universiti teknologi malaysia -...

40
OPTIMIZATION OF BIOMASS PRODUCTION OF Pseudomonas fluorescens IN A STIRRED TANK BIOREACTOR AZUAN BIN ABDUL LATIF UNIVERSITI TEKNOLOGI MALAYSIA

Upload: phungcong

Post on 07-Jun-2019

223 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: UNIVERSITI TEKNOLOGI MALAYSIA - eprints.utm.myeprints.utm.my/id/eprint/79257/1/AzuanAbdulLatifPFChE2015.pdf · Pseudomonas fluorescens ... Kecekapan P. fluorescens untuk menyingkirkan

OPTIMIZATION OF BIOMASS PRODUCTION OF Pseudomonas fluorescens IN

A STIRRED TANK BIOREACTOR

AZUAN BIN ABDUL LATIF

UNIVERSITI TEKNOLOGI MALAYSIA

Page 2: UNIVERSITI TEKNOLOGI MALAYSIA - eprints.utm.myeprints.utm.my/id/eprint/79257/1/AzuanAbdulLatifPFChE2015.pdf · Pseudomonas fluorescens ... Kecekapan P. fluorescens untuk menyingkirkan

OPTIMIZATION OF BIOMASS PRODUCTION OF Pseudomonas fluorescens

IN A STIRRED TANK BIOREACTOR

AZUAN BIN ABDUL LATIF

A thesis submitted in fulfillment of the

requirements for the award of the degree of

Master of Engineering (Bioprocess)

Faculty of Chemical and Energy Engineering

Universiti Teknologi Malaysia

DECEMBER 2015

Page 3: UNIVERSITI TEKNOLOGI MALAYSIA - eprints.utm.myeprints.utm.my/id/eprint/79257/1/AzuanAbdulLatifPFChE2015.pdf · Pseudomonas fluorescens ... Kecekapan P. fluorescens untuk menyingkirkan

iii

To my beloved mother and father

Page 4: UNIVERSITI TEKNOLOGI MALAYSIA - eprints.utm.myeprints.utm.my/id/eprint/79257/1/AzuanAbdulLatifPFChE2015.pdf · Pseudomonas fluorescens ... Kecekapan P. fluorescens untuk menyingkirkan

iv

ACKNOWLEDGEMENT

First and foremost, Alhamdulillah thank you ALLAH for giving me the

chance to finish my degree in Master of Bioprocess engineering. I would like to

sincerely thank to my main supervisor from Institute of Bioproduct Development,

Universiti Teknologi Malaysia Professor Dr. Hesham A. El-Enshasy. As the head

of the project, Prof Hesham has supervised exceptionally in the optimization

fermentation process. His countless effort to help me over the years of my study is

truly admired. I have learned a lot from him, not only as a teacher, but also as a

man, which hopefully I will be someday. Thank you to my lab supervisor, Mrs

Zalina and Mrs Roslinda for helping me especially with the technical part, work

flow of the research and writing of this dissertation. Thank you for both of them

and I will treasure the experience working with them for the rest of my life. I would

like express my sincere thanks to Indah water Konsortium (IWK) Sdn Bhd for the

support of research grant; which had helped funded throughout the project. I also

would like to thank my parents, Abdul Latif and Kamsiah, whom always put their

priority on my educations. Without them, I won‘t be here. I would like to thank Mr

Solleh whom had taught me to operate the bioreactor for my experiment. I thanked

my best friend and lab mate, Mr Daniel Jo, for helping me especially in the

beginning of master. I also thanked to my lab mates, Kharuddin Malek, Helmi,

Amir, Hafizah, Siti Zulaiha, Hamizah and the rest of microbial bioprocess lab

members. Last but not least, a special thanks to Nik Azurin for the courage and

support for me to sustain in the study. Allah blesses all of you.

Page 5: UNIVERSITI TEKNOLOGI MALAYSIA - eprints.utm.myeprints.utm.my/id/eprint/79257/1/AzuanAbdulLatifPFChE2015.pdf · Pseudomonas fluorescens ... Kecekapan P. fluorescens untuk menyingkirkan

v

ABSTRACT

Pseudomonas fluorescens (P. fluorescens) is a denitrification bacterium that

able to convert nitrate compounds into nitrogen gas. This process is always slow due

to limitation of organic sources that are present in wastewater treatment plant. The

efficiency of P. fluorescens as a nitrate removal strongly depends on the physiological

status of cells and the amount of microorganism added to the treatment plant.

Therefore, the objectives of this study are to optimize the culture medium in shake

flask and to develop cultivation strategy for the biomass production of P. fluorescens

in a pilot scale 16-L bioreactor. The medium composition was first optimized using

one factor at time (OFAT) and response surface methodology (RSM) methods, which

the Box-Behnken experimental design was employed. Analysis of variance

(ANOVA) showed significance of findings for each factors with high coefficient of

determination (R2) of 95.58 %. The optimum medium composition of biomass

production was composed of: sucrose, 8.0 g L-1; yeast extract, 3.0 g L-1; di-potassium

phosphate, 2.0 g L-1; and magnesium sulfate heptahydrate, 1.5 g L-1. This medium

gave biomass of 3.28 g L -1 (about 57.6 % higher compared to un-optimized medium).

After this step, the optimized medium was used to cultivate the cells in batch mode

with and without pH control in a 16-L stirred tank bioreactor. It was found that

controlling the culture pH at 7.2 during cultivation increased biomass by 39.56 %. In

addition, a series of constant feeding strategy in combination with a control pH 7.2

was carried out to increase the biomass production. Both sucrose and full medium

feeding were applied, and both yielded biomass of 8.46 g L -1 and 14.98 g L -1,

respectively. Under constant feeding strategy of full medium, nutrients were consumed

after 10 hours of feeding. Therefore, a gradual increase of medium feeding rate was

applied to increase the biomass. The highest biomass obtained using increased rate

feeding strategy was 33.5 g L -1. In conclusion, the medium optimization accompanied

by bioprocess optimizations in terms of pH control and applying fed batch cultivation

strategy in the 16-L bioreactor enhanced the growth rate and biomass production of P.

fluorescens.

Page 6: UNIVERSITI TEKNOLOGI MALAYSIA - eprints.utm.myeprints.utm.my/id/eprint/79257/1/AzuanAbdulLatifPFChE2015.pdf · Pseudomonas fluorescens ... Kecekapan P. fluorescens untuk menyingkirkan

vi

ABSTRAK

Pseudomonas fluorescens (P. fluorescens) adalah bakteria yang dapat menukar

sebatian nitrat kepada gas nitrogen melalui proses pendenitratan. Proses ini adalah

perlahan kerana kehadiran sumber organik yang terhad di dalam loji rawatan

kumbahan. Kecekapan P. fluorescens untuk menyingkirkan nitrat sangat bergantung

kepada fisiologi sel dan jumlah mikroorganisma yang berada di dalam loji rawatan

kumbahan. Oleh itu, objektif kajian ini adalah untuk mengoptimumkan media kultur

dalam kelalang kon dan strategi pembangunan dan pengeluaran biojisim P. fluorescens

dalam bioreaktor yang berkapasiti 16-L. Komposisi media dioptimumkan dengan

menggunakan teknik ubahan faktor satu per satu (OFAT) dan kaedah statistik tindak

balas permukaan (RSM) di mana eksperimen Box-Behnken digunakan. Analisis

varian (ANOVA) menunjukkan kepentingan penemuan bagi setiap faktor dengan

pekali tinggi penentuan (R2) sebanyak 95.58 %. Nilai optimum untuk menghasilkan

biojisim terdiri daripada: sukrosa, 8.0 g L-1; ekstrak yis, 3.0 g L-1; dipotasium fosfat,

2.0 g L-1; dan magnesium sulfat heptahidrat, 1.5 g L-1. Media ini memberikan biojisim

3.28 g L -1 (peningkatan kira-kira 57.6 % berbanding media yang belum

dioptimumkan). Selepas langkah ini, media yang telah dioptimum digunakan untuk

pengkulturan dalam dua keadaan iaitu; dengan kawalan pH dan tanpa kawalan pH di

dalam tangki bioreaktor 16-L. Hasil pemerhatian mendapati dengan mengawal pH

media pada 7.2 semasa proses fermentasi ini telah meningkatkan biojisim sebanyak

39.56 %. Seterusnya, kaedah suap kelompok berskala tetap pada pH 7.2 telah

digunakan untuk meningkatkan penghasilan biojisim. Kaedah pengkulturan suap

kelompok telah dilakukan dengan menggunakan sukrosa dan media lengkap telah

menghasilkan biojisim masing-masing 8.46 g L -1 dan 14.98 g L -1. Semasa kaedah ini

dijalankan, didapati bahawa nutrisi bagi media lengkap adalah terhad selepas 10 jam

fermentasi. Oleh itu, pemberian media lengkap ditambah secara beransur-ansur telah

dilaksanakan sebagai strategi suap kelompok. Biojisim bagi kaedah ini mencapai hasil

sebanyak 33.5 g L -1. Sebagai kesimpulannya, penghasilan biojisim bagi P. fluorescens

dapat dicapai melalui kaedah pengoptimuman media dengan kawalan pH dan strategi

suap kelompok di dalam bioreaktor 16 L.

