us laboratory & cleanroom design fundamentalscctr/seminar/seminar1.pdf · us laboratory &...

25
US Laboratory & Cleanroom Design Fundamentals Wei Sun, P.E. Principal, Director of Engineering Engsysco, Inc. Ann Arbor, Michigan, USA US Laboratory & Cleanroom Design Fundamentals Engsysco Presented by Wei Sun, P.E. ASHRAE “Clean Spaces” Technical Committee (TC9.11) Chairman “Healthcare Facilities” Technical Committee (TC9.6) Member “Laboratory Systems” Technical Committee (TC9.10) Member Principal, Director of Engineering Engsysco, Inc. Ann Arbor, Michigan, USA www.engsysco.com ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ Contents Lab Lab definition Standards and guidelines Architectural layout & considerations Hazard assessment Fume hoods - type and configuration Biological safety cabinets (BSC) and classification Bio-safety containment labs (BSL) and classification Animal bio-safety labs (ABSL) and classification Ventilation and exhaust Lab pressurization control Cleanroom Definition and classifications Standards Nonviable, viable particles (microbiological) and airborne molecular contamination (AMC) Airflow quantity and pattern and floor arrangement Airlock and pressurization HVAC, plumbing, fire protection, and process systems Common devices and equipment Architectural construction materials, cleaning procedures, testing standards and construction cost CFD application ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ Lab - Introduction Applications • Chemical • Biological • Animal • Physical ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________

Upload: others

Post on 12-Jun-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: US Laboratory & Cleanroom Design Fundamentalscctr/seminar/seminar1.pdf · US Laboratory & Cleanroom Design Fundamentals . Wei Sun, P.E. Principal, Director of Engineering . Engsysco,

US Laboratory & Cleanroom Design Fundamentals Wei Sun, P.E.

Principal, Director of Engineering Engsysco, Inc.

Ann Arbor, Michigan, USA

US Laboratory & Cleanroom Design Fundamentals

Engsysco

Presented by

Wei Sun, P.E.ASHRAE

“Clean Spaces” Technical Committee (TC9.11) Chairman“Healthcare Facilities” Technical Committee (TC9.6) Member“Laboratory Systems” Technical Committee (TC9.10) Member

Principal, Director of EngineeringEngsysco, Inc.

Ann Arbor, Michigan, USAwww.engsysco.com

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Contents

Lab• Lab definition• Standards and guidelines• Architectural layout &

considerations• Hazard assessment• Fume hoods - type and

configuration• Biological safety cabinets (BSC)

and classification• Bio-safety containment labs (BSL)

and classification• Animal bio-safety labs (ABSL)

and classification• Ventilation and exhaust• Lab pressurization control

Cleanroom• Definition and classifications• Standards• Nonviable, viable particles

(microbiological) and airborne molecular contamination (AMC)

• Airflow quantity and pattern and floor arrangement

• Airlock and pressurization• HVAC, plumbing, fire protection, and

process systems• Common devices and equipment• Architectural construction materials,

cleaning procedures, testing standards and construction cost

• CFD application

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Lab - Introduction

Applications

• Chemical• Biological• Animal• Physical

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Page 2: US Laboratory & Cleanroom Design Fundamentalscctr/seminar/seminar1.pdf · US Laboratory & Cleanroom Design Fundamentals . Wei Sun, P.E. Principal, Director of Engineering . Engsysco,

Laboratory DefinitionDefinition - A specially constructed enclosed area, its environment has following controlled parameters:

• Temperature• Humidity• Sound and Vibration

Common Requirements

• Airflow Pattern• Pressurization• Microbial Contamination • Chemical Fume Contamination• Process Specific

Special & Unique Requirements

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Hazard Assessment

Hazard Assessment by safety officers and end-users in:

• Chemical hygiene• Radiation safety• Biological safety• Fire and loss prevention• Process/production/research specifics

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

General Standards & GuidesStandards:

NFPA 45 – Fire Protection for Laboratories Using Chemicals

NFPA 99 – Health Care Facilities

OSHA – Occupational Exposure to Chemicals in Laboratories

Guides:

ACGIH 2001 – Industrial Ventilation

CDC/NIH 1999 – Bio-safety in Microbiological and Biomedical Laboratories

ASHRAE 2001 – Laboratory Design Guide

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Architectural ConsiderationsLab ModuleBase block of floor planning

Typical Module SizeWidth: 10 - 12 ft. Length: 30 - 36 ft. (or 20 - 24 ft.)

FlexibilityDesigned to adapt for modifications without infrastructure changes

Basic ElementsDuctwork (supply, exhaust)Lab piping (gas, water, steam)HoodsConduits

1/3 Module

Single Module

2/3 Module

DoubleModule

Possible Lab Module Subdivision

x x x x

x

2 x

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Page 3: US Laboratory & Cleanroom Design Fundamentalscctr/seminar/seminar1.pdf · US Laboratory & Cleanroom Design Fundamentals . Wei Sun, P.E. Principal, Director of Engineering . Engsysco,

Fume Hoods - Configurations

Bench Top

Walk-in

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Fume Hoods - TypesConstant Volume Exhaust System

Open Closed Open Closed

Bypass Restricted Bypass Auxiliary

Reduce exhaust by 30-60%Maintain the same exhaust

Open Closed

Maintain the same exhaust,Auxiliary flow at 50% or more

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Fume Hoods -TypesVariable Volume Exhaust System

Open Closed

Restricted Bypass

Exhaust varies from 0-50%

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Special Purpose Fume HoodsRadioisotope:• One-piece stainless steel interior and work surface with

integral cupsink, all corners coved, welded and grounded.• Filter system required

Perchloric Acid:• Designed to minimize possibility of fire and explosion• One-piece, stainless steel interior and dished work

surface, with all joints coved, welded and grounded. • Collection and disposal of wash-down waters

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Page 4: US Laboratory & Cleanroom Design Fundamentalscctr/seminar/seminar1.pdf · US Laboratory & Cleanroom Design Fundamentals . Wei Sun, P.E. Principal, Director of Engineering . Engsysco,

Small Hoods

TableTop

Canopy

Up-DraftTable-Top

Down-DraftTable-Top

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Customized Hoods

Bank of floor-mounted hoods

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Exhaust Systems

Individual System Manifold System

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Hood VelocityCode Required Face Velocity

Normal Design Face Velocity: 100 FPM

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Page 5: US Laboratory & Cleanroom Design Fundamentalscctr/seminar/seminar1.pdf · US Laboratory & Cleanroom Design Fundamentals . Wei Sun, P.E. Principal, Director of Engineering . Engsysco,

