

Much

“network science”

and

“complex systems”

literature

is equally

specious

Page 184: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

Similar errors in “high impact” journals

Nature

• Human physiological variability

• Protein-Protein Interaction (PPI) networks

• Metabolic networks

Science

• Forest fires

• Power grid

• WWW “graph”

Physical Review Letters

• Almost any paper with power laws

Persistent source

of errors and

confusion

Page 185: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

24 JULY 2009 VOL 325 SCIENCE www.sciencemag.org

Today, the scale-free nature of

networks of key scientific interest,

from protein interactions to social

networks and from the network of

interlinked documents that make up

the WWW to the interconnected

hardware behind the Internet, has

been established beyond doubt.

Page 186: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

Power laws: main reading

1. Carlson JM, Doyle J, Complexity and robustness, PNAS, USA 99: 2538-2545 Suppl. 1 FEB 19 2002

2. Willinger, W, D. Alderson, J.C. Doyle, and L.Li., 2004. More ``Normal'' Than Normal: Scaling Distributions and Complex Systems. Proceedings of the 2004 Winter Simulation Conference.

3. R. Tanaka, T-M Yi, and J. Doyle (2005) Some protein interaction data do not exhibit power law statistics, FEBS letters, 579 (23): 5140-5144 SEP 26 2005

4. Doyle et al, (2005), The “Robust Yet Fragile” Nature of the Internet, PNAS102 (41), October 11, 2005

5. R. Tanaka, M. Csete and J. Doyle, Highly optimised global organisation of metabolic networks, IEE Proc.-Syst. Biol., Vol. 152, No. 4, December 2005

6. MA Moritz, ME Morais, LA Summerell, JM Carlson, J Doyle (2005) Wildfires, complexity, and highly optimized tolerance, PNAS, 102 (50) December 13, 2005;

7. L Li, D Alderson, JC Doyle, W Willinger (2006) Towards a Theory of Scale-Free Graphs: Definition, Properties, and Implications, Internet Math, Vol. 2, No. 4, 2006

Page 187: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

Additional reading

1. http://www.physics.ucsb.edu/~complex/

2. http://linkage.rockefeller.edu/wli/zipf/index_ru.html

3. M. Mitzenmacher, A Brief History of Generative Models for Power Law and Lognormal Distributions, Internet Mathematics, vol 1, No. 2, pp. 226-251, 2004.

4. Csete M.E. and J.C. Doyle, (2004), Bow ties, metabolism, and disease, Trends in Biotechnology, Vol 22, Issue 9, pg. 446-450

5. Manning M, Carlson JM, Doyle J (2005) Highly optimized tolerance and power laws in dense and sparse resource regimes PHYSICAL REVIEW E 72 (1): Art. No. 016108 Part 2 JUL 2005

6. Brookings, T, Carlson, JM & Doyle, J Three mechanisms for power laws on the Cayley tree (2005) Phys. Rev. E 72

7. Doyle J, and Csete M, Rules of engagement. NATURE 446 (7138): 860-860 APR 19 2007 (PMID: 17443168)

Page 188: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

Sharpen

hard

bounds

bad

Find and

fix bugs

Complementary

approaches

wasteful

fragile

Case studies

Page 189: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

Sharpen

hard

bounds

wasteful

fragile

Case studies that

achieve bounds

Page 190: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

Bacterial architecture• More complex macro-layering of function

– Upper: Metabolism, envelope, signaling, building blocks

– Lower: Proteins & macromolecule synthesis, replication

• Cleaner layering of control– Transcription factors

– 2 component signal transduction

• Name/address resolution– Global, exhaustive by fast diffusion within layers

– Highly structured interactions between layers

• Limited scalability– Limited to small volumes

– Control proteins scale super-linearly with enzyme

numbers

Page 191: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

Cat

abo

lism

AA

Ribosome

RNARNAp

transl. Proteins

xRNAtransc.