Page 7: UNIVERSITI TEKNOLOGI MALAYSIA - eprints.utm.myeprints.utm.my/id/eprint/79257/1/AzuanAbdulLatifPFChE2015.pdf · Pseudomonas fluorescens ... Kecekapan P. fluorescens untuk menyingkirkan

vii

TABLE OF CONTENTS

CHAPTER TITLE PAGE

DECLARATION ii

DEDICATION iii

ACKNOWLEDGEMENTS iv

ABSTRACT v

ABSTRAK vi

TABLE OF CONTENTS vii

LIST OF TABLES xii

LIST OF FIGURES xv

LIST OF SYMBOL xviii

LIST OF APPENDICES xx

LIST OF ABBREVIATIONS xxii

1 INTRODUCTION 1

1.1 Research Background 1

1.2 Problem Statement 3

1.3 Objective 3

1.4 Scopes of Research 4

2 LITERATURE REVIEW 5

2.0 Introduction 5

2.1 Wastewater Treatment by Using

Microorganism

6

2.1.1 Nitrogen Cycle 6

2.1.1.1 Nitrification 8

Page 8: UNIVERSITI TEKNOLOGI MALAYSIA - eprints.utm.myeprints.utm.my/id/eprint/79257/1/AzuanAbdulLatifPFChE2015.pdf · Pseudomonas fluorescens ... Kecekapan P. fluorescens untuk menyingkirkan

viii

2.1.1.2 Denitrification 8

2.1.1.3 Biochemical Oxygen

Demand and

Eutrophication

9

2.2 Pseudomonas fluorescens 11

2.2.1 Metabolism and Physiology of

Pseudomonas fluorescens

12

2.2.2 Industrial Application of

Pseudomonas fluorescens

13

2.3 Biomass Production 14

2.4 Effect of Different Medium Composition

and Cultivation Condition

16

2.4.1 Effect of Carbon Sources 16

2.4.2 Effect of Nitrogen Sources 18

2.4.3 Effect of Phosphate Concentration 20

2.4.4 Effect of Trace Element

Concentration

21

2.5 Cultivation in Bioreactor for High Cell

Biomass

22

2.5.1 Fermentation Modes 22

2.5.2 Batch Cultivation 23

2.5.2.1 Effect of Dissolve oxygen 25

2.5.2.2 Effect of Temperature and

pH

26

2.5.3 Fed Batch Cultivation 27

2.5.3.1 Different types of Fed-

batch Cultivation

28

2.6 Statistical Media Optimization 31

2.6.1 Full Factorial Design 31

2.6.2 Optimization Using Response

Surface Methodology (RSM)

32

2.6.3 Evaluation of the Fitted Model 33

2.6.4 Determination of the Optimum

Condition

34

3 METHODOLOGY 35

3.0 Introduction 35

3.1 Microorganism and Master Cell Banking 37

Page 9: UNIVERSITI TEKNOLOGI MALAYSIA - eprints.utm.myeprints.utm.my/id/eprint/79257/1/AzuanAbdulLatifPFChE2015.pdf · Pseudomonas fluorescens ... Kecekapan P. fluorescens untuk menyingkirkan

ix

3.1.1 Preparation of Working Cell Bank 38

3.2 Inoculum Preparation 37

3.3 Culture Media 39

3.4 One Factor At Time (OFAT)

optimization

40

3.4.1 Cultivating Using Different

Carbon and Nitrogen Sources

40

3.4.2 Optimization of Carbon to

Nitrogen Ratio

42

3.4.3 Optimization of Phosphate and

Inorganic Salt Concentration

41

3.5 Statistical Medium Optimization 43

3.5.1 Factorial Design 43

3.5.2 Response Surface Methodology

(RSM)

45

3.6 Growth Kinetics Comparison in Shake

Flaks Cultures

47

3.7 Bioreactor Cultivation 48

3.7.1 Batch Cultivation in 16-L

Bioreactor

48

3.7.2 Fed-Batch Cultivation in 16-L

Bioreactor

49

3.7.2.1 Different Feeding

Solution

50

3.7.2.2 Different Feeding

Strategy

50

3.8 Analysis protocols 51

3.8.1 Optical Density Determination 51

3.8.2 Cell Dry Weight Determination 51

3.8.3 Sucrose Determination 52

3.8.4 Nitrate removal performance 52

4 RESULTS AND DISCUSSION 54

4.0 Introduction 54

4.1 Media Screening for Cultivation of P.

fluorescens

55

4.2 Effect of Different Carbon Source on

Cell Growth

56

Page 10: UNIVERSITI TEKNOLOGI MALAYSIA - eprints.utm.myeprints.utm.my/id/eprint/79257/1/AzuanAbdulLatifPFChE2015.pdf · Pseudomonas fluorescens ... Kecekapan P. fluorescens untuk menyingkirkan

x

4.3 Determination of Optimum Sucrose

Concentration on Cell Growth

58

4.4 Effect of Different Organic and

Inorganic Nitrogen Source

59

4.5 Determination of Optimum Yeast Extract

Concentration on Cell Growth

62

4.6 Effect of C:N Ratio on Cell Growth 63

4.7 Determination of Optimum Phosphate

Concentration on Cell Growth

64

4.8 Determination of Optimum

MgSO4.7H2O Concentration

66

4.9 Statistical Medium Optimization 68

4.9.1 Factorial Design 68

4.9.2 Box-Behnken Design 72

4.9.3 ANOVA Analysis 75

4.9.4 Interaction of Variables to Cell

Biomass Production

78

4.10 Growth Kinetic Comparison Study of P.

fluorescens in Un-optimized and

Optimized Medium Cultivation

81

4.11 Batch Cultivation in Semi-Industrial

Scale 16-L Stirred Tank Bioreactor of P.

fluorescens under Un-controlled and

Controlled pH

85

4.12 Fed-Batch Cultivation of P. fluorescens in

Stirred Tank 16-L Bioreactor

88

4.12.1 Fed-batch Cultivation of P.

fluorescens Under Constant Feeding

of Monocarbon (sucrose)

88

4.12.2 Fed-batch Cultivation of P.

fluorescens Under Constant Feeding

of Full Medium

91

4.12.3 Fed-batch Cultivation of P.

fluorescens under Gradual Increase

Feeding Strategy of Full Medium

94

4.13 Nitrate removal performance 98

5 CONCLUSION &FUTURE WORK 101

5.1 Conclusion 101

5.2 Future Work 103

Page 11: UNIVERSITI TEKNOLOGI MALAYSIA - eprints.utm.myeprints.utm.my/id/eprint/79257/1/AzuanAbdulLatifPFChE2015.pdf · Pseudomonas fluorescens ... Kecekapan P. fluorescens untuk menyingkirkan

xi

REFERENCES 104

APPENDIX A 117

Page 12: UNIVERSITI TEKNOLOGI MALAYSIA - eprints.utm.myeprints.utm.my/id/eprint/79257/1/AzuanAbdulLatifPFChE2015.pdf · Pseudomonas fluorescens ... Kecekapan P. fluorescens untuk menyingkirkan

xii

LIST OF TABLES

TABLE NO. TITLE PAGE

2.1 Physiological features of Pseudomonas fluorescens 12

2.2 Production of high cell mass of different bacterial

strains

15

2.3 Biomass cultivation of P. fluorescens 16

2.4 Cell dry weight of P. fluorescens with different

carbon sources cultivated at 24 and 48 hours

18

2.5 Component of complex nitrogen source for

fermentation

19

2.6 Commonly employed nitrogen source in fermentation 20

3.1 Media for Screening Experiment 39

3.2 Different carbon sources and its concentration 41

3.3 Different nitrogen source and its concentration 41

3.4 Selected components for different concentration

optimization

41

3.5 Concentration of sucrose and yeast extract for carbon

to nitrogen ratio

42

3.6 Selected Components and its concentration for

optimization

43

3.7 The value of maximum and minimum for each

parameter that had been identified for medium

optimization study

44

3.8 Design of two level factorial designs 44

3.9 Box-Behnken design of experiment 46

3.10 Composition of working volume for batch cultivation

in 16-L stirred tank bioreactors

48

3.11 Composition of starting and feeding media in fed-

batch cultivation in 16-L stirred tank bioreactors

49

Page 13: UNIVERSITI TEKNOLOGI MALAYSIA - eprints.utm.myeprints.utm.my/id/eprint/79257/1/AzuanAbdulLatifPFChE2015.pdf · Pseudomonas fluorescens ... Kecekapan P. fluorescens untuk menyingkirkan