Hood Accessories

Mixing Faucet, withVacuum Breaker

Remote ControlWater Faucet

Velocity Alarm

Cupsink, Trap and Piping Materials:Epoxy, Poly, Stainless Steel or Glass

S-Trap

P-Trap

Cup Sink

Tailpiece

Remote ControlGas Outlet

Work Surface Material:Epoxy, Stainless Steel

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Biological Safety CabinetsCDC/NIH Standard

Primary Containment for Biohazards:Selection, Installation and Use of Biological Safety Cabinets

(2000 version)

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Biological Safety CabinetsComparison of Biosafety Cabinet (BSC) Characteristics

YES (small amounts)YESSupply air inlets and hard-duct exhausted to outside

through two HEPA filters in seriesN/AIII

YES (minute amounts (2))YES

Same as II, A, but plenums are under negative pressure to room; exhaust air is thimble-ducted to the outside through a HEPA filter

100II, B3

YES (small amounts)YESNo recirculation; total exhaust to the outside through

hard-duct and a HEPA filter100II, B2

YES (minute amounts (2))YESExhaust cabinet air must pass through a dedicated duct

to the outside through a HEPA filter100II, B1

NOYES70% recirculated to the cabinet work area through HEPA; 30% balance can be exhausted through HEPA back into the room or to the outside through a thimble unit

75II, A

YES (1)YESIn at front; exhausted through HEPA to the outside or into the room through HEPA 75I

Volatile ToxicChemicals andRadio-nuclides

Nonvolatile ToxicChemicals andRadio-nuclides

Applications

Airflow PatternFace

Velocity(fpm)

BSCClass

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Biological Safety Cabinets

Positive pressure plenum70%recirc. thru. HEPA30% to outside thru. HEPA

To outside or room thru. HEPA

Class IIType AClass IIType AClass IClass I

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Page 6: US Laboratory & Cleanroom Design Fundamentalscctr/seminar/seminar1.pdf · US Laboratory & Cleanroom Design Fundamentals . Wei Sun, P.E. Principal, Director of Engineering . Engsysco,

Biological Safety Cabinets

To a dedicated duct to outside thru. HEPA

Class IIType B1Class IIType B1

No recirc.; all exhaust to outside thru. HEPA

Class IIType B2Class IIType B2

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Biological Safety Cabinets

Negative pressure plenum 70% recirc. thru. HEPA30% to outside thru. HEPA

Clean supply from HEPA-filtered room air

Glove box. No direct physical contact

Class IIType B3Class IIType B3

Class IIIClass III Clean Bench Clean Bench

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Examples of Lab Building Configurations

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Examples of Lab Building Configurations

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Page 7: US Laboratory & Cleanroom Design Fundamentalscctr/seminar/seminar1.pdf · US Laboratory & Cleanroom Design Fundamentals . Wei Sun, P.E. Principal, Director of Engineering . Engsysco,

Lab Airflow ControlsSingle Room Pressurization

Direct Pressure-Differential Control Differential Flow Tracking Control

Hybrid Control

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Air Flows and Personnel Flows among Rooms

AirflowBetweenRooms

Personnel FlowBetweenRooms

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Example of Lab Space Ventilation

Complex (multi-functional) AHU System (Discharge at 55°F year-around)

• Exhaust only• Exhaust w./ heat pipe• Exhaust w./ enthalpy wheel

• Dual Return paths

• Supply air with possible directOA mixing

Use only with psychrometric analysis!!!

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Lab Space Exhaust System

Lower velocity with higher stack,Or, higher velocity with lower stack

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Page 8: US Laboratory & Cleanroom Design Fundamentalscctr/seminar/seminar1.pdf · US Laboratory & Cleanroom Design Fundamentals . Wei Sun, P.E. Principal, Director of Engineering . Engsysco,

Bio-safety Containment Labs (BSL)

BSL-3 plus:•Separate building or isolated zoneDedicated supply and exhaust, vacuum, and decon systemsOther requirements outlined in the text

Primary barriers = All procedures conducted in Class III BSCs or Class I or II BSCs in combination with full-body, air-supplied, positive pressure personnel suit

BSL-3 practices plus:Clothing change before enteringShower on exitAll material decontaminated on exit from facility

Dangerous/exotic agents which pose high risk of life-threatening disease, aerosol-transmitted lab infections; or related agents with unknown risk of transmission

4

BSL-2 plus:Physical separation from access corridorsSelf-closing, double-door accessExhausted air not recirculatedNegative airflow into laboratory

Primary barriers = Class I or II BCSs or other physical containment devices used for all open manipulations of agents; PPEs: protective lab clothing; gloves; respiratory protection as needed

BSL-2 practice plus:Controlled accessDecontamination of all wasteDecontamination of lab clothing before launderingBaseline serum

Indigenous or exotic agents with potential for aerosol transmission; disease may have serious or lethal consequences

3

BSL-1 plus:Autoclave available

Primary barriers = Class I or II BSCs or other physical containment devices used for all manipulations of agents that cause splashes or aerosols of infectious materials; PPEs: laboratory coats; gloves; face protection as needed

BSL-1 practice plus:Limited accessBiohazard warning signs"Sharps" precautionsBiosafety manual defining any needed waste decontamination or medical surveillance policies

Associated with human disease, hazard = percutaneous injury, ingestion, mucous membrane exposure

2

Open bench top sink requiredNone requiredStandard Microbiological Practices

Not known to consistently cause disease in healthy adults

1

Facilities (Secondary Barriers)

Safety Equipment(Primary Barriers)PracticesAgentsBSL

Summary of Recommended Biosafety Levels for Infectious Agents

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Bio-safety Labs (BSL-3/4)Primary Barriers- Safety Equipment

Hoods• Fume• Laminar • Containment

BSL-3• BSC cabinets type II & III• Protective clothing

BSL-4• BSC cabinets type III

(Isolator/Glove Box)• Protective clothing &

biohazard suits

Secondary Barriers - Facilities

Access Control• Trap, card keys

Gowning & Entry• Primary gowning – Plant clothes, foot and hair covers• Secondary gowning - Gloves, respirators, self contained suits

De-Gowning & Egress• Transition zone• Decontamination (BSL-4)• Outer germent removal

Material/Equipment Access• Air locks• Pass throughs

Event Response• Spill containment Control and Clean-up• Fire

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Example: Bio-safety Floor Plan(BSL-3)

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Example: Bio-safety Floor Plan(BSL-4)