Pre

curs

ors

DNADNAp

Repl. Gene

ATP

ATP

Enzymes

Building

Blocks

Crosslayer

autocatalysis

Macro-layers

Inside every cell

Page 192: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

Building

Blocks

Lower layer autocatalysis

Macromolecules making …

Three lower

layers? Yes:

• Translation

• Transcription

• Replication

AA

RibosomeRNA

RNAp

transl. Proteins

xRNAtransc.

Enzymes

DNADNAp

Repl. Gene

Page 193: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

AA

RibosomeRNA

RNAp

transl. Proteins

xRNAtransc.

Enzymes

DNADNAp

Repl. Gene

Autocatalytic within lower layers

• Collectively self-replicating

• Ribosomes make ribosomes, etc

Three lower

layers? Yes:

• Translation

• Transcription

• Replication

Naturally

recursive

Page 194: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

App AppApplications

Router

Cat

aboli

smAA

Ribosome

RNA

RNAp

transl. Proteins

xRNAtransc.

Pre

curs

ors

DNADNAp

Repl. Gene

ATP

ATP

Enzymes

Building

Blocks

Macro-layers

Page 195: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

Theory plus biology case study

Hard tradeoffs between• Fragility (disturbance rejection)• Metabolic overhead

– Amount (of enzymes)– Complexity (of enzymes)

• Glycolytic oscillations • Most ubiquitous and studied “circuit” in science or

engineering • New insights and experiments• Resolves longstanding mysteries• Biology component funded by NIH and Army ICB

Page 196: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

• Fragility (disturbance rejection)

• Metabolic overhead

– Amount (of enzymes)

– Complexity (of enzymes)

Fragility

hard limitsimple enzyme

Enzyme amount

complex enzyme

Page 197: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

simple enzyme

Fragility

Enzyme amount

complex enzyme

lnz p

z p

2 2

0

1ln ln

z z pS j d

z z p

Theorem

Page 198: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

2 2

0

1ln ln

z z pS j d

z z p

Theorem

0 5 10

-1

-0.8

-0.6

-0.4

-0.2

0

0.2Time Simulation

0 5 10-1

-0.5

0

0.5

1

1.5

2

Lo

g|S

|

Sensitivity Function

h=2h=3h=4

g=0, k=3

TimeFrequency

ln S j

Fragility (standard control theory) rigorous, first-principles.

Page 199: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

simple enzyme

Enzyme amount

complex enzyme

2 2

0

1ln ln

z z pS j d

z z p

Theorem

• z and p are functions of enzyme complexity and amount• standard biochemistry models• phenomenological• first principles?

Page 200: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

k

z p

z p

10-1

100

10110

0

101

Fragility Biological architectures

achieve hard limits and

use complex enzymes

and networks

2 2

0

1ln ln

z z pS j d

z z p

complex enzyme

Enzyme amount

Page 201: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

Fragility

Metabolic overhead

Architecture

“Conservation

laws”

Good architectures

allow for effective

tradeoffs

Alternative biocircuits

with shared architecture

Page 202: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

Architecture Good architectures

allow for effective

tradeoffs

wasteful

fragile

Page 203: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

Reflectors Reflectors

Dip

ole

PAUp-Mixers

Buffer

Buffer

90º

T-line

VCO

LO Buffer

Digital control

Ba

se

ba

nd

5mm

2.5

mm

Quadrant

Selectors

LNA

Down-

Mixers

1.5mm

1.3

mm

Divider

Phenomenology1. Incorporate domain specifics2. First principles models

Page 204: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

Fragilityhard limits

simple

Overhead, waste

complex

• General• Rigorous• First principle

• Domain specific• Ad hoc• Phenomenological

Plugging in domain details

?

Page 205: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

Fragility

Overhead, waste

• General• Rigorous• First principle

• Domain specific• Ad hoc• Phenomenological

Plugging in domain details

?