xiii

3.12 Sucrose feeding rate for gradual increase feeding

strategies in 16-L stirred tank bioreactors

50

3.13 Sucrose consumption rate for feeding strategy in 16-

L stirred tank bioreactors

53

4.1 Experimental range and levels of factors influencing

P. fluorescens cell growth in two-level full factorial

design

68

4.2 Four-factor, two level full factorial design of

experiment

69

4.3 First order ANOVA analysis for cell dry weight

production of P. fluorescens using four factor 2 level

full factorial design

72

4.4 Experimental range and levels of factors influencing

P. fluorescens cell growth in a Box-Behnken design

73

4.5 Box-Behnken design of experiment 73

4.6 Estimated coefficient for cell biomass production of

P. fluorescens using Box-Behnken design using

coded units

75

4.7 Estimated regression coefficient for cell biomass

production of P. fluorescens using Box-Behnken

design using un-coded unit

76

4.8 ANOVA for cell dry weight production of

Pseudomonas fluorescens using Box-Behnken

Design

77

4.9 Medium composition for un-optimized and optimized

media

82

4.10 Growth kinetics of shake flask cultures of P.

fluorescens in un-optimized and optimized medium

cultivation

83

4.11 Growth kinetics of P. fluorescens in batch cultivation

bioreactor for uncontrolled and controlled pH

87

4.12 Cultivation parameters for fed batch of P. fluorescens

under controlled pH

89

4.13 Growth kinetics of P. fluorescens in fed-batch

cultivation bioreactor for sucrose and full medium

feeding with controlled feeding rate

93

4.14 Gradual increase strategy for fed batch cultivation of

P. fluorescens

94

4.15 Growth kinetics of P. fluorescens in fed-batch

cultivation bioreactor in gradual increase feeding

strategy

97

Page 14: UNIVERSITI TEKNOLOGI MALAYSIA - eprints.utm.myeprints.utm.my/id/eprint/79257/1/AzuanAbdulLatifPFChE2015.pdf · Pseudomonas fluorescens ... Kecekapan P. fluorescens untuk menyingkirkan

xiv

4.16 Summary table of different condition of P.

fluorescens cultivation

97

Page 15: UNIVERSITI TEKNOLOGI MALAYSIA - eprints.utm.myeprints.utm.my/id/eprint/79257/1/AzuanAbdulLatifPFChE2015.pdf · Pseudomonas fluorescens ... Kecekapan P. fluorescens untuk menyingkirkan

xv

LIST OF FIGURES

FIGURE NO. TITLE PAGE

2.1 Nitrogen cycle in natural ecosystem 7

2.2 Metabolism of different carbon source in P.

fluorescens

13

2.3 Illustration of bioreactor showing the core parts of the

tanks as well as inlets, outlets and probes

22

2.4 Kinetic of cell growth in batch fermenter 23

3.1 Diagrammatic summary of optimization of biomass

production process for the nitrate removal bacteria P.

fluorescens

36

4.1 Cell dry weight (CDW) and final pH in six different

media after 24 hours of cultivation at 28°C in

Erlenmeyer shake flask (250 ml)

56

4.2 Cell dry weight (CDW) and final pH in shake flask

cultures of P. fluorescens with different carbon

sources at 28°C for 24 hours

57

4.3 Cell dry weight and final pH at different

concentration of sucrose after 24 hours fermentation

of P. fluorescens at 28°C in Erlenmeyer shake flasks

(250 ml)

59

4.4 Cell dry weight (CDW) and final pH in shake flask

cultures of P. fluorescens with different organic

nitrogen sources at 28°C for 24 hours

61

4.5 Cell dry weight (CDW) and final pH in shake flask

cultures of P. fluorescens with different inorganic

nitrogen sources at 28°C for 24 hours

61

4.6 Cell dry weight and final pH at different

concentration of yeast extract after 24 hours

fermentation of P. fluorescens at 28°C in Erlenmeyer

shake flasks (250 ml)

63

Page 16: UNIVERSITI TEKNOLOGI MALAYSIA - eprints.utm.myeprints.utm.my/id/eprint/79257/1/AzuanAbdulLatifPFChE2015.pdf · Pseudomonas fluorescens ... Kecekapan P. fluorescens untuk menyingkirkan

xvi

4.7 Cell dry weight and final pH of carbon to nitrogen

ratio after 24 hours fermentation of P. fluorescens at

28°C in Erlenmeyer shake flasks (250 ml)

64

4.8 Cell dry weight and final pH at different

concentration of K2HPO4 after 24 hours fermentation

of P. fluorescens at 28°C in Erlenmeyer shake flasks

(250 ml)

65

4.9 Cell dry weight and final pH at different

concentration of MgSO4.7H2O after 24 hours

fermentation of P. fluorescens at 28°C in Erlenmeyer

shake flasks (250 ml)

67

4.10 Mean cell was obtained at different level of each

factor

71

4.11 Significant effect on each factor on the cell biomass

production of P. fluorescens

71

4.12 Contour plot between sucrose and yeast extract when

the response is the residual cell mass

80

4.13 Contour plot between sucrose and K2HPO4 when the

response is the residual cell mass

80

4.14 Contour plot between yeast extract and K2HPO4

when the response is the residual cell mass

81

4.15 Cell dry weight, glycerol consumption and pH

changes in shake flask culture of P. fluorescens using

un-optimized medium at 28°C

84

4.16 Cell dry weight, sucrose consumption and pH

changes in shake flask culture of P. fluorescens using

optimized medium at 28°C

84

4.17 Cell dry weight, sucrose consumption, dissolve

oxygen and pH changes in batch cultivation of P.

fluorescens in a stirred tank 16-L bioreactor at 28ºC

for 30 hours without pH controlled

86

4.18 Cell dry weight, sucrose consumption, and dissolve

oxygen in batch cultivation of P. fluorescens in a

stirred tank 16-L bioreactor at 28ºC for 30 hours with

pH controlled

87

4.19 Cell dry weight, sucrose consumption, and dissolve

oxygen in fed-batch cultivation of P. fluorescens with

constant feeding of monocarbon in a stirred tank 16-

L bioreactor at 28ºC for 30 hours with pH controlled

91

4.20 Cell dry weight, sucrose consumption, and dissolve

oxygen in fed-batch cultivation of P. fluorescens with

constant feeding of full medium in 16-L bioreactor at

28ºC for 30 hours with pH controlled

93

Page 17: UNIVERSITI TEKNOLOGI MALAYSIA - eprints.utm.myeprints.utm.my/id/eprint/79257/1/AzuanAbdulLatifPFChE2015.pdf · Pseudomonas fluorescens ... Kecekapan P. fluorescens untuk menyingkirkan

xvii

4.21 Cell dry weight, sucrose consumption, and dissolve

oxygen in fed-batch cultivation of P. fluorescens with

gradual increase feeding of full medium in a stirred

tank 16-L bioreactor at 28ºC for 30 hours with pH

controlled

96

4.22 Nitrate removal performance and final pH by P.

fluorescens from un-optimized medium

99

4.23 Nitrate removal performance and final pH by P.

fluorescens from optimized medium

100

Page 18: UNIVERSITI TEKNOLOGI MALAYSIA - eprints.utm.myeprints.utm.my/id/eprint/79257/1/AzuanAbdulLatifPFChE2015.pdf · Pseudomonas fluorescens ... Kecekapan P. fluorescens untuk menyingkirkan

xviii

LIST OF SYMBOLS

% - Percentage

> - Greater than

µ - Specific growth rate (h-1)

µmax - Maximum specific growth rate (h-1)

F - Feed rate (g L-1h-1)

Ks - Substrate utilization constant (g L-1h-1)

m - Maintenance coefficient (mol substrate g-1 cell L-1)

qp - Specific rate of product formation (mg product g-1 biomass h-1)

S - Substrate concentration (g L-1)

So - Initial feed substrate concentration (g substrate L-1)

t - Time interval (h)

t0 - Initial time (h)

V - Volume of reactor (L)

v/v - Volume per volume

vvm - Volume per volume per minute

X - Biomass concentration (g L-1)

YX/S - Substrate yield coefficient (g biomass per g substrate)

