unsur-unsur blok f

Upload: rapuspita

Post on 16-Oct-2015

270 views

Category:

Documents


6 download

TRANSCRIPT

Slide 1

Blok f (Lantanida dan Aktinida)Disusun Oleh:Astika Rahayu (3315126582)Galuh Putri Erika Wati (3315126590)Rahmi Hayatunnufus (3315126599)Retno Ayu Puspita (3315126600)Serfika Rahmawati (3315126606)

1. Pengertian dari lantanida dan aktinida.Lantanida dan aktinida merupakan unsur transisi blok f yang sifatnya sangat berbeda dengan unsur transisi blok d. Unsur ini biasanya diletakkan terpisah dalam tabel periodik unsur, ini dikarenakan keperiodikan strukrur elektronik yang sangat berbeda dengan yang lain.1. A. Pengertian LantanidaLantanida adalah kelompokunsur kimiayang terdiri dari 15 unsur, mulailantanium(La) sampailutetium(Lu) padatabel periodik, dengan nomor atom 57 sampai 71. Semua lantanida, kecuali lutetium, adalah unsur blok-f yang berarti bahwaelektronnyaterisi sampai orbit 4f.Laktanida sering disebut sebagai tanah jarang. Walaupun laktanida sering disebut sebagai tanah jarang namun, kelimpahan unsur ini sangat banyak di kerak bumi. Laktanida ini biasanya menggunakan simbol Ln.1.B . Pengertian AktinidaAktinidaadalah kelompokunsur kimiayang mencakup 15 unsur antaraaktiniumdanlawrensiumpadatabel periodik, dengannomor atomantara 89 sampai dengan 103. Semua aktinida, kecuali lawrensium merupakan unsur blok-f. Unsur-unsur kelompok aktinida adalahradioaktif, dengan hanya aktinium,torium, danuraniumyang secara alami ditemukan dikulit bumi.

unsur-unsur dari lantanida yaitu:Lantanum (La) Cerium (Ce)Praseodymium (Pr)Neodymium (Nd)Promethium (Pm)Samarium (Sm)Europium (Eu)Gadolinium (Gd)Terbium (Tb)Disprosium (Dy)Holmium (Ho)Erbium (Er)Iterbium (Yb)unsur-unsur dari aktanida yaitu:Actinium(Ac)Torium(Th) Protaktinium(Pa)Uranium (U) Neptunium(Np)Plutonium(Pu)Amerisium (Am)Kurium (Cm)Berkelium (Bk)Kalifornium(Cf)Einsteinium (Es)Fermium (Fm) Mendelevium (Md) Nobelium(No)Lawrensium (Lr)2. Jenis-jenis unsur dari lantanida dan aktinida3. Sifat-sifat dari unsur-unsur lantanida dan aktinida1. Lantanium (La)Lantanium adalah logam lembut, lunak, ulet, perak-putih. Lantanum adalah kimia aktif, salah satu yang paling reaktif dari logam langka bumi, ia mengoksidasi dengan cepat di udara dan bereaksi dengan air untuk membentuk hidroksida tersebut. Lantanum mudah terbakar, garam seringkali sangat tidak larut.

Sifat fisikaFasesolidMassa jenis (mendekatisuhu kamar)6.162 gcm3Massa jenis cairan5.94 gcm3Titik lebur1193K,920C,1688FTitik didih3737K,3464C,6267FKalor peleburan6.20kJmol1Kalor penguapan402.1 kJmol1Kapasitas kalor27.11 Jmol1K1Elektronegativitas1.10 (skala Pauling)Energi ionisasipertama: 538.1 kJmol1ke-2: 1067 kJmol1ke-3: 1850.3 kJmol1Jari-jari atom187pmJari-jari kovalen2078 pm Lantanium adalah salah satu bahan kimia langka, yang dapat ditemukan di rumah-rumah dalam peralatan seperti televisi warna, lampu neon, lampu hemat energi dan kacamata. Semua bahan kimia jarang memiliki sifat sebanding.Reaksi dengan airLantanium cukup elektropositif dan bereaksi secara lambat dengan air dingin tapi cukup cepat jika bereaksi dengan air panas membentuk lanthana hidroksida dan gas hidrogen2La(s) + 6H2O(g) 2La(OH)3(aq) + 3H2(g)Reaksi dengan oksigenPada reaksi dengan udara atau pembakaran secara cepat maka akan membentuk Lanthana (III)oksida4La(s) + 3O2(g) -> 2La2O3(s)Reaksi dengan halogenLogam lanthanum bereaksi dengan semua unsur halogen membentuk lanthana ( III) halida2La(s) + 3F2(g) ->2LaF(s)2La(s) + 3Cl2(g) ->2LaCl(s)2La(s) + 3Br2(g)-> 2LaBr(s)2La(s) + 3I2(g) ->2LaI(s)2.Cerium (Ce) Cerium adalah logam lunak lembut, ulet, logam besi abu-abu, sedikit lebih keras dari timah, sangat reaktif, mengoksidasi perlahan dalam air dingin dan cepat dalam air panas. Larut dalam asam dan dapat terbakar ketika dipanaskan atau tergores dengan pisau.

Sifat fisikaFasesolidMassa jenis(mendekatisuhu kamar)6.770 gcm3Massa jeniscairan6.55 gcm3Titik lebur1068K,795C,1463FTitik didih3716K,3443C,6229FKalor peleburan5.46kJmol1Kalor penguapan398 kJmol1Kapasitas kalor26.94 Jmol1K1Sifat atomBilangan oksidasi4,3, 2(agak oksidabasa)Elektronegativitas1.12 (skala Pauling)Energi ionisasipertama: 534.4 kJmol1ke-2: 1050 kJmol1ke-3: 1949 kJmol1Jari-jari atom181.8pmJari-jari kovalen2049 pmUnsur serium ini memiliki 4 isotop secara alami, yaitu Ce 136, Ce 138, Ce 140, dan Ce 142. Unsur serium biasa digunakan dalam mischmetal, yaitu suatu logam tanah jarang yang mengandung 25% unsur serium. Dapat juga digunakan dalam batu api (flin) yang lebih ringan serta oksidanya banyak digunakan dalam industri kaca.3.Praseodymium(Pr)

Praseodymium adalah logam lunak lembut, logam keperakan-kuning. Ini adalah anggota kelompok lantanida dari tabel periodik unsur. Ia bereaksi dengan oksigen perlahan-lahan: ketika terkena udara membentuk oksida hijau yang tidak melindunginya dari oksidasi lebih lanjut. Hal ini lebih tahan terhadap korosi di udara logam langka lainnya, tetapi masih harus disimpan dalam minyak atau dilapisi dengan plastik. Ia bereaksi cepat dengan air.

Sifat fisikaFasesolidMassa jenis (mendekatisuhu kamar)6.77 gcm3Massa jenis cairan6.50 gcm3Titik lebur1208K,935C,1715FTitik didih3793K,3520C,6368FKalor peleburan6.89kJmol1Kalor penguapan331 kJmol1Kapasitas kalor27.20 Jmol1K1Sifat atomBilangan oksidasi4,3, 2 (oksidabasa agak kuat)Elektronegativitas1.13 (skala Pauling)Energi ionisasipertama: 527 kJmol1ke-2: 1020 kJmol1ke-3: 2086 kJmol1Jari-jari atom182pmJari-jari kovalen2037 pmPraseodimium lunak, seperti perak, mudah ditempa. Lebih resisten terhadap korosi dalam udara daripada europium, lantanum, cerium atau neodium, tapi unsur ini membentuk lapisan oksida hijau yang mengelupas bila terpapar dengan udara. Seperti unsur tanah jarang lainnya, unsur ini harus disimpan terlindung dari sinar matahari, dalam minyak mineral atau plastik bersegel.