• Fundamental multiscale physics

• Start classically

• Foundations, origins of

– noise

– dissipation

– amplification

Page 206: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

IEEE TRANS ON AUTOMATIC CONTROL,

to appear, FEBRUARY, 2011

Sandberg, Delvenne, and Doyle

http://arxiv.org/abs/1009.2830

Page 207: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

Layers in hardware

So well-known as to be taken for granted

• Digital abstraction and modularity

• Analog substrate is active and lossy

• Microscopic world is lossless

• Reconcile these in a clear and coherent way

• Exploit designable physical layer more

Page 208: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

s

1

+step response

s

step response V(t)

Page 209: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

s

1

+step response

0 0.5 1 1.5 2 2.50

0.5

1

1.5

Time (sec)

Am

plit

ude

1 te

10 dissipative,

lossy

But the microscope world is lossless (energy is conserved). Where does dissipation come from?

Page 210: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

s

+

step response

V(t)

2 2

k

s

s Lossless

Approximate

s

1

+step response

dissipative,

lossy

Page 211: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

s

+

step response

V(t)

step response

2 2

k

s

s

LosslessApproximate

2 2

k

s

s Lossless

Approximate

Page 212: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

step response

2 2

k

s

s

LosslessApproximate

T=1

0 0.5 1 1.5 2 2.5-1.5

-1

-0.5

0

0.5

1

1.5

Time (sec)

Am

plit

ude

n=10

Page 213: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

T=1

n=10

0 0.2 0.4 0.6 0.8 1-1.5

-1

-0.5

0

0.5

1

1.5

0 0.2 0.4 0.6 0.8 1-1.5

-1

-0.5

0

0.5

1

1.5

n=100

Page 214: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

0 0.2 0.4 0.6 0.8 10

0.5

1

1.5

Time (sec)

s

+

step response

V(t)

2 2

k

s

s Lossless

Approximate

T=1n=10

n=4

Page 215: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

0 0.5 1 1.5 2 2.5-1.5

-1

-0.5

0

0.5

1

1.5

Time (sec)

Am

plit

ude

n=10

step response

2 2

k

s

s

LosslessApproximate

Page 216: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

2 2

k

s

s

random

initial

conditions

n=100 0.2 0.4 0.6 0.8 1

-2

-1.5

-1

-0.5

0

0.5

1

1.5

Response to Initial Conditions

Time (sec)

Am

plit

ude

Page 217: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

T=1

0 0.2 0.4 0.6 0.8 1-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Response to Initial Conditions

Time (sec)

Am

plit

ude

n=100

n=100 0.2 0.4 0.6 0.8 1

-2

-1.5

-1

-0.5

0

0.5

1

1.5

Response to Initial Conditions

Time (sec)

Am

plit

ude

Page 218: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

T=10 0.2 0.4 0.6 0.8 1

-1.5

-1

-0.5

0

0.5

1

1.5

0 0.2 0.4 0.6 0.8 1-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Response to Initial Conditions

Time (sec)

Am

plit

ude

Dissipation

Fluctuation

Theorem: Fluctuation Dissipation

Page 219: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

Theorem: Fluctuation Dissipation

Theorem: Linear passive iff

linear lossless approximation

Theorem: Linear active needs

nonlinear lossless approximation

Page 220: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

System

Sense Est.

+ ( )e t-

ˆ( )y t

( )y t

( )y t

“Physical”

implementation

Back action

Sensor “noise”

Consequences

Page 221: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

Back action

System

Sense Est.

+ ( )e t-

ˆ( )y t

( )y t

2 2( )E y t kTt O t

• Sensor at temp T

• Short interval (0,t)

( )y t

Sensor “noise”

2 ( ) 1kT

E e t Ot

Theorem

Page 222: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

2 ( ) 1kT

E e t Ot

System

Sense Est.

+ ( )e t

-ˆ( )y t

( )y t

( )y t

back-action

error

2( )E y t kTt

( )y t

( )e t

Page 223: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

Sensor “noise”

2 ( ) 1kT

E e t Ot

System

Sense Est.

+ ( )e t

-ˆ( )y t

( )y t

( )y t

error 2 ( )

kTE e t

t

( )e t

Page 224: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

Back action

System

Sense Est.