βo - Regression constant

βi - Linear regression coefficient

βii - Quadratic regression coefficient

°C - Degree Celsius

g - Gram

h - Hour

kg - Kilogram

L - Litre

Page 19: UNIVERSITI TEKNOLOGI MALAYSIA - eprints.utm.myeprints.utm.my/id/eprint/79257/1/AzuanAbdulLatifPFChE2015.pdf · Pseudomonas fluorescens ... Kecekapan P. fluorescens untuk menyingkirkan

xix

M - Molarity

min - Minute

ml - Millilitre

rpm - Revolutions per minutes

Page 20: UNIVERSITI TEKNOLOGI MALAYSIA - eprints.utm.myeprints.utm.my/id/eprint/79257/1/AzuanAbdulLatifPFChE2015.pdf · Pseudomonas fluorescens ... Kecekapan P. fluorescens untuk menyingkirkan

xx

LIST OF APPENDICES

APPENDIX TITLE PAGE

A1 Media Screening 117

A2 Shake flask cultivation using different carbon

source

118

A3 Shake flask cultivation using different sucrose

concentration

118

A4 Shake flask cultivation of different organic

nitrogen source

119

A5 Shake flask cultivation of different inorganic

nitrogen source

119

A6 Shake flask cultivation of different yeast extract

concentration

120

A7 Shake flask cultivation of different C: N ratio 120

A8 Shake flask cultivation of different phosphate

concentration

121

A9 Shake flask cultivation of different Magnesium

concentration

121

A10 Growth kinetic in shake flask cultivation using

un-optimized medium

122

A11 Growth kinetic in shake flask cultivation using

optimized medium

123

A12 Batch cultivation in 16-L stirred tank bioreactor

without pH controlled

124

A13 Batch cultivation in 16-L stirred tank bioreactor

with pH controlled

125

A14 Fed-batch cultivation in 16-L stirred tank

bioreactor with mono-carbon (constant feeding)

126

A15 Fed-batch cultivation in 16-L stirred tank

bioreactor with full media solution (constant

feeding)

127

Page 21: UNIVERSITI TEKNOLOGI MALAYSIA - eprints.utm.myeprints.utm.my/id/eprint/79257/1/AzuanAbdulLatifPFChE2015.pdf · Pseudomonas fluorescens ... Kecekapan P. fluorescens untuk menyingkirkan

xxi

A16 Fed-batch cultivation in 16-L stirred tank

bioreactor with full media solution (gradually

increased)

128

A17 Nitrogen removal performance test for un-

optimized media

129

A18 Nitrogen removal performance test for optimized

media

130

Page 22: UNIVERSITI TEKNOLOGI MALAYSIA - eprints.utm.myeprints.utm.my/id/eprint/79257/1/AzuanAbdulLatifPFChE2015.pdf · Pseudomonas fluorescens ... Kecekapan P. fluorescens untuk menyingkirkan

xxii

LIST OF ABBREVIATIONS

CDW - Cell dry weight

DO - Dissolve oxygen

OD - Optical density

OD600 - Optical density at 600nm

Sp - Species

BOD - Biochemical oxygen demand

OFAT - One factor at time

(NH4)2SO4 - Ammonium sulfate

C - Carbon

CaCl2 - Calcium chloride anhydrous

CaCl2.2H2O - Calcium chloride dihydrate

CaSO4 - Calcium sulfate

CoA - Coenzyme A

CoCl2 - Cobalt (II) chloride

Cyt - Cytochrome

DHAP - Dihydroxyacetone phosphate

DNS - 3,5-dinitro-salicylic acid

FeCl3 - Iron (III) chloride anhydrous

FeSO4.7H2O - Iron (II) sulfate heptahydrate

FeSO4 - Iron (II) sulphate anhydrous

GDP - Guanosine diphosphate

H+ - Proton

H+/e - Proton to electron ratio

H2 - Hydrogen

H3BO3 - Boric acid

Page 23: UNIVERSITI TEKNOLOGI MALAYSIA - eprints.utm.myeprints.utm.my/id/eprint/79257/1/AzuanAbdulLatifPFChE2015.pdf · Pseudomonas fluorescens ... Kecekapan P. fluorescens untuk menyingkirkan

xxiii

HCl - Hydrocloric acid

KNO3 - Potassium nitrate

K2HPO4 - Dipotassium hydrogen phosphate

KH2PO4 - Potassium dihydrogen phosphate

MgSO4.7H2O - Magnesium sulphate heptahydrate

MnSO4.4H2O - Manganese (II) sulfate heptahydrate

MSG - Monosodium glutamate

N - Nitrogen

N2 - Dinitrogen

Na - Sodium

Na2HPO4 - Disodium hydrogen phosphate

Na2MoO4.2H2O - Sodium molybate dihydrate

NaCl - Sodium chloride

NADH - Reduce nicotinamide adenine dinucleotide

NADHP - Reduce nicotinamide adenine diphosphate

NDH I - NADH dehydrogenase I

NDH II - NADH dehydrogenase II

NH3 - Ammonia

NO - Nitrogen oxide

N2O - Nitrous oxide

O2 - Oxygen

P - Phosphate

PHA - Poly-beta-hydroxybutyrate

Pi - Inorganic phosphate group

TCA - Tricarboxylic acid

ZnSO4.7H2O - Zinc sulfate heptahydrate

Page 24: UNIVERSITI TEKNOLOGI MALAYSIA - eprints.utm.myeprints.utm.my/id/eprint/79257/1/AzuanAbdulLatifPFChE2015.pdf · Pseudomonas fluorescens ... Kecekapan P. fluorescens untuk menyingkirkan

1

CHAPTER 1

INTRODUCTION

1.1 Research Background

In natural environment Pseudomonas fluorescens is present as a soil micro-

organism that living in symbiosis with plants where it promotes the growth of fungi

and providing nitrogen source for plant roots (Roca and Olsson, 2001). P. fluorescens

is able to utilize NO3 as an electron acceptor in place of O2 and some others is an

obligate aerobe. Physiological and genetic features of Pseudomonas make it a

promising agent for utilization in biotechnology, agriculture and environmental

bioremediation applications. Thus P. fluorescens show a significant role in the

bioremediation of nitrogen cycle especially in denitrification steps (Hayat et al., 2010).

Oxidation of ammonia to nitrate is known as nitrification and reduction of nitrate to

nitrogen gas via nitrite is known as denitrification (Kim et al., 2008). Because of the

variability and unique characteristic of bacteria in wastewater treatment, the most

effective treatment solution is to be specific. As the present of denitrifying bacteria is

ubiquitous in wastewater treatment, thus it is the most environmental friendly method

and could provide assuring chance of nitrate waste treatment (Yang et al., 2011).

Currently, the process for nitrogen removal in wastewater treatment plants is

substantive based on the natural process of nitrifying and denitrifying microorganism

(Takaya et al., 2003). However, from the schematic cycle of the microorganisms it is

still not sufficient due to the complexity in the environment such as uneven distribution

Page 25: UNIVERSITI TEKNOLOGI MALAYSIA - eprints.utm.myeprints.utm.my/id/eprint/79257/1/AzuanAbdulLatifPFChE2015.pdf · Pseudomonas fluorescens ... Kecekapan P. fluorescens untuk menyingkirkan

2

of dissolve oxygen (DO) and inadequate amount of substrate (Patureau et al., 2000).

Most of the researcher have found groups of heterotrophic nitrification and aerobic

denitrification microorganisms, such as Paracoccus denitrificans (formerly known as

Thiosphaera pantotropha), Alcaligenes faecalis, Pseudomonas stutzeri, Microvirgula

aerodenitrificans and Bacillus isolated from soils and wastewater treatment (Joo et al.,

2006).

Globally, treatment by microorganisms has received wide attention due to their

efficiency (Jechalke et al., 2010; Perelo, 2010). Unfortunately, the natural process is

slow before the clean water is discharge to the environment. These may cause from

the low amount of biomass from denitrifying bacteria and the condition inside

treatment plant may inhibit their growth. It is believed that P. fluorescens required a

substantial study on improving the growth kinetic and further understanding and high

cell mass production. The high yield of P. fluorescens biomass is generally depends

on well-defined condition type of carbon source, nitrogen source and minerals

necessity. Further investigation is needed to figure out the effect of each chemical

ingredient on P. fluorescens growth kinetic. According to the analysis by Roca and

Olsson (2001) reaction of P. fluorescens could be quantified. Glucose is mainly

converted through glycolysis pathway, succinate and citrate through the Tricarboxylic

Acid cycle whereas acetate is used as a gluconeogenic substrate. Moreover according

to Chawla et al., (2009) nitrogen source favors the biomass production for bacteria.

This is because the nature of these substrates has the ability and characteristic in

metabolism of microorganism. There are various type of nitrogen source such as yeast

extract, soy flour, corn steep powder, peptone and a few inorganic nitrogen sources.

Even though complex media would give significant support to enhance the growth and

production of biomass but the necessities of economic value, knowing the entire

chemical composition and to have purification of product make chemically defined

medium is important for industrial use.