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Page 9: US Laboratory & Cleanroom Design Fundamentalscctr/seminar/seminar1.pdf · US Laboratory & Cleanroom Design Fundamentals . Wei Sun, P.E. Principal, Director of Engineering . Engsysco,

Bio-safety Labs (BSL-3/4)For BSL-3

Architectural/Structural

• Structure to Structure• 2 Layers of Gypsum Board Both Taped• All Penetrations Framed or Sleeved• Openings Foam Sealed & Caulked• Doors: Compression Seals Minimum Gap

HVAC Systems

• Room pressurization, air cascades inward• Min. 3 pressure stages• Supply: 95% eff. filtered• Exhaust: Allow recirculation, exhaust to

be HEPA filtered• Standby Power & Redundancy• Status Monitoring & Alarm

For BSL-4 (additional)

Architectural/Structural

• Structural Surround (box in box)• Reinforced Concrete - Slow Cured• Hard surfaces, washable/chemical

resistant• All Penetrations with Embedded Sleeves• Openings Foam Packed, Caulked & Filled• Doors: Captured Inflatable Seals – Air Tight

HVAC Systems

• Min. 4 pressure stages • Supply: HEPA filtered• Exhaust: HEPA filtered, no recirculation

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Bio-safety Labs (BSL-3/4)Plumbing Systems

• Gravity flow, all sanitary and fixture drains to waste de-activation system

• No floor drains• Emergency showers• Containment piping• Heat or chemical treatment• Monitoring

Fire Protection

• Hazard classification• Self closing heads• Run-off containment decontamination• Low water content foam or ”dry” systems

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Bio-safety Labs (BSL-4)Pressurized Suits

Suit Change Room

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Bio-safety Labs (BSL-3/4) Equipment

BSL-3 Gowning with Respirator BSL-4 Pressurized Suit

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Page 10: US Laboratory & Cleanroom Design Fundamentalscctr/seminar/seminar1.pdf · US Laboratory & Cleanroom Design Fundamentals . Wei Sun, P.E. Principal, Director of Engineering . Engsysco,

Bio-safety Labs (BSL-3/4) Equipment

DecontaminationContainerAirtight Air Lock Bio-Seal Door

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Bio-safety Labs (BSL-3/4) Equipment

AccessDoor

HEPAFilteredExhaust

EffluentTreatment

GloveBox

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Animal Labs: Bio-safety Levels

ABSL-3 facility plus: Separate building or isolated zone Dedicated supply and exhaust, vacuum and decontamination systems Other requirements outlined in the text

ABSL-3 equipment plus: Maximum containment equipment (i.e., Class III BSC or partial containment equipment in combination with full body, air-supplied positive-pressure personnel suit) used for all procedures and activities

ABSL-3 practices plus: Entrance through change room where personal clothing is removed and laboratory clothing is put on; shower on exiting All wastes are decontaminated before removal from the facility

Dangerous/exotic agents that pose high risk of life threatening disease; aerosol transmission, or related agents with unknown risk of transmission.

4

ABSL-2 facility plus: Physical separation from access corridors Self-closing, double-door access Sealed penetrations Sealed windows Autoclave available in facility

ABSL-2 equipment plus: Containment equipment for housing animals and cage dumping activities Class I or II BSCs available for manipulative procedures (inoculation, necropsy) that may create infectious aerosols. PPEs: appropriate respiratory protection

ABSL-2 practices plus: Controlled access Decontamination of clothing before laundering Cages decontaminated before bedding removed Disinfectant foot bath as needed

Indigenous or exotic agents with potential for aerosol transmission; disease may have serious health effects.3

ABSL-1 facility plus: Autoclave available Handwashing sink available in the animal room. Mechanical cage washer used

ABSL-1 equipment plus primary barriers: containment equipment appropriate for animal species; PPES: laboratory coats, gloves, face and respiratory protection as needed.

ABSL-1 practices plus: Limited access Biohazard warning signs Sharps precautions Biosafety manual Decontamination of all infectious wastes and of animal cages prior to washing

Associated with human disease. Hazard: percutaneous exposure, ingestion, mucous membrane exposure.

2

Standard animal facility No recirculation of exhaust air Directional air flow recommended Handwashing sink recommended

As required for normal care of each species.

Standard animal care and management practices, including appropriate medical surveillance programs

Not known to consistently cause disease in healthy human adults.

1

Facilities (Secondary Barriers)

Safety Equipment (Primary Barriers)PracticesAgentsABSL

Summary of Recommended Biosafety Levels for Activities in Which Experimentally or Naturally Infected Animals Are Used

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Animal Labs

ABSL - 1 Animal Facility

Mech. Floor

Animal Floor

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Page 11: US Laboratory & Cleanroom Design Fundamentalscctr/seminar/seminar1.pdf · US Laboratory & Cleanroom Design Fundamentals . Wei Sun, P.E. Principal, Director of Engineering . Engsysco,

Animal Labs

ABSL - 2 Animal Facility

Mech. Floor

Animal Floor

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Animal Labs

ABSL - 3 Animal Facility

Mech. Floor

Animal FloorHEPA Floor

Waste Floor

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Animal Labs

Mech. Floor

Animal FloorHEPA Floor

Waste Floor

ABSL - 4 Animal Facility

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Animal Labs

Rack washer

Autoclave

Tunnel washer

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Page 12: US Laboratory & Cleanroom Design Fundamentalscctr/seminar/seminar1.pdf · US Laboratory & Cleanroom Design Fundamentals . Wei Sun, P.E. Principal, Director of Engineering . Engsysco,

Animal LabsCage Stand-aloneVentilation

Cage Room VentilationSystem

Cage Room VentilationSystem

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Bio-safety Guidelines and Standards

Biological Safety Guidelines and Standards

CDC/NIH - Biosafety in Microbiological and Biomedical Laboratories

USDA Agricultural Research Service (ARS) - Facility Design Standards

Animal & Plant Health Inspection Service (APHIS) - Quarantine Facility Guidelines

WHO - Laboratory Safety Guidelines

NFPA Standard 45 – Fire protection for laboratories using chemicals

NIH – Research laboratory design policy and guidelines

NIH – Vivarium design policy and guidelines

NSF Standard 49-92 – Biohazard cabinetry

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Cleanroom - Introduction

Applications

• Semiconductor• Microelectronic• Pharmaceutical• Biotechnology• Medical Devices• Hospital• Aerospace• Automotive• Miscellaneous

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Cleanroom DefinitionDefinition - A specially constructed enclosed area, its environment has following controlled parameters:

