usace plug-in water quality modules developed for a...

40
Zhonglong Zhang, PhD, PH, PE LimnoTech, USACE Environmental Lab. Billy Johnson, PhD, PE, D.WRE USACE Environmental Lab. 707 4 th Street, Suite 100 USACE Plug-In Water Quality Modules Developed for a Variety of Hydrologic and Hydraulic (H&H) Models Delta Modeling User Group Meeting Sacramento, CA February 21, 2018

Upload: others

Post on 30-Aug-2019

2 views

Category:

Documents


0 download

TRANSCRIPT

Zhonglong Zhang, PhD, PH, PE

LimnoTech, USACE Environmental Lab.

Billy Johnson, PhD, PE, D.WRE

USACE Environmental Lab.

707 4th Street, Suite 100

Davis, California 95616

USACE Plug-In Water Quality

Modules Developed for a Variety of

Hydrologic and Hydraulic (H&H)

Models

Delta Modeling User Group Meeting

Sacramento, CA

February 21, 2018

Outline

▪ Background

▪ Water quality modules – dynamic linked

libraries

▪ Water quality capabilities in a variety of

H&H models

▪ Riparian vegetation simulation module

System Wide Water Resources

Program

▪ GSSHA▪ HEC-HMS▪ HEC-RAS▪ HEC-ResSim/CE-QUAL-W2▪ AdH

Riverine

Models

Watershed

Models

Estuarine

and Coastal

Models

Reservoir

Models

Ecosystem Management and

Restoration Research Program

▪ EMRRP products focus on cost-effective, science-based

impact assessment, restoration, and management

technologies for the Corps' water resource managers.

▪ EMRRP is targeted toward ecosystems of particular

concern to the Corps, namely: streams, riparian and

other floodplain, wetlands, and aquatic systems.

Corps Water Management System (CWMS)

Courtesy of Todd Staissberg

• CWMS provides real-time

decision support for water

management

• Features:

• Real-time data acquisition

• Database storage

• Flow forecasting of watershed

runoff

• Reservoir operation decision

support

• River profile modeling

• Inundated area determination

• Consequence/damage

analysis

• Information dissemination

• Implementation: 201 CWMS

systems by 2022

Database

Modeling

Information

Dissemination

Data

Visualization

RAS(Hydraulics)

FIA(Damages)

ResSim(Storage)

HMS(Hydrology)

Modeling

Data

Acquisition

Real-Time Fully Integrated H&H

Models in CWMS

HEC-HMSRunoff WQ

HEC-ResSimReservoir WQ

HEC-RASRiver WQ

WQMs(DLLs)

Courtesy of Todd Staissberg

H&H Models

• Completely mixed (0-order)

• One dimensional (1-D)– Longitudinal/Vertical

• Two dimensional (2-D)– Longitudinal and vertical

– Depth averaged

• Three dimensional (3-D)

More

data

Completely mixed

reactor

Deep, vertically

segmented

River-run impoundment,

longitudinally & vertically

segmented

Elongated, shallow,

longitudinally

segmented

A Water Quality Model

3-D Transport Equation

Water Quality

Model

Transport_________

Physical process

Kinetics_________

Biogeochemistry

z y

x

Plug-In Water Quality Modules

Water Quality

Modules (DLLs)• Water temperature

• General constituents

• Nutrients (C,N,P)

• Contaminants

• Mercury

HEC-RAS

(1D/2D)

AdH(2D/3D) SRH-2D

HEC-

ResSim

• Kinetic rate

• Pathways

• Derived constituents CE-QUAL-

W2

HEC-HMS

Plug-in Water Quality Modules▪ Modules

► Water Temperature Simulation Module (TEMP)

► General Constituent Simulation Module (GC)

► Solid Simulation Module (SED)

► Nutrient Simulation Module I (NSMI + SedFlux)

► Nutrient Simulation Module II (NSMII + SedFlux)

► Contaminant Simulation Module (CSM)

► Mercury Simulation Module (HgSM)

▪ ReferencesAquatic Nutrient Simulation Modules (NSMs) developed for hydrologic and

hydraulic models http://acwc.sdp.sirsi.net/client/en_US/search/asset/1048348Application and Evaluation of the HEC-RAS-Nutrient Simulation Module (NSMI)

http://acwc.sdp.sirsi.net/client/en_US/search/asset/1035283Aquatic Contaminant and Mercury Simulation Modules developed for hydrologic

and hydraulic models

http://acwc.sdp.sirsi.net/client/en_US/default/index.assetbox.assetactionicon.

view/1050727Verification and Evaluation of Aquatic Contaminant Simulation Module (CSM)

http://acwc.sdp.sirsi.net/client/en_US/search/asset/1050988

Water Quality Modules (DLLs) –

Kinetics (Biogeochemical Reactions)