Page 26: UNIVERSITI TEKNOLOGI MALAYSIA - eprints.utm.myeprints.utm.my/id/eprint/79257/1/AzuanAbdulLatifPFChE2015.pdf · Pseudomonas fluorescens ... Kecekapan P. fluorescens untuk menyingkirkan

3

1.2 Problem Statement

Pseudomonas fluorescens is an effective denitrification bacterium in wastewater.

It can utilize nitrate and convert to nitrogen gas. The higher cell mass of denitrification

bacteria, the more of nitrate will be utilize. However, the studies of biomass production

from P. fluorescens are very limited. There is little information available about

medium composition for cell mass production. Most researchers are either focused on

genetic enrichment of denitrifying activities or production of secondary metabolites.

Therefore, it is important to determine the optimum cultivation medium for high cell

mass production of P. fluorescens particularly the requirement for the most effective

carbon and nitrogen source. It is also important to look for new chemically defined

medium or semi-defined medium to produce high cell density of P. fluorescens. In

addition, dissolve oxygen and pH condition could be the limiting growth factors for P.

fluorescens. Thus, further studies on cultivation strategy are needed to increase

biomass production.

1.3 Objective

The main objective of the present work is to develop an optimum culture medium

and cultivation strategy for biomass production of P. fluorescens as nitrate removal

microorganisms in wastewater treatment.

Page 27: UNIVERSITI TEKNOLOGI MALAYSIA - eprints.utm.myeprints.utm.my/id/eprint/79257/1/AzuanAbdulLatifPFChE2015.pdf · Pseudomonas fluorescens ... Kecekapan P. fluorescens untuk menyingkirkan

4

1.4 Scopes of Research

The scopes of the research are:

a) Media screening for high cell mass production of P. fluorescens.

b) Media optimization for high cell mass production of P. fluorescens using one

factor at time (OFAT) and statistical approaches (RSM).

c) Batch cultivation of P. fluorescens in a 16-L pilot scale stirred tank bioreactor

for high cell mass production under controlled and uncontrolled pH condition.

d) Fed-batch cultivation of P. fluorescens in a 16-L pilot scale stirred tank

bioreactor for high cell biomass production.

Page 28: UNIVERSITI TEKNOLOGI MALAYSIA - eprints.utm.myeprints.utm.my/id/eprint/79257/1/AzuanAbdulLatifPFChE2015.pdf · Pseudomonas fluorescens ... Kecekapan P. fluorescens untuk menyingkirkan

104

REFERENCES

Abouseoud, M., Maachi, R., Amrane, A., Boudergua, S and Nabi, A. (2008).

Evaluation of different carbon and nitrogen sources in production of

biosurfactant by Pseudomonas fluorescens. Desalination, 223(1), 143-151.

Alfenore, S., Cameleyre, X., Benbadis, L., Bideaux, C., Uribelarrea, J. L., Goma,

G and Guillouet, S. E. (2004). Aeration strategy: a need for very high

ethanol performance in Saccharomyces cerevisiae fed-batch process.

Applied Microbiology and Biotechnology, 63(5), 537-542.

Aremu, M. O., Olu-Arotiowa, O. A., Layokun, S. K and Solomon, B. O. (2010).

Growth of Pseudomonas fluorescens on cassava starch hydrolysate for

polyhydroxybutyrate production. Journal of Applied Sciences and

Environmental Management, 14(4), 61-66.

B. J. Cosby. (2003). "The Nitrogen Cascade." Bioscience. 53(4), 341-356.

Barak Y, Tal Y, Van Rijn J (2000). Relationship between nitrite reduction and

active phosphate uptake in the phosphate accumulating dentrifier

Pseudomonas sp. strain JR 12. Applied and Environmental Microbiology.

66(12), 5236–5240.

Belasco, I. J. (1954). Comparison of urea and protein meals as nitrogen sources for

rumen micro-organisms: urea utilization and cellulose digestion. Journal of

Animal Science, 13(4), 739-747.

Bezerra, R. P., Matsudo, M. C., Converti, A., Sato, S and De Carvalho, J. C. M.

(2008). Influence of ammonium chloride feeding time and light intensity on

the cultivation of Spirulina (Arthrospira) platensis. Biotechnology and

Bioengineering, 100(2), 297-305.

Bevan, M. W and Franssen, M. C (2006). Investing in green and white biotech.

Nature Biotechnology, 24(7), 765-767.

Page 29: UNIVERSITI TEKNOLOGI MALAYSIA - eprints.utm.myeprints.utm.my/id/eprint/79257/1/AzuanAbdulLatifPFChE2015.pdf · Pseudomonas fluorescens ... Kecekapan P. fluorescens untuk menyingkirkan

105

Bosch M (1992). Phosphorus uptake kinetics of Acinetobacter in activated mixed

liquor. MSc thesis, University of Pretoria, Pretoria, South Africa.

Cao, J. Y., Zhang, G. J., Mao, Z. S., Fang, Z. H., Yang, C., & Han, B. L. (2009).

Influence of Mg 2+ on the growth and activity of sulfate reducing bacteria.

Hydrometallurgy, 95(1), 127-134.

Carta-Escobar, F., Pereda-Marín, J., Álvarez-Mateos, P., Romero-Guzmán, F.,

Durán-Barrantes, M.M., Barriga-Mateos, F. (2004). Aerobic purification of

dairy wastewater in continuous regime. Part I: analysis of the biodegradation

process in two reactor configurations. Biochemical. Engineering. J. 21,

183–191.

Chang, H. N., Yoo, I. K., and Kim, B. S. (1994). High density cell culture by

membrane-based cell recycle. Biotechnology advances, 12(3), 467-487.

Chang, J. S., Law, R., and Chang, C. C. (1997). Biosorption of lead, copper and

cadmium by biomass of Pseudomonas aeruginosa PU21. Water research,

31(7), 1651-1658.

Chawla, P. R., Bajaj, I. B., Survase, S. A., and Singhal, R. S. (2009). Microbial

cellulose: fermentative production and applications. Food Technology and

Biotechnology, 47(2), 107-124.

Chen G and Page W.J. (1997). Production of Poly-β-hydroxybutyrate by

Pseudomonas cepacia in a two-stage fermentation process. Biotechnology

Techniques. 11, 347-350.

Chen, J., Zhang, Y., Du, G. C., Hua, Z. Z., and Zhu, Y. (2007). Biodegradation of

polyvinyl alcohol by a mixed microbial culture. Enzyme and microbial

technology, 40(7), 1686-1691.

Choi, J. H., Keum, K. C., and Lee, S. Y. (2006). Production of recombinant proteins

by high cell density culture of Escherichia coli. Chemical Engineering

Science, 61(3), 876-885.

Demain, A. L. (2010). Induction of microbial secondary metabolism. International

Microbiology, 1(4), 259-264.

Desai, J. D and Banat, I. M. (1997). Microbial production of surfactants and their

commercial potential. Microbiology and Molecular Biology Reviews, 61(1),

47-64.

Page 30: UNIVERSITI TEKNOLOGI MALAYSIA - eprints.utm.myeprints.utm.my/id/eprint/79257/1/AzuanAbdulLatifPFChE2015.pdf · Pseudomonas fluorescens ... Kecekapan P. fluorescens untuk menyingkirkan

106

Dhir, S., Morrow, K. J., Rhinehart, R. R., and Wiesner, T. (2000). Dynamic

optimization of hybridoma growth in a fed‐batch bioreactor. Biotechnology

and Bioengineering, 67(2), 197-205.

El Enshasy, H., Then, C., Othman, N. Z., Al Homosany, H., Sabry, M., Sarmidi, M.

R., and Aziz, R. A. (2013). Enhanced xanthan production process in shake

flasks and pilot scale bioreactors using industrial semi defined medium.

African Journal of Biotechnology, 10(6), 1029-1038.

Frink, C. R., P. E. Waggoner, and J. H. Ausubel. (1999). "Nitrogen fertilizer:

Retrospect and prospect." Proc. Natl. Acad. Sci. USA. 96, 1175–1180.

Galloway, J. N., J. D. Aber, J. W. Erisman, S. P. Seitzinger, R. W. Howarth, E. B.

Cowling, and Haggag, W. M., and El Soud, M. A. (2012). Production and

Optimization of Pseudomonas fluorescens Biomass and Metabolites for

Biocontrol of Strawberry Grey Mould. American Journal of Plant

Sciences, 3, 836-845.

Gamal, R. F., Abdelhady, H. M., Khodair, T. A., El-Tayeb, T. S., Hassan, E. A.,

and Aboutaleb, K. A. (2013). Semi-scale production of PHAs from waste

frying oil by Pseudomonas fluorescens S48. Brazilian Journal of

Microbiology, 44(2), 539-549.

Giridhar R. and Srivastava A.K. (2000).Fed-batch sorbose fermentation using pulse

and multiple feeding strategies for productivity improvement.