• Temperature• Humidity• Sound and Vibration

Common Requirements

• Airflow Pattern• Pressurization• Particle Count• Microbial Contamination • Electrostatic Discharge (ESD)• Gaseous Contamination• Process Specific

Special & Unique Requirements

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Page 13: US Laboratory & Cleanroom Design Fundamentalscctr/seminar/seminar1.pdf · US Laboratory & Cleanroom Design Fundamentals . Wei Sun, P.E. Principal, Director of Engineering . Engsysco,

StandardsU.S. Federal Standard 209E

Airborne particulate cleanliness classes in cleanrooms and clean zones (former US standard, canceled in November 2001)

ISO Document ISO-14644: Cleanrooms and Associated Controlled Environments

ISO-14644-1 Classification of Air Cleanliness

ISO-14644-2 Cleanroom Testing for Compliance

ISO-14644-3 Methods for Evaluating & Measuring Cleanrooms & Associated Controlled Environments

ISO-14644-4 Cleanroom Design & Construction

ISO-14644-5 Cleanroom Operations

ISO-14644-6 Terms, Definitions & Units

ISO-14644-7 Enhanced Clean Devices

ISO-14644-8 Molecular Contamination

ISO-14698-1 Biocontamination: Control General Principles

ISO-14698-2 Biocontamination: Evaluation & Interpretation of Data

ISO-14698-3 Biocontamination: Methodology for Measuring Efficiency of Cleaning Inert Surfaces

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

ClassificationsAir Cleanliness Class Definition Comparison Between FS 209 and ISO 14644

FS 209 ISO 14644 FS 209 ISO 14644 FS 209 ISO 14644 FS 209 ISO 14644 FS 209 ISO 14644 FS 209 ISO 14644

Particles/ft3 Particles/m3 Particles/ft3 Particles/m3 Particles/ft3 Particles/m3 Particles/ft3 Particles/m3 Particles/ft3 Particles/m3 Particles/ft3 Particles/m3

1 10 22 100 24 10 4

1 3 35 1,000 7.5 237 3 102 1 35 810 4 350 10,000 75 2,370 30 1,020 10 352 83

100 5 100,000 750 23,700 300 10,200 100 3,520 832 291000 6 1,000,000 237,000 102,000 1,000 35,200 8,320 7 293

10,000 7 10,000 352,000 83,200 70 2,930100,000 8 100,000 3,520,000 832,000 700 29,300

9 35,200,000 8,320,000 293,000

0.1 µm 0.5 µm 5.0 µm0.3 µm 1 µmFS 209 Class

ISO 14644 Class

0.2 µm

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

ClassificationsOld Air Cleanliness Class Definition - FS 209

1

10

100

1,000

10,000

100,000

1,000,000

10,000,000

100,000,000

0.01 0.1 1 10

PARTICLE SIZE, μm

PAR

TIC

LES

PER

CU

BIC

MET

ERS

FS-1

FS-100,000

FS-10,000

FS-1,000

FS-100

FS-10

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

ClassificationsCurrent Air Cleanliness Class Definition - ISO 14644

1

10

100

1,000

10,000

100,000

1,000,000

10,000,000

100,000,000

0.01 0.1 1 10

PARTICLE SIZE, μm

PAR

TIC

LES

PER

CU

BIC

MET

ERS

ISO-1

ISO-2

ISO-3

ISO-6

ISO-9

ISO-8

ISO-7

ISO-5

ISO-4

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Page 14: US Laboratory & Cleanroom Design Fundamentalscctr/seminar/seminar1.pdf · US Laboratory & Cleanroom Design Fundamentals . Wei Sun, P.E. Principal, Director of Engineering . Engsysco,

ClassificationsClassification Comparison Between FS 209 and ISO 14644

1

10

100

1,000

10,000

100,000

1,000,000

10,000,000

100,000,000

0.01 0.1 1 10

PARTICLE SIZE, μm

PAR

TIC

LES

PER

CU

BIC

MET

ERS

ISO-1

ISO-2

ISO-5

ISO-4

ISO-3

ISO-6

ISO-9

ISO-8

ISO-7

FS-1

FS-100,000

FS-10,000

FS-1,000

FS-100

FS-10

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Airborne Particles

Airborne particulates can be:

1. Particles larger than 100 microns can be seen with naked eyes.

2. Next step particles ranging from 0.001 to 100 microns are main interest of contamination for years.

3. Atoms and molecules used to be considered too small as industrial contamination, but not any more after introduction of molecular contamination.

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Airborne Molecular ContaminationAirborne Molecular Contamination (AMC)

Definition: By draft Standard ISO 14644-8. AMC is:• Molecular (non-particulate) species • Gaseous or vapor state (non-solid)• May be harmful to product, process, or equipment• Concentrations between 100 to 10-12 g/m3

Categories: Semiconductor Equipment and Materials International (SEMI) Standard F21-95 defined AMC into four categories:

• Acids (A)• Bases (B)• Condensables (C)• Dopants (D)

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Airborne Molecular ContaminationClassification: The classification number is determined by the maximum allowable concentration of a category expressed in parts per trillion molar.

Format: MX-xxxx,X - represents the first letter of the contaminant category (A, B, C, or D)xxxx - represents the magnitude for the concentration allowed For instance, MA-100 : Max. concentration of all acids < 100 ppt molar

Surface Deposition: AMC can occur in a reversible (physically deposit on surface) or irreversible (once it contacts, it remains on the surface, often chemically reactive) manner.

Gas Phase Filtration: Apply gas-phase filtration in both make-up and recirculation air units. This filtration lets a gas compound be attracted to the solid surface and then is chemically bound or changed. Activated carbon is the most commonly used absorption material.

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Page 15: US Laboratory & Cleanroom Design Fundamentalscctr/seminar/seminar1.pdf · US Laboratory & Cleanroom Design Fundamentals . Wei Sun, P.E. Principal, Director of Engineering . Engsysco,

Airborne Molecular Contamination

Airborne Molecular Contamination (AMC)

Equipment: Real-time monitoring of longer-term AMC mass deposition trends and rates are available.

Design Reference: IEST-RP-CC035: “Design Considerations for Airborne Molecular Contamination Filtration Systems in Cleanrooms”

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Particle Sources & Control Sources of Contamination

Description Control Methods

Infiltration through doors, and cracks at windows, and walls

Tighter exterior wall construction, exterior zone pressurization, vestibules at main entrances, and seal space penetrations.