4.Neodimium(Nd)

Neodimium adalah logam keperak-kuning mengkilap. Hal ini sangat reaktif dan turnishes qickly di udara dan membentuk dilapisi logam tidak melindungi dari oksidasi lebih lanjut, sehingga harus disimpan jauh dari kontak dengan udara. Bereaksi lambat dengan air dingin dan cepat dengan panas.

Sifat fisikaFasesolidMassa jenis(mendekatisuhu kamar)7.01 gcm3Massa jenis6.89 gcm3Titik lebur1297K 1024C,1875FTitik didih3347K,3074C,5565FKalor peleburan7.14kJmol1Kalor penguapan289 kJmol1Kapasitas kalor27.45 Jmol1K1Sifat atomBilangan oksidasi3, 2 (sedikit oksidabasa)Elektronegativitas1.14 (skala Pauling)Energi ionisasipertama: 533.1 kJmol1ke-2: 1040 kJmol1ke-3: 2130 kJmol1Jari-jari atom181pmJari-jari kovalen2016 pmNeodimium dapat diperoleh dengan memisahkan garam neodimium dari unsur tanah jarang lainnya dengan tekhnik pertukaran ion atau ekstraksi pelarut. Dapat pula dengan mereduksi halida anhidratnya seperti NdF3denganlogam kalsium. Tekhnik pemisahan lainnya pun masih memungkinkan.Neodimium memiliki kilau logam seperti perak. Merupakan salah satu unsur tanah jarang yang lebih reaktif dan mudah mengusam di udara, membentuk oksida yang mengelupas dan memudahkan teroksidasi. Karenanya, harus dilindungi dari matahari dalam minyak mineral atau material plastik bersegel. Neodimium terdapat dalam dua bentuk allotrop, dengan transformasi struktur dari heksagonal ganda menjadi kubus berpusat badan pada suhu 863oC.

5.Promethium(Pm) Promethium adalah logam langka-bumi yang memancarkan radius beta. Hal ini sangat radoiactive dan langka, sehingga sedikit dipelajari: kimia dan sifat fisik yang tidak didefinisikan dengan baik. garam promethium memiliki warna merah muda atau merah yang coluors udara sekitarnya dengan cahaya biru-hijau pucat.

Penelitian terhadap unsur ini di bumi hampir tidak berhasil, dan sekarang tampak bahwa promethium memang sudah menghilang dari kerak bumi. Promethium, bagaimanapun, dikenali dalam spektrum bintang HR465 di Andromeda. Unsur ini baru saja terbentuk di permukaan bintang, dengan isotop promethium dengan masa waktu paruh terpanjang yakni 17.7 tahun. Tujuh belas isotop promethium dengan kisaran massa atom 134 155 pun sudah dikenali. Promethium 147, dengan masa paruh waktu 2.6 tahun, adalah isotop yang paling umum digunakan. Promethium 145 adalah isotop dengan masa hidup paling lama dan memiliki aktivitas jenis 940 Ci/gram.Promethium merupakan pemancar beta yang lunak; meski tidak ada sinar gamma yang dipancarkan, radiasi sinar X dapat dihasilkan ketika partikel beta mengenai unsur bernomor atom tinggi. Dibutuhkan kehati-hatian dalam menangani Promethium. Garam promethium menyala luminesens dalam gelap dengan kilau kehijauan atau biru pucat, karena radioaktivitasnya yang tinggi. Metode pertukaran ion mengarahkan pembuatan 10 gram promethium dari limbah yang dihasilkan bahan bakar reaktor atom pada tahun 1963. Hanya sedikit saja yang diketahui tentang sifat-sifat logam promethium. Ada dua bentuk allotrop promethium.

Promethium digunakan sebagai sumber partikel beta untuk alat pengukuran ketebalan, dan bisa diserap oleh fosfor untuk menghasilkan nyala. Nyala yang dihasilkan bisa digunakan untuk tanda atau sinyal sesuai dengan kebutuhan; seperti baterai bertenaga nuklir dengan menangkap cahaya dalam fotosel yang kemudian mengubahnya menjadi arus listrik. Baterai seperti ini, menggunakan147Pm, dengan masa pakai sekitar 5 tahun. Promethium adalah sumber sinar X portabel yang menjanjikan, dan bisa pula sebagai sumber panas yang menyediakan tenaga untuk satelit dan benda-benda antariksa. Lebih dari 30 senyawa telah dibuat. Kebanyakan senyawa memiliki warna.

Sifat fisikaFasesolidMassa jenis(mendekatisuhu kamar)7.26 gcm3Titik lebur1315K,1042C,1908FTitik didih3273K,3000C,5432FKalor peleburan7.13kJmol1Kalor penguapan289 kJmol1Sifat atomBilangan oksidasi3 (sedikit oksidabasaElektronegativitas? 1.13 (skala Pauling)Energi ionisasipertama: 540 kJmol1ke-2: 1050 kJmol1ke-3: 2150 kJmol1Jari-jari atom183pmJari-jari kovalen199 pm6.Samarium(Sm) Samarium adalah logam keperak-putih milik kelompok lantanida dari tabel periodik. Hal ini relatif stabil pada suhu ruang di udara kering, tetapi menyatu ketika dipanaskan di atas 150oC dan membentuk lapisan oksida di udara lembab. Seperti samarium europium mempunyai keadaan oksidasi yang relatif stabil (II).

A.SumberSamarium ditemukan bersama dengan unsur tanah jarang lainnya. Samarium telah lama digunakan, namun samarium baru bisa dihasilkan dalam keadaan murni dewasa ini. Tehnik pertukaran ion dan ekstraksi pelarut telah menyederhanakan pemisahan unsur tanah jarang antara satu dan lainnya. Bahkan tehnik terbaruyakni deposisi elektrokimiamenggunakan larutan elektrolitik litium sitrat dan elektroda raksadianggapcara yang sederhana, cepat dan sangat spesifik untuk memisahkan unsur tanah jarang. Logam samarium dapat dihasilkan dengan mereduksi oksida samarium dengan lantanum.B.Sifat-sifatSamarium berwarna kilau perak yang terang dan relatif stabil di udara. Ada tiga perubahan kristalnya dengan suhu transformasi 734oC dan 922oC. Logam ini terbakar di udara pada suhu 150oC. Samarium sulfide memiliki stabilitas suhu tinggi yang baik dan efisiensi termoelektrik hingga 1100oC.C.IsotopAda 21 isotop samarium yang sudah dikenali. Samarium yang terdapat di alam adalah campuran dari beberapa isotop, tiga di antaranya bersifat tidak stabil dengan masa paruh waktu yang panjang.