Biotechnology and Bioprocess Engineering, 5, 340-344.

Goh, W. N., Rosma, A., Kaur, B., Fazilah, A., Karim, A. A., and Bhat, R. (2012).

Fermentation of black tea broth (Kombucha): I. Effects of sucrose

concentration and fermentation time on the yield of microbial cellulose.

International Food Research Journal, 19(1), 109-117.

Haggag, W. M., and El Soud, M. A. (2012). Production and Optimization of

Pseudomonas fluorescens Biomass and Metabolites for Biocontrol of

Strawberry Grey Mould. American Journal of Plant Sciences, 3, 836-845.

Hallberg, G. R. (1989). Nitrate in ground water in the United States. New York,

Elsevier.

Hallin, S. and M. Pell. (1998). "Metabolic properties of denitrifying bacteria

adapting to methanol and ethanol in activated sludge - I. Stationary cultures

" Water Research. 32(1), 13-18.

Page 31: UNIVERSITI TEKNOLOGI MALAYSIA - eprints.utm.myeprints.utm.my/id/eprint/79257/1/AzuanAbdulLatifPFChE2015.pdf · Pseudomonas fluorescens ... Kecekapan P. fluorescens untuk menyingkirkan

107

Hayat, R., Ali, S., Amara, U., Khalid, R., and Ahmed, I. (2010). Soil beneficial

bacteria and their role in plant growth promotion: a review. Annals of

Microbiology, 60(4), 579-598.

Hidaka T, Yamada H, Kawamura M, Tsuno H. (2002) Effect of dissolved oxygen

conditions on nitrogen removal in continuously fed intermittent-aeration

process with two tanks. Water Science and Technology 45:181–188.

Horn, U., Strittmatter, W., Krebber, A., Knüpfer, U., Kujau, M., Wenderoth, R.,

and Riesenberg, D. (1996). High volumetric yields of functional dimeric

mini antibodies in Escherichia coli, using an optimized expression vector

and high-cell-density fermentation under non-limited growth

conditions. Applied Microbiology and Biotechnology, 46(5-6), 524-532.

Ishihara, M., Matsunaga, M., Hayashi, N., and Tišler, V. (2002). Utilization of D-

xylose as carbon source for production of bacterial cellulose. Enzyme and

microbial technology, 31(7), 986-991.

Jathore, N. R., Bule, M. V., Tilay, A. V., and Annapure, U. S. (2012). Microbial

levan from Pseudomonas fluorescens: Characterization and medium

optimization for enhanced production. Food Science and

Biotechnology, 21(4), 1045-1053.

Jechalke, S., Vogt, C., Reiche, N., Franchini, A.G., Borsdorf, H., Neu, T.R.,

Richnow, H.H. (2010). Aerated treatment pond technology with biofilm

promoting mats for the bioremediation of benzene, MTBE and ammonium

contaminated groundwater. Water Research. 44, 1785–1796.

Jenkins D, Richard MG, Daigger G T. (1993). Manual on the causes and control of

activated sludge bulking and foaming. 2nd ed. Michigan: Lewis

Publishers.120-123.

Jensen, M. B., Jørgensen, P. R., Hansen, H. C. B., and Nielsen, N. E. (1998).

Biopore mediated subsurface transport of dissolved orthophosphate.

Journal of Environmental Quality, 27(5), 1130-1137.

Jetten MSM, Schmid M, Schmidt I, Wubben M, van Dongen U, Abma W. (2002)

Improved nitrogen removal by application of new nitrogen cycle bacteria.

Rev Environ Sci Bio/Technol. 1, 51– 63.

Page 32: UNIVERSITI TEKNOLOGI MALAYSIA - eprints.utm.myeprints.utm.my/id/eprint/79257/1/AzuanAbdulLatifPFChE2015.pdf · Pseudomonas fluorescens ... Kecekapan P. fluorescens untuk menyingkirkan

108

Joice, P. A., and Parthasarathi, R. (2014). Optimization of biosurfactant production

from Pseudomonas aeruginosa PBSC1. International Journal Current

Microbiology and Applied Science 3(9), 140-151.

Joo, H.S., Hirai, M., Shoda, M. (2006). Piggery wastewater treatment using

Alcaligenes faecalis strain No. 4 with heterotrophic nitrification and aerobic

denitrification. Water Research. 40, 3029–3036.

Joshi, R., Passner, J. M., Rohs, R., Jain, R., Sosinsky, A., Crickmore, M. A., and

Mann, R. S. (2007). Functional specificity of a Hox protein mediated by the

recognition of minor groove structure. Cell, 131(3), 530-543.

Kennedy C., Rudnick P., MacDonald M.L. and Melton T. Genus III Pseudomonas

fluorescens 1901, 567AL. Bergey’s Manual of Systematic Bacteriology

Volume 2, Part B, 2nd edition East Lansing, USA: Springer. 384 – 401;

2005.

Kim, M., Jeong, S.Y., Yoon, S.J., Cho, S.J., Kim, Y.H., Kim, M.J., Ryu, E.Y., Lee,

S.J. (2008). Aerobic denitrification of Pseudomonas putida AD-21 at

different C/N ratios. Journal Bioscience Bioengineering. 106, 498–502.

Knobeloch, L., B. Salna, A. Hogan, J. Postle, and H.Anderson. (2000). "Blue babies

and nitratecontaminated well water " Environmental Health Perspectives.

108(7), 675-678.

Korz, D. J., Rinas, U., Hellmuth, K., Sanders, E. A., and Deckwer, W. D. (1995).

Simple fed-batch technique for high cell density cultivation of Escherichia

coli.Journal of Biotechnology, 39(1), 59-65.

Koutinas, A. A., Wang, R., and Webb, C. (2004). Evaluation of wheat as generic

feedstock for chemical production. Industrial Crops and Products, 20(1),

75-88.

Kuntiya, A., Hanmoungjai, P., Techapun, C., Sasaki, K., and Seesuriyachan, P.

(2010). Influence of pH, sucrose concentration and agitation speed on

exopolysaccharide production by Lactobacillus confusus TISTR 1498 using

coconut water as a raw material substitute. Maejo International Journal of

Science and Technology, 4(2), 318-330.

Lee J., Lee S.Y., Park S. and Middelberg A.P.J. (1999).Control of fed-batch

fermentations. Biotechnology Advances, 17, 29-48.

Page 33: UNIVERSITI TEKNOLOGI MALAYSIA - eprints.utm.myeprints.utm.my/id/eprint/79257/1/AzuanAbdulLatifPFChE2015.pdf · Pseudomonas fluorescens ... Kecekapan P. fluorescens untuk menyingkirkan

109

Lee, I. Y., Choi, D. K., Yoon, S. C., and Park, Y. H. (1996). High Cell Density

Cultivation of Pseudomonas putida BMOl Using Glucose. Journal of

Microbiology and Biotechnology, 6(3), 221-224.

Li, B., Irvin, S., and Baker, K. (2007). The variation of nitrifying bacterial

population sizes in a sequencing batch reactor (SBR) treating low, mid, high

concentrated synthetic wastewater. Journal of Environmental Engineering

and Science, 6(6), 651-663.

Li, M., Liao, X., Zhang, D., Du, G., and Chen, J. (2011). Yeast extract promotes

cell growth and induces production of polyvinyl alcohol-degrading

enzymes. Enzyme research. 2011. 1-8.

Lu, J., Peng, C., Ji, X. J., You, J., Cong, L., Ouyang, P., and Huang, H. (2011).

Fermentation characteristics of Mortierella alpina in response to different

nitrogen sources. Applied Biochemistry and Biotechnology, 164(7), 979-

990.

Lundstedt, T., Seifert, E., Abramo, L., Thelin, B., Nyström, Å., Pettersen, J., and

Bergman, R. (1998). Experimental design and optimization. Chemometrics

and intelligent laboratory systems, 42(1), 3-40.

Lynch, W. H., and Franklin, M. (1978). Effect of temperature on diauxic growth

with glucose and organic acids in Pseudomonas fluorescens. Archives of

microbiology, 118(2), 133-140.

Mao, Y., Hu, H., and Yan, Y. (2011). Biosorption of cesium (I) from aqueous

solution by a novel exopolymers secreted from Pseudomonas fluorescens

C-2: Equilibrium and kinetic studies. Journal of Environmental

Sciences, 23(7), 1104-1112.

Momba, M. N. B., and Cloete, T. E. (1996). Biomass relationship to growth and

phosphate uptake of Pseudomonas fluorescens, Escherichia coli and

Acinetobacter radioresistens in mixed liquor medium. Journal of Industrial

Microbiology, 16(6), 364-369.