Outdoor air

Makeup air entering through the air conditioning systems

Multiple level filtrations External

Indoor transfer air between rooms

Infiltration through doors, windows, and wall penetrations for pipes, ducts, etc.

Seal wall penetrations, multiple level pressurizations & depressurizations to obtain proper airflow directions

People

Largest source of internal particles: skin scales, hair, textile fibers

Garments, proper gowning procedures, air shower before entry

Work surface shedding

Rubbing one item against another

Use cleanroom suitable or rated furniture

Process equipment

Spray, painting, welding, grinding

Local filtration and exhaust

Raw and semi-finished material During transport

Equipment washing, cleaning and sterilization before entry, use airlock & pass-through

Liquids, pressurized gases used in process

During preparation, processing and packaging

Local exhaust

Chemicals used for cleaning Out-gassing to room Use cleanroom suitable

or rated cleaners

Internal

Room construction materials

Dust generated from wall, floor, ceiling, door, fibrous insulation

Constructed with special building materials

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Particle Dispersion in Relation to Movement (Example: Personnel)

Sitting QuietlyParticles shed per min.= 100,000

MovingParticles shed per min.= 1 million

WalkingParticles shed per min.= 5 million

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Microbiological Contamination & Control

Control Methods

Physical:

• Heat• Radiation• Filtration

Chemical:

• Sterilization• Disinfection

• Unlike non-viable particles, which can’t reproduce, microorganisms could reproduce at a rapid speed if nutrition and environment are favorable.

• Microorganism can be classified as bacteria, algae, fungi, protozoa and viruses. Some of these are essential, useful and harmless, while others are harmful and dangerous.

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Page 16: US Laboratory & Cleanroom Design Fundamentalscctr/seminar/seminar1.pdf · US Laboratory & Cleanroom Design Fundamentals . Wei Sun, P.E. Principal, Director of Engineering . Engsysco,

Airborne Particle Physical Controls

Containing or isolating particle generations with barriers

• Process exhaust• Mini-environment

IsolationDiluting internally contaminated air with clean, filtered air

• Higher airchangerate, betterdilution.

DilutionUtilizing HEPA & ULPA filters to remove particles from supply air

• HEPA: 99.97%([email protected]μm)

• ULPA: 99.9997%([email protected]μm)

Filtration

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Typical Ceiling Filter Coverage

Class

US 209 ISO

Ceiling Filter Coverage

HEPA or

ULPA

9 5% - 15% 100,000 8 5% - 15% 10,000 7 15% - 20% 1,000 6 25% - 40% 100 5 35% - 70%

HEPA

10 4 60% - 90% 1 3 60% - 100%

2 80% - 100% 1 80% - 100%

ULPA

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Room Airflow Quantity(Traditional Methodology)

Classification

ISO Class FS-209 Class

Air Change Per Hour

Range 8 100,000 5 – 48 7 10,000 60 – 90 6 1,000 150 – 240 5 100 240 – 480 4 10 300 – 540 3 1 360 – 540 2 360 – 600 1

IEST Recommended (RP-12) Air Change Rate For Cleanrooms

5

150

240

300

360360360

4890

240

480

540540

600600

600

100

200

300

400

500

600

700

0 1 2 3 4 5 6 7 8 9

ISO Cleanliness Class

Air

Chan

ge P

er H

our (

AC

H)

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Airflow Patterns

Non-Unidirectional(Conventional) Flow

UnidirectionalFlow

Mixed Flow

Mini-EnvironmentFlow

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Page 17: US Laboratory & Cleanroom Design Fundamentalscctr/seminar/seminar1.pdf · US Laboratory & Cleanroom Design Fundamentals . Wei Sun, P.E. Principal, Director of Engineering . Engsysco,

Cleanroom Floor Arrangements

Ballroom Office and Support

AreasCleanrooms

Service Area

Service Area

Mini-Environment

Service Chase

Office and Support

AreasCleanrooms

Service Area

Service Area

CCCC

C CCC

Office and Support

AreasCleanrooms

Service Area

Service Area

RRRRR

RRRRR

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Fan Arrangement

Fan TowerFan Filter Units

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Control Airflows Between Rooms Air Lock

CLEANROOM

AIRLOCK

+CORRIDOR

++

+++

AIRFLOW

CASCADING AIRLOCK

AIRFLOW CLEANROOM

AIRLOCK

+CORRIDOR

++

-

AIRFLOW

BUBBLE AIRLOCK

AIRFLOW

CLEANROOM

AIRLOCK

+CORRIDOR

- -

-

AIRFLOW

SINK AIRLOCK

AIRFLOW CLEANROOM

AIRLOCK

-CORRIDOR

++

-

AIRFLOW

AIRFLOW

- -AIRLOCK

DUAL COMPARTMENT AIRLOCK

Air LockAn intermediate room between adjacent areas with different cleanliness to prevent airborne cross contamination

Type• Cascading• Bubble• Sink• Dual Compartment

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Control Airflows Between Rooms Air Lock

Type of Cleanroom Selection of Airlock

Functionality of Airlock Relative Pressure Relationship

• Positive pressure • No fume or bio agent • No containment

needed

Cascading • Prevent cleanroom being contaminated from dirty corridor air

• Prevent cleanroom being contaminated from surrounding spaces through cracks

Cleanroom: +++ Airlock: ++ Corridor: +

• Negative pressure • Has fume or bio

agent contamination • Containment needed

Bubble • Prevent cleanroom being contaminated from dirty corridor air

• Prevent cleanroom fume or bio agent releasing to corridor

Cleanroom: - Airlock: ++ Corridor: +

• Negative pressure • Has fume or bio

agent contamination • Containment needed

Sink • Prevent cleanroom being contaminated from dirty corridor air

• Allow cleanroom fume or bio agent releasing to airlock. No personal protective equipment is needed

Cleanroom: - Airlock: - - Corridor: +

• Negative pressure • Has toxic fume or

hazardous bio agent contamination, or has potent compound substances

• Containment needed • Personal protection

needed

Dual Compart-ment

• Prevent cleanroom being contaminated from dirty corridor air

• Prevent cleanroom fume or bio agent releasing to corridor

• Personal protective equipment (such as pressurized suit and respirator) is required

Cleanroom: - Neg. Airlock: - - Pos. Airlock: ++ Corridor: -

Application• Positive or

Negative Pressure?

• Has Fume or BioContamination?

• ContainmentNeeded?

• Personal ProtectionNeeded?