D.KegunaanPenggunaan Samarium meliputi karbon-busur pencahayaan untuk industri film (bersama-sama dengan logam tanah jarang), CaF2 kristal untuk digunakan dalam maser optik atau laser, sebagai penyerap neutron dalam reaktor nuklir, untuk paduan dan headphone. Samarium-kobalt magnet, SmCo5 dan Sm2Co17 digunakan dalam pembuatan bahan magnet permanen yang memiliki resistensi yang tinggi terhadap demagnitization. Samarium (II) iodida digunakan sebagai reagen kimia dalam sintesis organik, misalnya dalam reaksi Barbier. Samarium oksida digunakan dalam gelas optik untuk menyerap cahaya inframerah. Samarium oksida adalah katalis untuk dehidrasi dan dehidrogenasi etanol. Samarium-neodymium dating adalah berguna untuk menentukan hubungan usia batuan dan meteorit.E.Samarium-153 RadioaktifDitemukan pada tahun 1953 oleh ahli kimiaSwiss, Jean Charles de.Merupakan bentuk radioaktif dari unsursamarium.Samarium-153 radioaktif digunakan dalam obat untuk mengobati rasa sakit berat yang berhubungan dengan kanker yang telah menyebar ke tulang. Obat ini disebut "Quadramet".Reaksi Peluruhan Samarium-153153Pm-153Sm

7.Europium(Eu)

Europium merupakan logam lunak keperakan. Unsur ini adalah yang paling reaktif dari kelompok lantanida: itu bereaksi cepat di udara pada suhu kamar, luka bakar di sekitar 150oC hingga 180oC dan bereaksi dengan air.

Europium sekarang dibuat dengan mencampurkan Eu2O3dengan logam lentanum berlebih 10% dan memanaskan campuran ini dalam cawan tantalum pada kondisi vakum. Unsur ini didapatkan sebagai padatan logam berwarna putih seperti perak pada dinding cawan.Sifat-sifatSeperti unsur tanah jarang lainnya, kecuali lantanium, europium terbakar di udara pada suhu 150oC 180oC. Europium sekeras timbal dan cukup mudah ditempa. Ia termasuk unsur tanah jarang yang paling reaktif, dan teroksidasi dengan cepat di udara. Menyerupai reaksi kalsium dalam air. Bastnasit dan monazit adalah bijih utama yang mengandung europium.

SumberEuropium telah dikenali dengan spektroskopi pada matahari dan bintang-bintang tertentu. Ada 1 isotop yang telah dikenali. Isotop europium adalah penyerap neutron yang baik dan sedang dipelajari untuk diterapkan dalam pengendalian nuklir.KegunaanOksida europium sekarang digunakan secara luas sebagai aktivator fosfor dan yttrium vanadat-teraktivasi europium digunakan secara komersial sebagai fosfor merah pada tabung televisi berwarna. Plastik yang diberi dopan europium telah digunakan sebagai material laser. Dengan perkembangan tekhnik pertukaran ion dan proses khusus, harga logam menjadi berkurang dalam beberapa tahun.

8.Gadolinium(Gd) Gadolinium adalah lembut, mengkilap, ulet, logam keperakan milik kelompok lantanida dari bagan periodik. Logam tidak becek di udara kering tetapi bentuk film oksida di udara lembab. Gadolinium bereaksi perlahan dengan air dan larut dalam asam. Gadolinium menjadi superkonduktif bawah 1083 K. Sangat magnet pada suhu kamar.

Unsur logam radioaktif yang langka ini didapatkan dari mineral gadolinit. Gadolinia, yang merupakan oksida dari gadolinium, telah dipisahkan oleh Marignac pada tahun 1880 dan Lecoq de Boisbaudran, secara terpisah telah memisahkannya dari mineral yttria, yang ditemukan oleh Mosander, pada tahun 1886.SumberGadolinium ditemukan dalam beberapa mineral lainnya, termasuk monasit dan bastnasit, keduanya merupakan sumber yang sangat komersial. Dengan perkembangan metode pertukaran ion dan ekstraksi pelarut, ketersediaan dan harga gadolinium dan unsur logam radioaktif yang jarang ditemukan menjadi terjangkau. Gadolinium dapat dibuat dengan mereduksi garam anhidrat fluorida dengan logam kalsium.IsotopGadolinium yang terdapat di alam adalah campuran dari tujuh isotop, tetapi ada 17 isotop gadolinium lainnya yang telah dikenali. Dua di antaranya, yakni155Gd dan157Gd, memiliki karakteristik penangkapan yang sempurna, namun keduanya terdapat di alam dalam konsentrasi yang rendah. Sebagai akibatnya, gadolium memiliki kecepatan terbakar yang sangat tinggi dan terbatas dalam penggunaannnya sebagai bahan batangan pengontrol nuklir.Sifat-sifatSebagaimana unsur radioaktif lainnya, gadolinium memiliki warna putih keperakan, berkilau seperti logam, dan mudah ditempa. Pada suhu kamar, gadolinium mengkristal dalam bentuk heksagonal, atau bentuk alfa dengan kerangka tertutup. Selama pemanasan hingga 1235oC, gadolinium alfa berubah menjadi bentuk beta yang memiliki struktur kubus berpusat badan.

Logam ini relatif stabil di udara kering, tapi mudah kusam di udara lembab dan membentuk lapisan oksida yang menempel dengan lemah. Lapisan oksida ini mudah mengelupas dan akhirnya membuka lapisan berikutnya yang terpapar terhadap oksidasi. Logam ini bereaksi lambat dengan air dan mudah larut dalam asam encer.Gadolinium memiliki daya tangkap neutron termal tertinggi dari semua unsur (49000 barn).KegunaanBatuan gadolinium yang berwarna merah delima digunakan dalam penerapan gelombang mikro dan senyawa gadolinium digunakan sebagai senyawa fosfor pada televisi berwarna.Logam ini memiliki sifat superkonduktif yang tidak lazim. Pada konsentrasi serendah 1%, gadolinium bisa meningkatkan kemampuan alloy besi, khrom, dan alloy yang terkait , juga memningkatkan ketahanan terhadap oksidasi.Gadolinium etil sulfat memiliki sifatnoise yang sangat rendah, sehingga bisa digunakan dalam menambah kinerja amplifier, seperti maser(alat pengukur elektro magnet)Gadolinium bersifat feromagnetis. Gadolinium memiliki pergerakan magnet yang sangat tinggi dan unik, dan untuk suhu Curie (suhu di mana sifat feromagnetisme menghilang) hanyalah pada suhu kamar, yang artinya gadolinium bisa digunakan sebagai komponen magnet yang bisa mendeteksi panas dan dingin.

9.Terbium(Tb) Terbium adalah lantanida yang bersifat lembut, lunak, ulet, perak abu-abu logam anggota kelompok lantanida dari tabel periodik. Hal ini cukup stabil di udara, tetapi perlahan-lahan dioksidasi dan bereaksi dengan air dingin.

Terbium telah diisolasi hanya dalam beberapa tahun terakhir seiring perkembangan tekhnik pertukaran ion untuk pemisahan unsur radioaktif. Seperti halnya dengan unsur radio aktif lainnya, terbium dapat dihasilkan dengan mereduksi garam anhidrat klorida dengan logam kalsium dalam cawan tantalum. Pengotor kalsium dan tantalum dapat dihilangkan dengan pencairan ulang pada kondisi vakum. Metode isolasi lainnya pun masih memungkinkan.Sifat-sifatTerbium cukup stabil di udara. Merupakan logam berwarna abu-abu keperak-perakan, mudah ditempa, ductile, dan cukup lunak untuk bisa dipotong dengan sebilah pisau. Ada dua kristal modifikasi yang dikenal, dengan transformasi suhu 1289oC. Ada 21 isotop dengan massa atom bervariasi dari 145 hingga 165. Oksida terbium berwarna coklat atau marun gelap.KegunaanNatrium terbium borat digunakan dalam peralatan elektronik. Oksida terbium memiliki potensi untuk digunakan sebagai aktivator fosfor hijau pada tabung televisi berwarna. Oksida ini bisa digunakan dengan ZrO2sebagai stabiliser kristal pada sel bahan bakar yang beroperasi pada suhu tinggi. Ada pula kegunaan lainnya.PenangananToksisitas terbium hanya sedikit diketahui. Unsur ini harus ditangani secara hati-hati sebagaimana unsur lantanida lainnya.