Naem ud din Ahmad, N., Haiying, X. U., Liping, C. H. E. N., Zhipei, L. I. U., and

Shuangjiang, L. I. U. (2008). Enhanced biological nutrient removal by the

alliance of a heterotrophic nitrifying strain with a nitrogen removing

ecosystem. Journal of Environmental Sciences, 20(2), 216-223.

Page 34: UNIVERSITI TEKNOLOGI MALAYSIA - eprints.utm.myeprints.utm.my/id/eprint/79257/1/AzuanAbdulLatifPFChE2015.pdf · Pseudomonas fluorescens ... Kecekapan P. fluorescens untuk menyingkirkan

110

Nakano, K., Rischke, M., Sato, S., and Märkl, H. (1997). Influence of acetic acid

on the growth of Escherichia coli K12 during high-cell-density cultivation

in a dialysis reactor. Applied Microbiology and Biotechnology, 48(5), 597-

601.

Naqvi, S. W. A., D. A. Jayakumar, P. V. Narvekar, H. Naik, V. V. S. S. Sarma, W.

D'Souza, S. Joseph , and M. D. George (2000). "Increased marine

production of N2O due to intensifying anoxia on the Indian continental

shelf." Nature. 408, 346-349.

Neef, A., A. Zaglauer, H. Meier, R. Amann, H. Lemmer, and K.-H. Schleifer.

(1996). "Population analysis in a denitrifying sand filter: Conventional and

in situ identification of Paracoccus spp. in methanol-fed biofilms." Applied

and Envionmental Microbiology. 62(12). 4329-4339.

Nielsen, P. H., Thomsen, T. R., and Nielsen, J. L. (2004). Bacterial composition of

activated sludge - Importance for floc and sludge properties. Water Sci.

Technol. 49(10), 51–58.

Nolan, B. T., B. C. Ruddy, K. J. Hitt, and D. R. Helsel (1997). "Risk of nitrate in

ground waters of the United States national perspective." Environmental

Science and Technology. 31(8), 2229-2236.

Okaygun, M. S., Green, L. A., and Akgerman, A. (1992). Effect of consecutive

pulsing of an inhibitory substrate on biodegradation kinetics. Environmental

Science and Technology, 26(9), 1746-1752.

Onken, U., and Jostmann, T. (1984). Influence of pressure on growth of

Pseudomonas fluorescens. Biotechnology Letters, 6(7), 413-418.

Ozer, D., and Elibol, M. (2000). Effects of some factors on lipase production by

Rhizopus arrhizus. Journal of food science and technology, 37(6), 661-664.

Pai, S.L., N.-M. Chong, and C.-H. Chen. (1999). "Potential applications of aerobic

denitrifying bacteria as bio agents in wastewater treatment." Bioresource

Technology 68(2), 179-185.

Park, Y. S., Kai, K., Iijima, S., and Kobayashi, T. (1992). Enhanced β‐galactosidase

production by high cell‐density culture of recombinant Bacillus subtilis with

glucose concentration control. Biotechnology and bioengineering,40(6),

686-696.

Page 35: UNIVERSITI TEKNOLOGI MALAYSIA - eprints.utm.myeprints.utm.my/id/eprint/79257/1/AzuanAbdulLatifPFChE2015.pdf · Pseudomonas fluorescens ... Kecekapan P. fluorescens untuk menyingkirkan

111

Patureau, D., Zumstein, E., Delgenes, J.P., Moletta, R. (2000). Aerobic denitrifiers

isolated from diverse natural and managed ecosystems. Microbiology

Ecology. 39, 145–152.

Paulsen, I. T., Press, C. M., Ravel, J., Kobayashi, D. Y., Myers, G. S., Mavrodi, D.

V., and Loper, J. E. (2005). Complete genome sequence of the plant

commensal Pseudomonas fluorescens Pf-5. Nature biotechnology, 23(7),

873-878.

Peng, Y., He, Y., Wu, Z., Lu, J., and Li, C. (2014). Screening and optimization of

low-cost medium for Pseudomonas putida Rs-198 culture using

RSM. Brazilian Journal of Microbiology, 45(4), 1229-1237.

Perelo, L.W. (2010). Review: in situ and bioremediation of organic pollutants in

aquatic sediments. J. Hazard. Mater. 177, 81–89.

Prabakaran, G., Hoti, S. L., and Paily, K. P. (2009). Development of cost-effective

medium for the large-scale production of a mosquito pupicidal metabolite

from Pseudomonas fluorescens. Migula. Biological Control, 48(3), 264-

266.

Preusting, H., van Houten, R., Hoefs, A., van Langenberghe, E. K., Favre‐Bulle,

O., and Witholt, B. (1993). High cell density cultivation of Pseudomonas

oleovorans: Growth and production of poly (3‐hydroxyalkanoates) in two‐

liquid phase batch and fed‐batch systems. Biotechnology and

Bioengineering, 41(5), 550-556.

Qazi, M. A., Malik, Z. A., Qureshi, G. D., Hameed, A., and Ahmed, S. (2013).

Yeast Extract as the Most Preferable Substrate for Optimized Biosurfactant

Production by rhlB Gene Positive Pseudomonas putida SOL-10

Isolate. Journal Bioremediation Biodegradation, 4(204), 2.

Qin, B.Q., Zhu, G.W., Gao, G., Zhang, Y.L., Li, W., Paerl, H.W., Carmichael,

W.W. (2010). A drinking water crisis in Lake Taihu, China: linkage to

climatic variability and lake management. Environmental Management 45,

105–112.

Regan JM, Harrington GW, Noguera DR (2002). Ammonia- and nitrite-oxidizing

bacterial communities in a pilot scale chloraminated drinking water

distribution system. Applied Environmental Microbiology 68(1):73–81.

Page 36: UNIVERSITI TEKNOLOGI MALAYSIA - eprints.utm.myeprints.utm.my/id/eprint/79257/1/AzuanAbdulLatifPFChE2015.pdf · Pseudomonas fluorescens ... Kecekapan P. fluorescens untuk menyingkirkan

112

Renouf, M. A., Wegener, M. K., and Nielsen, L. K. (2008). An environmental life

cycle assessment comparing Australian sugarcane with US corn and UK

sugar beet as producers of sugars for fermentation. Biomass and

Bioenergy, 32(12), 1144-1155.

Rich, J. J. and D. D. Myrold. (2004). "Community composition and activities of

denitrifying bacteria from adjacent agricultural soil, riparian soil, and creek

sediment in Oregon, USA." Soil Biology and Biochemistry. 36, 1431-1441.

Riesenberg D and Guthke R. (1999). High-cell-density cultivation of

microorganisms. Applied Microbiology Biotechnology 51:350-360.

Robinson, R. K. (1999). Encyclopedia of food microbiology. C. A. Batt (Ed.).

Academic press.

Roca, C and Olsson, L. (2001). Dynamic responses of Pseudomonas fluorescens

DF57 to nitrogen or carbon source addition. Journal of

Biotechnology, 86(1), 39-50.

Roubos, J. A., Van Straten, G., and Van Boxtel, A. J. B. (1999). An evolutionary

strategy for fed-batch bioreactor optimization; concepts and performance.

Journal of Biotechnology, 67(2), 173-187.

Rudolphi, A., A. Tschech, and G. Fuchs. (1991). “Anaerobic degradation of cresols

by denitrifying bacteria." Archives of Microbiology. 155(3), 238-248.

Santos, A. S., Sampaio, A. P. W., Vasquez, G. S., Santa Anna, L. M., Pereira Jr, N.,

and Freire, D. M. (2002). Evaluation of different carbon and nitrogen

sources in production of rhamnolipids by a strain of Pseudomonas

aeruginosa. In Biotechnology for Fuels and Chemicals (pp. 1025-1035).

Humana Press.

Schramm, A., de Beer, D., Wagner, M., and Amann, R. (1998). Identification and

activities in situ of Nitrosospira and nitrospira spp. as dominant populations

in a nitrifying fluidized bed reactor. Applied and Environmental

Microbiology, 64(9), 3480-3485.

Sgountzos, I. N., Pavlou, S., Paraskeva, C. A., and Payatakes, A. C. (2006). Growth

kinetics of Pseudomonas fluorescens in sand beds during biodegradation of

phenol. Biochemical Engineering Journal, 30(2), 164-173.

Shaheen, R., Shirley, M., and Jones, D. T. (2000). Comparative fermentation

studies of industrial strains belonging to four species of solvent-producing

Page 37: UNIVERSITI TEKNOLOGI MALAYSIA - eprints.utm.myeprints.utm.my/id/eprint/79257/1/AzuanAbdulLatifPFChE2015.pdf · Pseudomonas fluorescens ... Kecekapan P. fluorescens untuk menyingkirkan

113

clostridia. Journal of Molecular Microbiology and Biotechnology, 2(1),

115-124.