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Page 18: US Laboratory & Cleanroom Design Fundamentalscctr/seminar/seminar1.pdf · US Laboratory & Cleanroom Design Fundamentals . Wei Sun, P.E. Principal, Director of Engineering . Engsysco,

Control Airflows Between Rooms Pressurization

• Air should always flows from high pressure to low pressure area. Normally the desired flow path should be from the area of cleanest, to less-clean, to less-contaminated, and then to dirty areas.

• Pressurization is defined as a technique that air pressure differences are created mechanically between rooms to introduce intentional air movement paths through room leakage openings. These openings could be either designated, such as doorways, or undesignated, such as air gaps around doorframes or other cracks.

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Control Airflows Between Rooms Pressurization

0100

200300

400500

600700

800900

1,000

1,1001,200

1,3001,400

1,500

1,6001,700

1,8001,900

2,000

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055 0.06 0.065 0.07 0.075 0.08

Pressure Differential Between Rooms (in.)

Leak

age

Flow

rate

(cfm

)

• Room pressurizationEntering (SA) airflow rate is higher than leaving (EA + RA) airflow rate in the room, room net (offset) flow is positive.

• Room depressurizationEntering (SA) airflow rate is lower than leaving (EA + RA) airflow rate in the room, room net (offset) flow is negative.

Single Room Pressurization 400Leakage Area(Sq. in.)

380360340320

300280

260

240

220200

180

160140

120100

80

60

40

20

Room Net Flow Rate vs. Pressure Differential

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Control Airflows Between Rooms Pressurization

Single Room Pressurization-Problems

Single room control technologies often cause problemsduring air balancing:

• Adjusting one room’s offset value will impact adjacent rooms’ air pressures if they were just balanced earlier.

• Design engineer should note that one room’s air gain could be another room’s air loss through leakages.

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Control Airflows Between RoomsPressurization

Multiple Room (Suite) Pressurization

Pharmaceutical – Aseptic Suite

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Page 19: US Laboratory & Cleanroom Design Fundamentalscctr/seminar/seminar1.pdf · US Laboratory & Cleanroom Design Fundamentals . Wei Sun, P.E. Principal, Director of Engineering . Engsysco,

Control Airflows Between Rooms Pressurization

Multiple Room (Suite) Pressurization ─New Adaptive Control Technology

• Better control strategy is to control all rooms’ pressures as an optimized system, instead to control room pressures independently.

• The three “single room control methods” are either to “ignore”, “assume” or “manually fix in field” the offset value.

• New Adaptive Control is more suitable for suite pressurization. It controls the offset value accordingly through an “offset reset equation” which is based on an “identified” relationship in order to achieve optimized airflows (supply, return or exhaust) and the desired pressure in the rooms. It is a principal-based, auto-tuning control scheme.

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Typical HVAC Systems

FS209 Class10,000, 100,000

ISO Class7, 8

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Typical HVAC Systems

FS209 Class100, 1,000

ISO Class5, 6

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Typical HVAC Systems

FS209 Class1, 10

ISO Class3, 4

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Page 20: US Laboratory & Cleanroom Design Fundamentalscctr/seminar/seminar1.pdf · US Laboratory & Cleanroom Design Fundamentals . Wei Sun, P.E. Principal, Director of Engineering . Engsysco,

Basic HVAC Flow DiagramsConfiguration-1: Conventional Primary loop

RA

EA

SA

Q

OAOA+RASA

Space Impurity Concentration

ExhaustAir

LeakageAir

Particle Generation

Deposition

Cs

Space

D

G

Efficiency Ea

SupplyAir

ReturnAir

MakeupAirCo

CeCs

Cs

HC

FILT

ERCC

AHU Unit

HEP

A

Efficiency Eb

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Basic HVAC Flow DiagramsConfiguration-2: Primary loop with supply bypass

RA

EA

SA1

Q

OAOA+RASA

Space Impurity Concentration

ExhaustAir

LeakageAir

Particle Generation

Deposition

Cs

Space

D

G

Efficiency Ea

ReturnAir

MakeupAirCo

CeCs

Cs

HC

FILT

ERCC

AHU Unit

SA1

SA2 SA2+RA

SupplyAir

HEP

A

Efficiency Eb

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Basic HVAC Flow DiagramsConfiguration-3: Primary loop with dual returns

RA

EA

SA

Q

OAOA+RA1

Space Impurity Concentration

ExhaustAir

LeakageAir

Particle Generation

Deposition

Cs

Space

D

G

Efficiency Ea

ReturnAir

MakeupAirCo

CeCs

Cs

HC

FILT

ERCC

AHU UnitSA=OA+RA

RA2

FILT

ER

Efficiency EbRA1

SupplyAir

HEP

A

Efficiency Ec

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Basic HVAC Flow Diagrams

Configuration-4: Primary loop plus secondary makeup unit

RA

EAQ

OAOA+RASA

Space Impurity Concentration

ExhaustAir

LeakageAir

Particle Generation

Deposition

Cs

Space

D

G

Efficiency Eb

ReturnAir

Treated MakeupAirC1

CeCs

Cs

FILT

ER

Primary Fan Unit

HC

FILT

ERCC

Secondary Makeup Unit

OA

MakeupAirCo

SA

SupplyAir

HEP

A

Efficiency Ea

Efficiency Ec

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Page 21: US Laboratory & Cleanroom Design Fundamentalscctr/seminar/seminar1.pdf · US Laboratory & Cleanroom Design Fundamentals . Wei Sun, P.E. Principal, Director of Engineering . Engsysco,

Basic HVAC Flow DiagramsConfiguration-5: Primary loop plus secondary AHU unit with dual returns

RA

EAQ

OA+RA2OA+RASA

Space Impurity Concentration

ExhaustAir

LeakageAir

Particle Generation

Deposition

Cs

Space

D

G

Efficiency Eb

ReturnAir

Treated MakeupAirC1

CeCs

Cs

FILT

ER

Primary Fan Unit

HC

FILT

ERCC

Secondary AHU Unit

OA

MakeupAirCo

SA

SupplyAir

HEP

A

Efficiency Ea

Efficiency EcRA2RA1

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Basic HVAC Flow DiagramsConfiguration-6: Primary loop plus secondary AHU unit and tertiary

makeup unit with dual returns

RA

EAQ

OA+RA2OA+RASA

Space Impurity Concentration

ExhaustAir

LeakageAir

Particle Generation

Deposition

Cs

Space

D

G

Efficiency Eb

ReturnAir

Treated MakeupAirC1

CeCs

Cs

FILT

ER

Primary Fan Unit

HC

CC

Secondary AHU Unit

OA

SA

SupplyAir

HEP

A

Efficiency Ea

Efficiency EcRA2RA1

HC

FILT

ERCC

Tertiary Makeup Unit

OA

MakeupAirCo

Efficiency EaTreated MakeupAirC1

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Process and Building Systems