+ ( )e t

-ˆ( )y t

( )y t

( )y t

back-action

2( )E y t

kTt

2( )E y t kT

( )y t

Page 225: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

2 ( ) 1kT

E e t Ot

System

Sense Est.

+ ( )e t

-ˆ( )y t

( )y t

( )y t

back-action

error

2( )E y t

kTt

2 ( )kT

E e tt

2( )E y t kT

( ) ( )y t e t kT O t

( )y t

( )e t

Theorem:

Page 226: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

System

Sense Est.

+ ( )e t

-ˆ( )y t

( )y t

( )y t

error

Cold sensors

are better

and faster

(but not cheaper)

( ) ( )y t e t O tkT

( )y tback-action

( )e t

Page 227: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

System

Sense Est.

+ ( )e t

-ˆ( )y t

( )y t

( )y t

back-

action

error

( ) ( )y t e t kT

larger tmore data

smaller tless data

2( )E y t

kTt

2 ( )kT

E e tt

Page 228: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

System

Sense Est.

+ ( )e t

-ˆ( )y t

( )y t

( )y t

back-

action

error

2( )E y t

kTt

2 ( )kT

E e tt

( ) ( )y t e t kT O t

A transient and far-from-equilibrium

upgrade of statistical mechanics

Page 229: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

back-

action

error

A transient and far-from-equilibrium

upgrade of statistical mechanics

• Estimation to control

• Efficiency of devices, enzymes

• Classical to quantum

Page 230: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

Some frivolities

and/or a rant

Page 231: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

Save our

children

Peta-

philia

There is a

treatment.

Page 232: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

THE END OF THEORYScientists have always relied on hypothesis

and experimentation. Now, in the era of massive data, there’s a better way.

“All models are wrong, and increasingly

you can succeed without them.”

Page 233: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

New words

• Peta-philia: Perverse love

of data and computation

• Peta-fop: Someone who

profits from peta-philia

• Exa-duhs: Loss of clue

from excessive peta-philia

Page 234: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

Fortunately

there seems

to be a

treatment

Not yet in

widespread use

Peta-

philia

Page 235: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

D. Alderson, NPS 226

Page 236: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

Complex systems?

Fragile

• Scale

• Dynamics

• Nonlinearity

• Nonequlibrium

• Open

• Feedback

• Adaptation

• Intractability

• Emergence

• …

Even small

amounts can

create

bewildering

complexity

Page 237: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

Complex systems?

Fragile

• Scale

• Dynamics

• Nonlinearity

• Nonequlibrium

• Open

• Feedback

• Adaptation

• Intractability

• Emergence

• …

• Scale

• Dynamics

• Nonlinearity

• Nonequlibrium

• Open

• Feedback

• Adaptation

• Intractability

• Emergence

• …

Robust

Page 238: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

Complex systems?

• Resources

• Controlled

• Organized

• Structured

• Extreme

• Architected

• …

Robust complexity

• Scale

• Dynamics

• Nonlinearity

• Nonequlibrium

• Open

• Feedback

• Adaptation

• Intractability

• Emergence

• …

Page 239: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

Architecture

• Resources

• Controlled

• Organized

• Structured

• Extreme

• Architected

• …

Robust complexity

• Scale

• Dynamics

• Nonlinearity

• Nonequlibrium

• Open

• Feedback

• Adaptation

• Intractability

• Emergence

• …

Page 240: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

New

wordsFragile complexity

Emergulent

Emergulence

at the edge of

chaocritiplexity

• Scale

• Dynamics

• Nonlinearity

• Nonequlibrium

• Open

• Feedback

• Adaptation

• Intractability

• Emergence

• …

Page 241: Universals and fundamentalshelper.ipam.ucla.edu/publications/ann2010/ann2010_9483.pdfJohn Doyle John G Braun Professor Control and Dynamical System, Electrical Engineering, BioEngineering

Convey the basics?

• Is there any way to tell some aspects of

layered architecture

• that is broadly accessible