Shoji, H., Cheirsilp, B., Shimizu, H., and Shioya, S. (2003). Competition between

nitrate and nitrite reduction in denitrification by Pseudomonas fluorescens.

Journal of Bioscience Bioengineering. 96, 279–284.

Shuler M.L., Kargi F. Bioprocess Engineering Basic Concept. Prentise Hall

PTR.2002.

Soesanto, L., Mugiastuti, E., and Rahayuniati, R. F. (2011). Biochemical

characteristic of Pseudomonas fluorescens P60. Journal Biotechnology

Biodiversity, 2, 19-26.

Song, B., N. J. Palleroni, and M. M. Häggblom. (2000). "Isolation and

characterization of diverse halobenzoate-degrading denitrifying bacteria

from soils and sediments" Applied and Envionmental Microbiology. 66(8),

3446-3453.

Souw P., Demain A.L. (1979). Nutritional Studies on Xanthan Production

Xanthomonas campestris NRRL B1459. Department of Nutrition and Food

Science, Massachusetts Institute of Technology, Cambridge. 1979.

Srivastava, R and Shalini, R. (2008). Antifungal activity of Pseudomonas

fluorescens against different plant pathogenic fungi. Journal of

Environmental, Agriculture and Food Chemistry, 7, 2789-2796.

Standbury P.F., Whitaker A. and Hall S.J. Principles of Fermentation Technology.

Burlington:Butterworth-Heinemann. 2003.

Sun Z., Ramsay J.A. and Guay M. (2006).Automated feeding strategies for high

cell density fed-batch cultivation of Pseudomonas putida KT 2440. Applied,

Microbiology and Biotechnology, 71, 423-431.

Sung-Mi Lim, Jian Rong Wu, Jin-Woo Lee and Sung- Koo Kim. (2003).

Optimization of culture condition for the gellan production by Pseudomonas

elodea ATCC 31461. Journal of Life Science, 13(5), 705-711.

Suzuki, T., Mushiga, Y., Yamane, T., and Shimizu, S. (1988). Mass production of

lipase by fed batch culture of Pseudomonas fluorescens. Applied

Microbiology and Biotechnology, 27(5-6), 417-422.

Suzuki, T., Yamane, T and Shimizu, S. (1986). Mass production of poly-β

Page 38: UNIVERSITI TEKNOLOGI MALAYSIA - eprints.utm.myeprints.utm.my/id/eprint/79257/1/AzuanAbdulLatifPFChE2015.pdf · Pseudomonas fluorescens ... Kecekapan P. fluorescens untuk menyingkirkan

114

hydroxybutyric acid by fed-batch culture with controlled carbon and

nitrogen feeding. Applied Microbiology and Biotechnology, 24(5), 370-

374.

Suzuki, T., Yamane, T and Shimizu, S. (1987). Mass production of thiostrepton by

fed-batch culture of Streptomyces laurentii with pH-stat modal feeding of

multi-substrate. Applied microbiology and biotechnology, 25(6), 526-531.

Takaya, N., Catalan-Sakairi, M. A. B., Sakaguchi, Y., Kato, I., Zhou, Z and

Shoun, H. (2003). Aerobic denitrifying bacteria that produce low levels of

nitrous oxide. Applied and Environmental Microbiology, 69(6), 3152-3157.

Tilman, D., J. Fargione, B. Wolff, C. DÕAntonio, A. Dobson, R. Howarth, D.

Schindler, W. H. Schlesinger, D. Simberloff, and D. Swackhamer. (2001).

"Forecasting Agriculturally Driven Global Environmental Change."

Science. 292, 281- 284.

Tinoco, R., Acevedo, A., Galindo, E., and Serrano-Carreón, L. (2011). Increasing

Pleurotus ostreatus laccase production by culture medium optimization and

copper/lignin synergistic induction. Journal of Industrial Microbiology and

Biotechnology, 38(4), 531-540.

Todaro, C. M and Vogel, H. C. (Eds.). (2014). Fermentation and biochemical

engineering handbook. William Andrew.

Valappil, S. P., Misra, S. K., Boccaccini, A. R., Keshavarz, T., Bucke, C and Roy,

I. (2007). Large-scale production and efficient recovery of PHB with

desirable material properties, from the newly characterised Bacillus cereus

SPV. Journal of Biotechnology, 132(3), 251-258.

Van Dongen U, Jetten MSM, Van Loosdrecht MCM. (2001). The SHARON-

ANAMMOX process for treatment of ammonium rich wastewater. Water

Sci Technol. 44, 153– 60.

Wafaa M, H and Mostafa, A. E. S. (2012). Production and optimization of

Pseudomonas fluorescens biomass and metabolites for biocontrol of

strawberry grey mould. American Journal of Plant Sciences, (3). 836-845.

Wang, J. H., Baltzis, B. C and Lewandowski, G. A. (1995). Fundamental

denitrification kinetic studies with Pseudomonas

denitrificans. Biotechnology and bioengineering, 47(1), 26-41.

Werner M and Kayser R. (1991) Denitrification with biogas as external carbon

Page 39: UNIVERSITI TEKNOLOGI MALAYSIA - eprints.utm.myeprints.utm.my/id/eprint/79257/1/AzuanAbdulLatifPFChE2015.pdf · Pseudomonas fluorescens ... Kecekapan P. fluorescens untuk menyingkirkan

115

source.Water Science Technology. 23, 701–708.

Wong H.H., Kim Y.C., Lee S.Y. and Chang H.N.(1998).Effect of post-induction

nutrient feeding strategies on the production of bio adhesive protein in

Escherichia coli. Biotechnology and Bioengineering, 60, 271-276.

Wu Z., Du G. and Chen J. (2003).Effects of dissolved oxygen concentration and

do-stat feeding strategy on coq10 production with Rhizobium radiobacter.

World Journal of Microbiology and Biotechnology, 19, 925-928.

Xiong, W., Li, X., Xiang, J and Wu, Q. (2008). High-density fermentation of

microalga Chlorella protothecoides in bioreactor for microbio-diesel

production. Applied Microbiology and Biotechnology, 78(1), 29-36.

Yang, C.Y., Shih Chuan, M.F. Cheng, Chuan, and Y.L. Hsieh (1998)."Calcium,

magnesium, and nitrate in drinking water and gastric cancer mortality."

Cancer Science. 89(2), 124-130.

Yang, X.P., Wang, S.M., Zhang, D.W., Zhou, L.X. (2011). Isolation and nitrogen

removal characteristics of an aerobic heterotrophic nitrifying–denitrifying

bacterium, Bacillus subtilis A1. Bio-resource. Technology. 102, 854–862.

Yao, S., Ni, J., Chen, Q and Borthwick, A. G. (2012). Enrichment and

characterization of a bacteria consortium capable of heterotrophic

nitrification and aerobic denitrification at low temperature. Bioresource

technology. 127, 151-157.

Yee L. and Blanch H.W. (1993).Recombinant trypsin production in high cell

density fed-batch cultures in Escherichia coli. Biotechnology and

Bioengineering, 41, 781-790.

Younesi, H., Najafpour, G., Ismail, K. S. K., Mohamed, A. R. and Kamaruddin, A.

H. (2008). Biohydrogen production in a continuous stirred tank bioreactor

from synthesis gas by anaerobic photosynthetic bacterium: Rhodopirillum

rubrum. Bioresource technology, 99(7), 2612-2619.

Yuan, L. L., Li, Y. Q., Wang, Y., Zhang, X. H., and Xu, Y. Q. (2008). Optimization

of critical medium components using response surface methodology for

phenazine-1-carboxylic acid production by Pseudomonas sp. M-

18Q.Journal of Bioscience and Bioengineering, 105(3), 232-237.

Zhao, J.H., Lou, Y., and Yu, Z.S. (2008). Isolation and Characterization of

Page 40: UNIVERSITI TEKNOLOGI MALAYSIA - eprints.utm.myeprints.utm.my/id/eprint/79257/1/AzuanAbdulLatifPFChE2015.pdf · Pseudomonas fluorescens ... Kecekapan P. fluorescens untuk menyingkirkan

116

Efficient COD Degrading Bacteria from Municipal Wastewater.

Proceedings in the 2nd International Conference of Bioinformatics and

Biomedical Engineering, ICBEE. 3625-3628.

Zhao, X., Chen, S. X., Xie, Z. X., and Shen, P. (2006). Isolation, identification and

over siderophores production of Pseudomonas fluorescens sp-f Acta

Microbiologica Sinica, 46(5), 691.

Zumft, W. G. (1992). The denitrifying procaryotes. The procaryotes. New York,

Springer-Verlag. 1, 554-582.

Zumft, W. G. (1997). "Cell biology and molecular basis of denitrification."

Microbiology and Molecular Biology Reviews. 61(4), 533-616.