Building Systems

• City water & gas services

• Cold/hot water distributions

• Gas distributions• Storm, sanitary &

vent • Fire pump &

automatic sprinkler systems

• Emergency power generator

• HVAC & Indoor comfort

• Building management

Cleanroom HVAC&R

• Make-up system• Recirculation system• Return air system• Temperature &

humidity controls• Room pressure control• Noise and vibration

control• Hydronic heating• Comfort chilled water• Cooling tower water• Particle counting

Cleanroom Process

• Gas detection• Static control• RO and DI waters• Process chilled water• Chemical gases and storages• Solvent drain and collection• Solvent gas exhaust• Process vacuum• Scrubbed exhaust• House vacuum• Acid drain and waste

neutralization• Clean dry air • Instrumentation air & control

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Typical Specified Cleanroom Components, Devices & Equipment

Fan-Filter Ceiling Module

HEPA / ULPA Filter

Bag-in/Bag-out multiple filters- Against biological, chemical & radiological materials

Air Filtration

Handhold Particle Counter

Pharmaceutical cGMPParticle Monitoring & Validation

Microbial Air Sampler &Agar Media

Portable Particle CounterAir Particle Sensor

Air Sampling

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Page 22: US Laboratory & Cleanroom Design Fundamentalscctr/seminar/seminar1.pdf · US Laboratory & Cleanroom Design Fundamentals . Wei Sun, P.E. Principal, Director of Engineering . Engsysco,

Typical Specified Cleanroom Components, Devices & Equipment

Air Valve

Precision Room Pressure Transducer

Floor Grate & Perforated Panel

Isolator (Glove Box) Small Mini-Environment

Product Pass-through

Soft Wall

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Cleanroom Building Exterior and Interior

Building Finished Exterior

Cleanrooms in Construction

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Finished Cleanrooms

Window on Exterior Wall

Window on Interior Wall

Service Hallway Enclosing Cleanrooms

Class 10, Raised Floor

Gowning Area, Raised Floor

Interior HallwaySmall Class 100,000 Cleanroom

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Cleanroom Utility and Support

Large DI Water System

Steam-Hot Water Exchange Unit (Packaged)

AHU Unit for Office/ Administration Areas

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Page 23: US Laboratory & Cleanroom Design Fundamentalscctr/seminar/seminar1.pdf · US Laboratory & Cleanroom Design Fundamentals . Wei Sun, P.E. Principal, Director of Engineering . Engsysco,

Cleanrooms In Operation

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Cleanroom Construction MaterialsFS Class 1

FS Class 10

FS Class 100

FS Class 1,000

FS Class 10,000

FS Class 100,000

Classification

ISO Class 1, 2 & 3

ISO Class 4

ISO Class 5

ISO Class 6

ISO Class 7

ISO Class 8 & 9

Wall System Aluminum Component

Aluminum Component or Metal Stud

Wall Panel Honeycomb Aluminum Conductive Finish Aluminum Polystyrene Core or Epoxy Coated Steel Laminated over Drywall

Vinyl or Epoxy Coated Drywall

Paint Epoxy

Epoxy / Latex Latex

Ceiling Grid 2” Aluminum Gel Seal Ceiling System

1½” Steel Gasketed

Grid Support All thread with Strut & Turn buckles

12 ga wire to grid, 10 ga wire to filter @ Corner of Grid Intersection Only

Floor Raised Floor with Perforated / Grated Access

Concrete Covered with Epoxy Solids or Sheet Vinyl

Air Return Floor Low Sidewall Low Sidewall or Ceiling

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

ISO Construction Cleaning Procedures

Stage Purpose Responsible party Method Standard Stage 1 — Clean during demolition or preliminary construction such as framing for wall installation.

Preventing unnecessary dust concentration in places that will be difficult to reach during later construction.

Contractor. If the construction contractor has no relevant experience in cleanroom cleaning, it is advisable to hire a professional cleaning contractor specializing in cleanroom cleaning.

Vacuum clean upon completion. Visual-clean.

Stage 2 — Clean during utility installation.

Removing local contaminants caused by installing electricity, gas, water, etc.

Installation engineer. Vacuum clean; wipe-down piping and fixtures with moistened wipers upon completion. The use of vacuum cleaning and/or other cleaning materials is necessary.

Visual-clean.

Stage 3 — Clean during early construction.

Cleaning all visible contamination from ceilings, walls, floors, (filter mountings), etc. after completion of construction and installation activities.

Cleaning contractor. Vacuum clean; wipe-down piping and fixtures with moistened wipers. Application of protective floor sealants is generally a particle generating activity. If this is necessary, it should be applied at this time.

Visual-clean.

Stage 4 — Prepare for air conditioning ductwork installation.

Cleaning any dust from ductwork sections before installing using a vacuum cleaner and wipers. Meanwhile, a positive pressure should be introduced to the cleanroom.

Installation engineer and cleaning contractor.

Vacuum clean; wipe down with moistened wipers.

Wiper-clean.

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

ISO Construction Cleaning Procedures

Stage Purpose Responsible party Method Standard Stage 5 — Clean before mounting all air filters into the system.

Removing deposited or settled dust, or both, from ceilings, walls, and floors.

Cleaning contractor. Wipe down with moistened wipers. Wiper-clean.

Stage 6 — Mount the (HEPA/ULPA) filters into the air systems

Removing possible contamination caused by the mounting operation.

Cleanroom HVAC filter engineer/ technician.

Clean all surface edges on all sides.

Wiper-clean.

Stage 7 — Adjust the air conditioning equipment.

Removing suspended dust from the airflow and creating overpressure installation, including the filters.

Cleanroom HVAC filter engineer/ technician.

Air conditioning air flushing operation.

Wiper-clean.

Stage 8 — Upgrade the room into prescribed classification.

Removing all deposited and clinging dust from every surface (in order: ceilings, walls, equipment, floors).

A professional cleanroom cleaning by personnel specially instructed on regulations, routing and behaviour.

Wipe down with moistened wipers. Wiper-clean.

Stage 9 — Approve installation.

Verifying the cleanroom to the prescribed design specifications. Customer acceptance.

Installation engineer and certification engineer.

Monitor airborne and surface particles, air velocities, temperature and humidity.