10.Disprosium(Dy) Disprosium adalah, berkilau sangat lembut, logam keperakan. Hal ini stabil di udara pada suhu kamar bahkan jika itu secara perlahan oxydized oleh oksigen. Bereaksi dengan air dingin dan cepat larut dalam asam. Ia membentuk beberapa garam berwarna cerah. karakteristik Disprosium bisa menjadi sangat dipengaruhi oleh keberadaan kotoran.

Unsur ini memiliki kilau logam perak yang terang.Relatif stabil di udara pada suhu kamar, dan dapat dilarutkan dengan asam mineral yang encer maupun yang pekat. Logam ini cukup lunak untuk bisa dipotong dengan pisau dan bisa dipakai dalam pembuatan mesin tanpa adanya percikan api bila tidak digunakan pada suhu tinggi. Sejumlah kecil pengotor dapat sangat mempengaruhi sifat fisiknya.KegunaanDisprosium memiliki penyerapan neutron termal secara nuklir dan titik cair yang cukup tinggi, memungkinkan untuk digunakan metalurgi sebagai alloy baja tahan karat yang diterapkan khusus dalam pengontrolan nuklir. Semen yang mengandung nikel dan oksida disprosium telah digunakan untuk mendinginkan batang reaktor nuklir. Semen ini menyerap neutron tanpa membengkak atau berkontraksi dengan kondisi tembakan nuklir secara kontinu. 11.Holmium(Ho) Holmium adalah, melleable lembut, logam berkilau dengan warna perak, milik seri lantanides dari tabel periodik unsur. Hal ini perlahan diserang oleh oksigen dan air dan larut dalam asam. Hal ini stabil di udara kering pada suhu kamar.

Sifat-sifatHolmium murni memiliki kilau perak yang terang. Relatif lunak dan bisa ditempa, stabil di udara kering pada suhu kamar, tapi mudah teroksidasi dalam udara lembab dan suhu tinggi. Logam ini memiliki sifat magnetik yang tidak lazim. Beberapa kegunaannya telah ditemukan. Unsur ini, seperti unsur radioaktif lainnya, memiliki tingkat toksisitas akut yang rendah.

12.Erbium(Er) Erbium adalah lembut, lunak, berkilau, logam keperakan. Hal ini sangat stabil di udara, bereaksi sangat lambat dengan oksigen dan air dan larut dalam asam. garam nya adalah berwarna merah dan memiliki spektrum adsorpsi tajam dalam cahaya tampak, ultraviolet dan inframerah.

Erbium, termasuk dalam golongan radioaktif lantanida, ditemukan dalam mineral yang juga mengandung disprosium. Pada tahun 1842, Mosander memisaahkan yttria yang ditemukan dalam mineral gadolinit, menjadi 3 fraksi, yang disebut yttria, erbia dan terbia. Penamaan erbia dan terbia saat itu masih membingungkan. Setelah 1860, terbia Mosander dikenali sebagai erbia, dan setelah 1877, yang semula diketahui sebagai erbia, ternyata adalah terbia. Pada tahun ini, erbia diketahui terdiri dari lima oksida, yang sekarang dikenal sebagai erbia, skandia, holmia, dan ytterbia. Pada tahun 1905, Urbain dan James secara terpisah berhasil mengisolasi Er2O3yang cukup murni. Klemm dan Bommer yang pertama menghasilkan logam erbium murni pada tahun 1934, dengan mereduksi garam klorida anhidrat dengan uap kalium.

Sifat-sifatErbium murni lunak dan mudah ditempa. Berwarna ptuih perak dengan kilau logam. Seperti halnya unsur radioaktif lainnya, sifat-sifatnya sangat tergantung pada keberadaan jumlah pengotor. Logam ini cukup stabil di udara dan tidak teroksidasi secepat unsur-unsur radioaktif lainnya. Terdapat di alam sebagai campuran dari enam isotop, yang semuanya bersifat stabil. Ada pula sembilan isotop radioaktif lainnya yang telah dikenali. Tekhnik produksi erbium terbaru, menggunakan reaksi pertukaran ion, telah menghasilkan unsur radioaktif dan senyawanya dengan biaya yang lebih murah. Kebanyakan oksida unsur radioaktif memiliki pita penyerapan yang tajam pada panjang gelombang sinar tampak, ultraviolet, dan infra merah dekat. Sifat-sifat ini bergabung dengan struktur elektroniknya, memberikan warna pastel yang indah pada kebanyakan garam radioaktif.KegunaanErbium memiliki kegunaan metalurgi dan nuklir. Bila ditambahkan dengan vanadium, sebagai contoh, erbium akan mengurangi tingkat kekerasan dan memperbaiki kemampuan tempanya. Oksida erbium memberikan warna merah muda dan telah banyak digunakan sebagai pewarna pada kaca dan pelapis enamel porselen.13.Iterbium(Yb) Iterbium adalah elemen lembut, mudah dibentuk dan agak ulet yang menunjukkan yang kilau keperakan cerah. Sebuah tanah jarang, unsur ini mudah diserang dan dilarutkan oleh asam mineral, perlahan bereaksi dengan air, dan mengoksidasi di udara. oksida Bentuk lapisan pelindung di permukaan. Senyawa Iterbium jarang terjadi.

Pada tahun 1878, Marignac menemukan unsur baru yang disebutnya iterbia, dari tanah, yang kemudian dikenal sebagai erbia. Pada tahun 1907, Urbain memisahkan ytterbia menjadi 2 komponen, yang ia sebut sebagai neoiterbia dan luttecia. Unsur ini di tanah sekarang diketahui sebagai iterbium dan lutesium. Kedua unsur ini identik dengan aldebaranium dan cassiopeium, yang ditemukan terpisah pada waktu yang sama oleh von Welsbach.SumberIterbium terdapat bersama unsur radioaktif lainnya dalam sejumlah mineral langka. Didapatkan secara komersial dari pasir monazit, dengan kadar 0.03%. Perkembangan tekhnik pertukaran ion dan ekstraksi pelarut telah menyederhanakan pemisahan unsur radioaktif antara satu dan lainnya.ProduksiUnsur ini dibuat pertama kali oleh Klemm dan Bonner pada tahun 1937 dengan mereduksi iterbium trklorida dengan kalium. Namun, logam ini tercampur dengan KCl. Daane, Dennison dan Spedding membuat iterbium yang lebih murni pada tahun 1953, yang dengan demikian bisa menetapkan sifat fisika dan kimianya.

Sifat-sifatIterbium memilliki kilau perak yang terang, lunak, mudah ditempa. Meski demikian, unsur ini cukup stabil dan harus disimpan dalam wadah tertutup untuk melindunginya dari udara dan kelembaban. Iterbium dapat dilarutkan dengan asam mineral encer dan pekat, dan bereaksi erlahan dengan air. Iterbium memiliki btiga bentuk allotrop dengan titik transformasi pada suhu -13oC dan 795oC.. Iterbium alamiah terdiri dari tujuh isotop stabil; diketahui ada tujuh isotop lainnya yang tidak stabil.KegunaanLogam iterbium memiliki kegunaan untuk meningkatkan sifat baja tahan karat yang digunakan dalam proses penggilingan padi. Salah satu isotop dilaporkan telah digunakan sebagai sumber radiasi pengganti untuk mesin sinar X yang bisa dibawa ke mana-mana, yakni ketika tidak tersedia sumber listrik. Beberapa kegunaan lainnya telah ditemukan.PenangananIterbium memiliki tingkat toksisitas akut yang rendah.

Aktinium (Ac)A. KarakteristikAktinium berwarna perak, bersifat radioaktif yang cukup berbahaya dan merupakan unsur logam. Aktinium adalah unsur radioaktif yang cukup kuat, bersinar di kegelapan dengan warna biru terang. Ditemukan hanya dalam peluruhan bijih uranium sebagai 227Ac, peluruhan sinar dan dengan waktu paruh 21.772 tahun. Satu tonbijih uranium mengandung sekitar 10 gram aktinium.

B. PenggunaanAktinium sebagai 227Ac digunakan dalampengobatan untuk menghasilkan 213Bi, atau dapat digunakan sebagai agen untuk radio-immunoterapi untuk Targeted Alpha Therapy(TAT).

C. SejarahAktinium ditemukan pada tahun 1899 oleh Andre-Louis Debierne, seorang ahli kimia asal Perancis yang memisahkannya dari pitchblende. Friedrich Oskar Giesel secara terpisah menemukan aktinium pada tahun 1902. Struktur kimia dari aktinium sama dengan Unsur bumi yang jarang ditemukan yaitu lantanida. Kata aktinium berasal dari bahasa Yunani aktis, aktinos yang berarti cahaya.D. IsotopAktinium alam yang terjadi terdiri dari 1 buah isotop radioaktif, 227Ac. 36 radioisotop yang lainnya memiliki karakteristik yang khas, tetapi yang cukup stabil yaitu 227Ac dengan waktu paruh 21.772 tahun, 225Ac dengan waktu paruh 10 hari dan 226Ac dengan waktu paruh 29,3 jam. Sementara isotop radioaktif yang lain memiliki waktu paruh kurang dari 10 jam dan kebanyakan memiliki waktu paruh kurang dari 1 menit. Isotop yang paling pendek waktu aktifnya adalah 217Ac yang meluruh dengan peluruhan sinar dan penangkap elektron, yang memiliki waktu paruh 69 ns. Aktinium juga memiliki 2 keadaan meta. Interval massa atom dari isotop aktinium adalah dari 206 amu (206Ac) to 236 1mu (236Ac).b)Sifat AtomikNomor atom : 89Nomormassa: 227,03Konfigurasi elektron : [Rn] 6d1 7s2Volume atom : -Afinitas elektron : -Keelektronegatifitasan : 1,1Energi ionisasi : - pertama : 499 kJ/mol- kedua : 1170 kJ/molBilangan oksidasi utama : +3Bilangan oksidai lainnya : -Struktur Kristal : Face Centered Cubic Unit Cell

1.Actinium(Ac)a)Sifat FisikaDensitas : -Titik leleh : 1323,2 KTitik didih : 2743 KBentuk (25C) : padatWarna : putih perakc)Sifat KimiaReaksi dengan oksigenAktinium mudah terbakar membentukaktinium (III) oksida4Ac(s)+3O2(g) 2Ac2O3(s)

2. Thorium (Th)Unsur Thorium ditemukan pada tahun 1828 dan namanya diambil dari Thor, nama Dewa Petir bangsa Viking atau Norseman.Di alam, bisa dikatakan semua thorium adalah thorium-232, dan mempunyai waktu paruh sekitar 14.05 milyar tahun. Jumlah thorium di kulit bumi diperkirakan sekitar empat kali lebih banyak dari uranium. Saat ini Thorium biasanya digunakan sebagai elemen dalam bola lampu dan sebagai bahan campuran logam.

Thorium dapat terbakar lebih lama dan suhu lebih tinggi untuk mendapatkan efisiensi lebih banyak dibanding bahan bakar konvensional lainnya, termasuk penggunaan bahan bakar, tidak perlu mengemas limbah, dan secara signifikan mengurangi isotop radioaktif yang memiliki waktu paruh yang lama.Sebagai perbandingan, 1 kilogram thorium akan menghasilkan energi yang setara dengan yang dihasilkan oleh 300 kilogram uranium atau 3,5 juta kilogram batubara, tanpa efek lingkungan dari batubara di atmosfir atau resiko yang berhubungan dengan limbah uranium.Thorium menghasilkan limbah 90% lebih sedikit dibanding uranium, dan hanya membutuhkan sekitar 200 tahun untuk menyimpan limbahnya, dibanding uranium yang membutuhkan waktu 10.000 tahun untuk menyimpan limbahnya.

3. ProtaktiniumNama Protaktium berasal dari kata Yunani Protos yang berarti pertama.Isotop unsur bernomor 91 yang pertama kali ditemukan adalah234Pa, yang juga dikenal sebagai UX2, sebagai bagian dari peluruhan alamiah238U, yang berumur pendek. Diidentifikasi oleh K. Fajans dan O.H Gohring pada tahun 1913 dan diberi nama brevium.Ketika isotop231Pa yang bermasa paruh lebih panjang ditemukan oleh Hahn dan Meitner pada tahun 1918, nama protoaktinium diambil karena lebih konsisten dengan kelimpahan isotopnya. Sody, Cranson, dan Fleck juga ikut aktif meneliti hal ini. Nama Protoaktiniumakhirnya dipersingkat menjadi protaktinium pada tahun 1949.

Sifat-sifatProtaktinium memiliki kilau logam yang terang yang bisa bertahan beberapa waktu di udara. Sejumlah senyawa protaktinium telah dikenali, bahkan beberapa di antaranya berwarna. Logam ini bersifat superkonduktif pada suhu di bawah 1.4K. Ia merupakan unsur yang berbahaya dan membutuhkan kewaspadaan seperti ketika menangani plutonium. Pada tahun1959 dan 1961, telah diumumkan bahwa Badan Otoritas Energi Atom Inggris Raya berhasil mengekstrak 125 gram protactinium dengan kemurnian 99.9% setelah melewati 12 langkah, sehingga ini merupakan satu-satunya simpanan cadangan protaktinium untuk kebutuhan dunia untuk beberapa tahun yang akan dating. Protaktinium termasuk unsure yang paling langka dan paling mahal yang tersedia di alam. ORNL (Badan Energi milik Dephan Amerika Serikat) menyuplai 231Pa dengan biaya $280/gram. Unsur ini adalah pemancar partikel alfa (5.0 MeV) dan memiliki bahaya radioaktif yang sama dengan polonium.

4. Uranium Uraniumadalah mineral yang memancarkan radiasi nuklir atau bersifat radioaktif, digunakan dalam berbagai bidang salah satunya adalah sebagai bahan bakar nuklir. Uranium merupakan suatu unsur kimia dalam tabel periodik yang memiliki lambang U dan nomor atom 92. Sebuah logam berat, beracun, berwarna putih keperakan dan radioaktif alami, uranium termasuk ke seri aktinida (actinide series). Uranium biasanya terdapat dalam jumlah kecil di bebatuan, tanah, air, tumbuhan, dan hewan (termasuk manusia).