Wiper-clean. Results should conform to agreed design criteria.

Stage 10 — Clean daily and periodically

Maintaining the cleanroom in long-term compliance with designed classification. Microbiological cleaning and testing begins in biocleanrooms.

Cleanroom manager/cleaning contractor.

Listed in F.1 to F.8. A tailor-made cleaning programme for the cleanroom, accounting for the specific demands of the production process and the customer. Routine testing of critical operation parameters.

NOTE 1 During Stages 4 to 10, all high-efficiency and ultra-high-purity components, such as filters, ducts, etc., should arrive on site protected by plastic or foil covers on both ends. Covers should only be removed when ready for use. NOTE 2 During Stages 6 to 10, all activities should be done wearing prescribed cleanroom clothing.

Stage Purpose Responsible party Method Standard Stage 5 — Clean before mounting all air filters into the system.

Removing deposited or settled dust, or both, from ceilings, walls, and floors.

Cleaning contractor. Wipe down with moistened wipers. Wiper-clean.

Stage 6 — Mount the (HEPA/ULPA) filters into the air systems

Removing possible contamination caused by the mounting operation.

Cleanroom HVAC filter engineer/ technician.

Clean all surface edges on all sides.

Wiper-clean.

Stage 7 — Adjust the air conditioning equipment.

Removing suspended dust from the airflow and creating overpressure installation, including the filters.

Cleanroom HVAC filter engineer/ technician.

Air conditioning air flushing operation.

Wiper-clean.

Stage 8 — Upgrade the room into prescribed classification.

Removing all deposited and clinging dust from every surface (in order: ceilings, walls, equipment, floors).

A professional cleanroom cleaning by personnel specially instructed on regulations, routing and behaviour.

Wipe down with moistened wipers. Wiper-clean.

Stage 9 — Approve installation.

Verifying the cleanroom to the prescribed design specifications. Customer acceptance.

Installation engineer and certification engineer.

Monitor airborne and surface particles, air velocities, temperature and humidity.

Wiper-clean. Results should conform to agreed design criteria.

Stage 10 — Clean daily and periodically

Maintaining the cleanroom in long-term compliance with designed classification. Microbiological cleaning and testing begins in biocleanrooms.

Cleanroom manager/cleaning contractor.

Listed in F.1 to F.8. A tailor-made cleaning programme for the cleanroom, accounting for the specific demands of the production process and the customer. Routine testing of critical operation parameters.

NOTE 1 During Stages 4 to 10, all high-efficiency and ultra-high-purity components, such as filters, ducts, etc., should arrive on site protected by plastic or foil covers on both ends. Covers should only be removed when ready for use. NOTE 2 During Stages 6 to 10, all activities should be done wearing prescribed cleanroom clothing.

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Page 24: US Laboratory & Cleanroom Design Fundamentalscctr/seminar/seminar1.pdf · US Laboratory & Cleanroom Design Fundamentals . Wei Sun, P.E. Principal, Director of Engineering . Engsysco,

Cleanroom TestingRequired Testing (ISO 14644-2)

ISO 14644-1 Annex B412 MonthsAll ClassesAirflowISO 14644-1 Annex B512 MonthsAll ClassesAir Pressure Difference

12 Months> ISO 5ISO 14644-1 Annex A

6 Months<= ISO 5Particle Count Test

Test ProcedureMaximum Time IntervalClassTest Parameter

Schedule of Tests to Demonstrate Continuing Compliance

Optional Testing (ISO 14644-2)

ISO 14644-3 Annex B724 MonthsAll ClassesAirflow Visualization

ISO 14644-3 Annex B1324 MonthsAll ClassesRecoveryISO 14644-3 Annex B424 MonthsAll ClassesContainment LeakageISO 14644-3 Annex B624 MonthsAll ClassesInstalled Filter Leakage

Test ProcedureMaximum Time IntervalClassTest Parameter

Schedule of Additional Optional Tests

Reference: NEBB (National Environmental Balancing Bureau)-“Procedural Standards for Certified Testing of Cleanrooms”

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Cleanroom Construction Cost

Mechanical Construction Cost, conducted by Richard Pavlotsky in 2003

$453-$810$203-$363$97-$167$79-$141Mech. Const. Cost /SQ. FT.

ISO-3FS-1

ISO-5FS-100

ISO-7FS-10,000

ISO-8FS-100,000

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Cleanroom Construction CostExample: Fab Facility Total Cost, conducted by Norbert Wiegler

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Cleanroom Design Problems & Validation

Common Design Problems• Poor laminarity• Fail to pressurize to specified pressure levels• Local stagnation near point of service• Ineffective chemical vapor exhaust• Too high noise• Temperature & humidity variations above specifications

How to Ensure Quality During Design Phase?• Engineer’s design knowledge & experience• Mock-up or scale-down model• CFD validation

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Page 25: US Laboratory & Cleanroom Design Fundamentalscctr/seminar/seminar1.pdf · US Laboratory & Cleanroom Design Fundamentals . Wei Sun, P.E. Principal, Director of Engineering . Engsysco,

CFD Applications

A case study: Examination of flow laminarity of a cleanroom with a subfab underneath

CFD model geometry

FloorCeiling

Slab

FAB

SUBFAB CHASE

Cleanroom with 35% FA Floor Panels

Narrower Cleanroom with 35% FA Floor Panels

Cleanroom with 20% FA Floor Panels

Cleanroom with 10% FA Floor Panels

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Technology Trend – Determination of Airflow Rate Based on Particle Generation Rate

During Design Phase

Room Particle Concentration versus Air Change Rate (Steady State)

- Effect of Internal Particle Generation Rate

0.1

1.0

10.0

100.0

1,000.0

10,000.0

100,000.0

1,000,000.0

0 100 200 300 400 500 600

Supply Air ACH (Air Change Per Hour)

Con

cent

ratio

n (N

umbe

r of P

artic

les

Per F

T3 )

G=1

G=10

G=100

G=1000

G=10000

Condition:

OA/SA=5%CO=1x106

EU=95%EH=99.97%η =1.0

Internal Particle Generation Rate:G = Rate of impurity generation unit floor area, averaged throughout the space

Unit: Particals/FT3/Min.

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Technology Trend – Provide Airflow Rate Based on Particle Generation Rate

During Operating Phase

ACH

Rat

e

Room Particle Generation Rate G

VFD Ventilation

Staged Ventilation

The goal is to stage the ventilation rate to maintain the same room cleanliness level through particle sensing during all modes (occupied and unoccupied)

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Q & A

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________