Uranium memiliki sifat fisik yang khas:- Ditemukan di alam dalam bentuk U3O atau UO berwarna hijau kekuning-kuningan dan coklat tua.- Bila disinari cahaya ultra ungu, uranium akan mengeluarkan cahaya fluoresensi yang sangat indah

Dalam fisika nuklir, sebuahreaksi nukliradalah sebuah proses di mana dua nuklei atau partikel nuklir bertubrukan, untuk memproduksi hasil yang berbeda dari produk awal. Pada prinsipnya sebuah reaksi dapat melibatkan lebih dari dua partikel yang bertubrukan, tetapi kejadian tersebut sangat jarang. Bila partikel-partikel tersebut bertabrakan dan berpisah tanpa berubah (kecuali mungkin dalam level energi), proses ini disebut tabrakan dan bukan sebuah reaksi.Dikenal dua reaksi nuklir, yaitu reaksi fusi nuklir dan reaksi fisi nuklir.Reaksi fusi nukliradalah reaksi peleburan dua atau lebih inti atom menjadi atom baru dan menghasilkan energi, juga dikenal sebagai reaksi yang bersih.Reaksi fisi nukliradalah reaksi pembelahan inti atom akibat tubrukan inti atom lainnya, dan menghasilkan energi dan atom baru yang bermassa lebih kecil, serta radiasi elektromagnetik. Reaksi fusi juga menghasilkan radiasi sinar alfa, beta dan gamma yang sangat berbahaya bagi manusia.Contoh reaksi fusi nuklir adalah reaksi yang terjadi di hampir semua inti bintang di alam semesta. Senjata bom hidrogen juga memanfaatkan prinsip reaksi fusi tak terkendali. Contoh reaksi fisi adalah ledakan senjata nuklir dan pembangkit listrik tenaga nuklir.Unsur yang sering digunakan dalam reaksi fisi nuklir adalah Plutonium dan Uranium (terutama Plutonium-239, Uranium-235), sedangkan dalam reaksi fusi nuklir adalah Lithium dan Hidrogen (terutama Lithium-6, Deuterium, Tritium).

5. Neptunium Neptunium adalah unsur transuranium sintetis dari seri aktinida yang ditemukan pertama kali; isotop neptunium239Np dihasilkan oleh McMillan dan Abelson pada tahun 1940 di Berkeley, California, sebagai hasil penembakan uranium dengan neutron yang dihasilkan siklotron. Isotop237Np (masa paruh 2.14 x 106tahun) didapatkan dalam kuantitas gram sebagai hasil samping dari reaktor nuklir dalam produksi plutonium. Kuantitas neptunium di alam sangat kecil karena reaksi transmutasi bijih uranium yang dihasilkan neutron yang ada. Neptunium dibuat dengan mereduksi NpF3dengan uap barium atau litium pada suhu 1200oC.

Sifat fisikaFasesolidMassa jenis(mendekatisuhu kamar)20.45 gcm3Titik lebur910K,637C,1179FTitik didih4273K,4000C,7232FKalor peleburan3.20kJmol1Kalor penguapan336 kJmol1Kapasitas kalor29.46 Jmol1K1Sifat atomBilangan oksidasi7, 6,5, 4, 3(oksidaamfoter)Elektronegativitas1.36 (skala Pauling)Energi ionisasipertama: 604.5 kJmol1Jari-jari atom155pmJari-jari kovalen1901 pmLogam neptunium memiliki penampakan seperti perak, reaktif secara kimiawi, dan berada dalam sedikitnya tiga modifikasi struktur: alfa-neptunium, ortorombik dengan kerapatan 20.25 g/cm3; beta-neptunium (di atas 280oC), tetragonal, kerapatan (313oC) 19.36 g/cm3; gamma-neptunium ( di atas 577oC), kubus, kerapatan (600oC) 18.0 g/cm3. Neptunium memiliki empat bilangan oksidasi dalam larutan : Np+3 (berwarna ungu pucat) yang analog dengan ion Pm+3, Np+4 (hijau kuning); NpO2+ (biru hijau); dan NpO2++ (merah muda seulas). Tiga ion terakhir, sebagai ion teroksigenasi adalah bersifat radioaktif yang hanya menunjukkan ion sederhana dari bilangan oksidasi (II), (III) dan (IV)dalam larutan berdasar air. Neptunium membentuk tri- dan tetrahalida seperti NpF3, NpF4, NpCl4, NpBr3, NpI3 dan oksida dengan komposisi bervariasi seperti yang ditemukan dalam sistem uranium-oksigen, termasuk Np3O dan NpO2.6. Plutonium Plutonium merupakan logam berat dengan nomor atom 94 dan densitas dua kali lipat dari timbal. Secara alami plutonium sangat jarang dijumpai di kerak bumi. Di samping itu, di alam bisa ditemukan plutonium yang berasal dari sisa-sisa jatuhan (fallout) uji coba senjata nuklir yang berlangsung sekitar tahun 1950-60an.Sebagian besar plutonium dihasilkan dari reaktor nuklir. Terdapat 15 jenis isotop plutonium dan semuanya bersifat radioaktif. Plutonium pertama kali "diketemukan" pada tahun 1941 oleh Glenn Seaborg (kimiawan nuklir Amerika, keturunan Swedia) sebagai bagian dari Manhattan Project.

Plutonium dihasilkan dari reaksi tangkapan neutron yang terjadi pada U-238. Dari reaksi yang terjadi di reaktor nuklir terdapat 5 isotop plutonium yang dominan, yaitu Pu-238, Pu-239, Pu-240, Pu-241 dan Pu-242. Dari kelima isotop tersebut, Pu-239 dan Pu-241 bersifat fissionable (dapat membelah apabila bereaksi dengan neutron).Plutonium merupakan pemancar alfa (khusus untuk Pu-241 pemancar beta, namun anak luruhannya adalah Am-241 yang memancarkan alfa berumur paro 430 tahun). Karena jangkauan alfa dan beta pendek, maka plutonium bukan merupakan ancaman bahaya apabila berada di luar tubuh. Dengan demikian, plutonium akan memberikan ancaman bahayaapabila masuk ke dalam tubuh, namun efek yang dihasilkan tergantung dari bagaimana plutonium masuk ke tubuh.7. AmerisiumAmerisium adalah unsur transuranium yang ditemukan ke-empat. Isotop241Am diidentifikasi oleh Seaborg, James, Morgan, dan Ghiorso pada akhir tahun 1944 ketika masa perang laboratorium metalurgi di Universitas Chicago sebagai hasil reaksi penangkapan neutron yang sukses oleh isotop plutonium dalam reaktor nuklir.

Amerisium yang baru dibuat berkilau putih dan dan lebih keperak-perakan daripada plutonium atau neptunium yang dibuat dengan cara yang sama. Lebih mudah ditempa daripada uranium, uranium dan mengusam perlahan-lahan pada udara kering pada suhu kamar. Amerisium harus ditangani dengan hati-hati untuk menghindari kontaminasi. Aktivitas alfa dari241Am tiga kali lebih banyak daripada radium. Bila menangani sejumlah gram241Am, intensitas aktivitas gamma dapat membuat bahaya akibat paparan yang serius.241Am telah digunakan sebagai sumber radiografi sinar gamma yang bisa dibawa ke mana-mana. Juga telah digunakan sebagai alat pengukur ketebalan kaca yang radioaktif untuk industri kaca datar dan sebagai sumber ionisasi detektor asap.8. KuriumKurium adalah unsur transuranium yang ditemukan ketiga. Diidentifikasi oleh Seaborg, James, dan Ghiorso pada tahun 1944 ketika terjadi masa perang laboratorium metalurgi di Universitas Chicago dalam siklotron 60 inch. 242Cm sebanyak 30 mg, dalam bentuk hidroksida, diisolasi pertama kali oleh Werner dan Perlman di Universitas Kalifornia pada tahun 1947. Pada tahun 1950, Crane, Wallmann dan Cunningham menemukan kerentanan terhadap magnet pada sejumlah miligram CmF3dengan tingkat magnitud seperti GdF3. Hal ini adalah sekaligus sebagai bukti eksperimen yang menunjukkan konfigurasi elektron Cm+3. Tahun 1951, para ahli kimia yang sama membuat Kurium dalam bentuk unsur untuk pertama kalinya. Sekarang telah dikenali 14 isotop Kurium. Isotop yang paling stabil,247Cm, dengan masa paruh 16 juta tahun, masih jauh lebih pendek dari pada usia bumi sehingga jejak Kurium terdahulu sudah tidak tampak lagi di alam.

Sejumlah Kurium dalam intensitas menit, kemungkinan terdapat di dalam mineral uranium, sebagai hasil dari penangkapan neutron dan peluruhan partikel beta secara terus menerus oleh aliran neutron yang terdapat alami pada bijih uranium.Keberadaan Kurium alamiah pernah dideteksi. 242Cm dan 244Cm tersedia dalam jumlah bervariasi. 248Cm dihasilkan dalam jumlah miligram. Kelangkaan Kurium menyerupai gadolinium, dengan struktur kristal yang lebih rumit. Kurium berwarna perak, reaktf secara kimiawi, dan lebih elektropositif dariada aluminum. Kebanyakan senyawa Kurium bervalensi 3 memiliki warna sedikit kuning. 242Cm menghasilkan 3 watt energi termal per gramnya. Hal ini sebanding dengan setengah watt per gram 238Pu, yang memungkinkan Kurium bisa digunakan sebagai sumber energi. Kuriumdiserap ke tubuh dan terakumulasi di tulang, dan karenanya sangat beracun karena radiasinya menghancurkan mekanisme pembentukan sel darah merah. Kandungan 244Cm yang masih diizinkan terdapat dalam tubuh manusia adalah maksimal 0.3 mikrocurie.9. BerkeliumBerkelium, anggota ke delapan seri transisi aktinida, yang ditemukan pada bulan Desember 1949 oleh Thompson, Ghiorso, dan Seaborg, dan merupakan unsur sintesis transuranium yang kelima. Dihasilkan dengan penembakan sejumlah miligram241Am dengan ion Helium dalam siklotron di Berkeley, Kalifornia. Isotop pertama yang dihasilkan memiliki masa 243 dan meluruh dengan waktu paruh 4.5 jam. Sepuluh isotop lainnya sekarang telah diketahui dan telah disintesis. Bukti adanya249Bk dengan masa paruh waktu 314 hari, membuatnya sangat memungkinkan untuk mengisolasi berkeium dalam jumlah yang bisa diamati, sehingga sifat-sifatnya bisa diselidiki secara makroskopik

Senyawa berkelium, yakni bekerlium klorida, bisa diproduksi pada tahun 1962 dengan berat satu permilyar gram. Berkelum mungkin belum bisa dihasilkan dalam bentuk unsur, namun diduga, warnanya keperak-perakan, mudah larut dalam asam mineral dan mudah teroksidasi oleh udara oksigen pada suhu tinggi membentuk oksida. Metode sinar X telah digunakan untuk mengenali beragam senyawa berkelium. Seperti halnya unsur aktinida lainnya, berkelium cenderung terakumulasi dalam sistem tulang. Karena unsur ini langka, saat ini berkelium belum digunakan secara komersial maupun untuk tekhnologi.10. CaliforniumCalifornium merupakan logam radioaktif yang merupakan memeber dari kelompok aktinida dari tabel periodik. Sebuah contoh dari logam itu sendiri belum diproduksi namun karena senyawanya menolak reduksi. Hal ini diharapkan akan mudah diserang oleh udara, uap dan asam dan bukan oleh basa.Californium, unsur transuranium keenam untuk ditemukan, diproduksi oleh Thompson, Jalan, Ghioirso, dan Seaborg pada tahun 1950 dengan membombardir sejumlah mikrogram 242Cm dengan 35 MeV helium ion dalam siklotron 60-inci Berkeley.

Californium (III) adalah stabil ion hanya dalam larutan air, semua upaya untuk mengurangi atau mengoksidasi californium (III) telah gagal. Karena californium adalah sumber yang sangat efisien neutron, penggunaan baru banyak diharapkan untuk itu. Sudah ditemukan digunakan dalam gages kelembaban neutron dan dalam well logging (penentuan air dan minyak-bantalan lapisan). Hal ini juga digunakan sebagai sumber neutron portabel untuk penemuan logam seperti emas atau perak dengan on-the-spot analisis aktivasi. Pada Mei 1975, lebih dari 63 mg telah diproduksi dan dijual. Telah dikemukakan bahwa californium dapat diproduksi dalam ledakan bintang tertentu, yang disebut supernova, untuk peluruhan radioaktif dari 254Cf (55 hari paruh) setuju dengan karakteristik kurva cahaya dari ledakan tersebut diamati melalui teleskop. Saran ini, bagaimanapun, adalah dipertanyakan. Californium juga digunakan dalam terapi kanker.11. EinsteiniumEisntenium masuk dalam periode ketujuh dalam elemen transuranik dan termasuk aktinida. Einsteinium ditemukan sebagai komponen dari puing-puing dari ledakan bom hidrogen pertama pada tahun 1952 yang diberi nama setelah Albert Einstein. Isotop Einsteinium-253 yang memiliki paruh waktu 20, 47 hari diproduksi secara artifisial dari pembusukan Californium-253 dan cukup reaktif dengan total hasil pada urutan satu tahun per miligram. Isotop lainnya disintetis di berbagai laboratorium, namun dalam jumlah yang jauh lebih kecil dengan memborbardir elemen aktinida berat dan ion ringan. Karena Einsteinium diproduksi dalam jumlah kecil, saat ini hampir tidak ada aplikasi praktis untuk melakukan penelitian dasar terhadap unsur tersebut. Secara khusus, Einsteinium pertama kali digunakan untuk mensitesis dari unsur Mendelevium pada tahun 1955.

Einsteinium berwarna keperakan dan merupakan paramagnetik logam. Radioakitivitas tinggi Einstenium-253 dapat menghasilkan cahaya yang terlihat sangat cepat dan dapat merusak kisi logam kristal dengan panas yang dilepaskan sekitar 1000 Watt tiap gramnya. Kesulitan dalam mempelajari sifat-sifatnya adalah karena konversi Einstenium-253 untuk Berkelium dan Californium dengan laju reaksi sekitar tiga persen tiap hari. Isotop dari Einsteinium yang memiliki waktu paruh terpanjang yaitu Einsteinium-252 dengan paruh waktu selama 471,71 hari akan lebih cocok untuk dilakukan penelitian secara fisik, namun tetap saja hal itu jauh lebih sulit sebab Einsteinium dihasilkan dalam hitungan menit saja dan jumlahnya pun sedikit. Einsteinium adalah unsur dengan nomor atom tertinggi yang telah diamati dalam jumlah makroskopis dalam bentuk yang murni dan umurnya terbilang pendek.12. FermiumFermium adalah sebuah unsur logam yang diklasifikasikan sebagai aktinida pada tabel periodik unsur. Fermium juga dikenal sebagai elemen transuranic, artinya memiliki nomor atom lebih tinggi dari uranium. Elemen transuranic berbagi sejumlah ciri-ciri menarik, tapi sifat yang paling menonjol adalah ketidakstabilan ekstrim mereka.Elemen ini sangat reaktif dan memiliki waktu paruh amat pendek sehingga membuatnya jarang atau bahkan tidak pernah ditemukan di alam. Sifat-sifat kimia fermium belum sepenuhnya diketahui, meskipun dianggap memiliki kemiripan dengan aktinida lainnya. Para ilmuwan hanya berhasil menciptakan jumlah yang sangat kecil fermium di laboratorium, sehingga sulit untuk mengetahui karakteristiknya.Namun yang pasti, fermium bersifat sangat radioaktif, dan 10 isotop telah teridentifikasi dengan membombardir plutonium dengan neutron.

Pada tabel periodik unsur, fermium memiliki nomor atom 100 dengan simbol elemen Fm.Elemen ini pertama kali diidentifikasi pada tahun 1952 oleh Albert Ghiorso dan tim ahli fisika yang mempelajari residu yang ditinggalkan oleh ledakan bom atom di Pasifik Selatan. Penemuan fermium dirahasiakan sampai tahun 1955 karena Amerika sebagai pihak penemu khawatir Soviet memanfaatkan unsur ini sebagai senjata potensial.Ghiorso dan timnya diberi kehormatan untuk menamai unsur penemuan mereka. Akhirnya mereka sepakat memilih nama fermium yang berasal dari nama Enrico Fermi, seorang fisikawan Italia terkenal yang meninggal pada tahun 1954.Fermi memberi banyak kontribusi pada reaksi yang digunakan untuk mensintesis fermium di laboratorium, sehingga penamaan unsur ini dengan namanya tentunya amatlah tepat. Seperti unsur-unsur radioaktif lainnya, terdapat resiko kesehatan saat terpapar fermium. Namun, karena elemen ini sangat langka, resiko ini tidak menjadi kekhawatiran bagi kebanyakan orang.13. MendeleviumMendelevium, unsur transuranium seri aktinida yang ditemukan kesembilan, dikenali oleh Ghiorso, Harvey, Choppin, Thompson, dan Seaborg diawal tahun 1955, selama penembakan isotop253Es dengan ion helium dalam siklotron Berkeley berukuran 60 inch. Isotop yang dihasilkan adalah256Md, dengan masa paruh waktu 76 menit. Identifikasi ini bisa dicatat ketika256Md disintesis satu atom per waktu.Ada 14 isotop telah dikenali.258Md memiliki masa paruh waktu 2 bulan. Isotop ini telah dihasilkan dengan menembak isotop einsteinium dengan ion helium. Akhirnya,258Md bisa dibuat cukup untuk menetapkan sifat-sifat fisiknya.

256Md telah digunakan untuk menjelaskan sejumlah sifat kimia mendelevium dalam bentuk larutan.

Percobaan telah menunjukkan bahwa mendelevium memiliki bilangan oksida dipositif (II) yang moderat stabil di samping bilangan tripositif (III) yang merupakan karakteristik unsur-unsur aktinida.14. NobeliumNobelium telah ditemukan dan dikenali dengan jelas pada bulan April 1958 di Berkeley oleh A. Ghiorso, T. Sikkeland, J.R. Walton, dan G.T. Seaborg,, yang menggunakan tekhnik rekoil ganda yang baru. Sebuah akselerator ion berat linear (HILAC) digunakan untuk menembak sebuah lempeng tipis curium (95%244Cm and 4.5%246Cm) dengan ion12C untuk menghasilkan102No sesuai reaksi246Cm(12C,4n).Pada tahun 1957, para peneliti di Amerika Serikat, Inggris, dan Swedia mengumumkan penemuan isotop unsur bernomor atom 102 dengan masa paruh waktu 10 menit pada kekuatan 8.5MeV, sebagai hasil penembakan244Cm dengan inti atom13C. Berdasarkan percobaan ini, penamaan nobelium didaftarkan dan diterima oleh Komisi Nomor Atom IUPAC (International Union of Pure and Applied Chemistry)

Penerimaan nama nobelium saat itu masih terlalu dini karena baik Rusia dan Amerika menolak adanya kemungkinan isotop unsur 102 bermasa paruh waktu 10 menit di sekitar 8.5MeV. Peneliitian pencarian unsur ini di awal 1957, di Instirut Kurchatov Rusia, dikacaukan oleh adanya radiasi alfa 8.9+/-0.4 MeV dengan masa paruh waktu 2-40 detik, yang membuat penemuan unsur nobelium tidak jelas.Percobaan di Berkeley pada tahun 1966 telah memastikan adanya unsur254102 dengan masa paruh 55 detik,252102 dengan masa paruh 2.3 detik dan257102 dengan masa paruh 23 detik.Mengikuti tradisi pemberian nama sesuai dengan penemunya, grup Berkeley pada tahun 1967, mengusulkan agar nama nobelium bersimbol No, yang awalnya tergesa-gesa, tetap dipertahankan.IsotopAda 10 isotop yang sudah dikenali, salah satunya adalah255102 dengan masa paruh waktu 3 menit.15. LawrensiumUnsur transisi 5f yang termasuk seri aktinida ini ditemukan pada bulan Maret 1961 oleh A. Ghiorso, T. Sikkeland, A.E. Larsh dan R.M Latimer. Sebuah lempeng kalifornium seberat 3 mg, terdiri dari campuran isotop bernomor masa 249,250,251, dan 252 ditembak oleh10B atau11B.Inti atom transmutasi bermuatan listrik ini di-rekoil dengan udara helium dan dikumpulkan pada sebuah pita konveyor tembaga yang kemudian dipindahkan ke tempat berkumpulnya atom-atom di hadapan rangkaian detektorsolid state. Isotop unsur bernomor atom 103 yang dihasilkan dengan cara ini meluruh dengan memancarkan partkel alfa berkekuatan 8.6 MeV dengan masa paruh waktu 8 detik.

Pada tahun1967, Flerov dan kawan-kawandi laboratorium Dubna melaporkan ketidakmampuan mereka untuk mendeteksi pemancar alfa dengan masa paruh waktu 8 detik, sebagaimana yang dilaporkan grup Berkeley sebagai257103. Penamaan ini akhirnya diubah menjadi258Lr atau259Lr.Pada tahun 1965, para peneliti Dubna menemukan isotop lawrensium yang bisa bertahan lebih lama,256Lr, dengan masa paruh waktu 35 detik. Pada tahun 1968, Thiorso dan kawan-kawan di Berkeley menggunakan beberapa atom dari isotop ini untuk mempelajari tingkat oksidasi lawrensium. Dengan menggunakan tekhnik ekstraksi pelarut dan bekerja sangat cepat, mereka mengekstrak ion lawrensium dari larutan berbuffer ke dalam pelarut organik dan menyelesaikan ekstraksi dalam waktu 30 detik.Lawrensium memiliki sifat yang berbeda dari nobelium dipositif dan cenderung menyerupai unsur tripositif dalam seri aktinida.