Water column

Mu

lti s

edim

ent

laye

rs

Active sediment layer

Water columnBed sediment

Nutrient Simulation Modules

EUTROPHICATION

Excessive plant growth

PHYTOPLANKTON

Floating microscopic

algae

PERIPHYTON &

FILAMENTOUS ALGAE

Attached algae

MACROPHYTES

Higher vascular

rooted plants

Predominently in

shallow systems

(streams or nearshore

regions of lakes & estuaries)

Nutrient Simulation Modules

Bed sediment

OrgN NH4

NO3

OrgP TIP

POC DOC DIC

CBODPOM

DO

Ap Ab

Alkalinity

Pathogen

N2

Water column Uptake

Oxidation

Decay

Decay

Mortality

Nitrification

Hydrolysis

Release

Respiration Dissolution

Decay

SOD

Denitrification

SettlingAtmospheric reaeration

RDOCLDOC

RPOCLPOC

Bed sediment

DON NH4

NO3

DOP TIP

DIC

CBOD

DO

Ap Ab

Alkalinity

Pathogen

RPOPLPOP

RPONLPON

CH4 HxS

DSiBSi

Water column

Nitrification

Uptake

Mortality

SOD

Dissolution

Denitrification

Oxidation

Atmospheric reaeration SettlingRespiration Hydrolysis Mineralization

Release

NSMI

NSMII

Algal groups

Diatoms

Greens (others)

Bluegreens

Sediment Diagenesis ModuleW

ater

Sed

imen

t

laye

r 1

Sed

imen

t la

yer

2

Diagenesis

POCG1,2

CH4, H2S,

NH3, CO2

POCG3,2

POCG2,2

PONG1,2

PONG3,2

PONG2,2

POPG1,2

POPG3,2

POPG2,2

PON

POP

POCDiagenesis

Diagenesis

CH4

NH4 (d)

PO4 (d)

H2S (d)

NO3

Partitioning

Burial

CH4

H2S (d)

NH4 (d)NO3

PO4 (d) Partitioning

Particle mixingDiffusion

Burial

CH4 H2S NH4NO3 DIP

BSi Si (d)

Si (d)

DSi

Dissolution

NH4 (p)

PO4 (p)

H2S (p)

Si (p)

Partitioning

Partitioning

Partitioning

H2S (p)

NH4 (p)

PO4 (p)

Si (p)

Ap, POC, PON, POP, BSi

Dep

osi

tio

n

Transfer

Nutrients

N, P

Fluxes

Nutrients

Nutrients

Contaminant Simulation Module

DOC Sorbed Phase

Dissolved Phase

Dif

fusi

on

Dif

fusi

on

Dep

osi

tio

n

Res

usp

en

sio

n

Burial

Volatilization

EquilibriumEquilibrium

Non-equilibrium

Equilibrium Equilibrium

Non-equilibrium

Water column

Bed sediment

Sorbed Phases

Algae POM Solids

DegradationTransformations

DegradationHydrolysisPhotolysis

Transformations

Sorbed Phases

POM SolidsDOC

Sorbed PhaseDissolved

Phase

Dep

osi

tio

n

• Soluble

• Complexes with

organic ligands

• Algae

• Detritus

• Inorganic Solids

(silt, clay, sand)

Hg Simulation Module

Hg0

Photodegradation

Oxi

dat

ion Reduction

Volatilization

Methylation

Demethylation

Dif

fusi

on

De

po

siti

on

Re

susp

en

sio

nD

epo

siti

on

Dif

fusi

on

De

po

siti

on

Res

usp

ensi

onD

epo

siti

on

Burial BurialMethylation

Demethylation

Water column

Bed sediment

HgII

Algae POM SolidsDissolved DOC

MeHg

AlgaePOMSolids DissolvedDOC

HgII

POM SolidsDissolved DOC

MeHg

POMSolids DissolvedDOC

Elementary Hg (Hg0)

Inorganic Hg (HgII)

Organic Hg (MeHg)

Algae

Detritus

Inorganic Solids (silt,

clay, sand)

HEC-ResSim (Reservoir System

Simulation) Water Quality

Courtesy of Todd Staissberg

HEC-ResSim

Evaluate Flow and WQ at every

time step

WQ Rules

Decision Engine

WQ Engine

WQ Libraries

Water quality should influence flows

Releases

Qout

zx

g

1D River 1D Reservoir

THERMOCLINE

rdensity

T

temperature

z

HEC-ResSim Water Quality

HEC-RAS (River Analysis System)

Water QualityWater Quality

Data

Water Quality

Analysis

Lower Minnesota River TMDL

Twelve (12) tributaries

Eight (8) point sources

(Courtesy of MCES)

Lower Minnesota River HEC-RAS

Water Quality Model

Comparison of Modeled Results and

Observed Data at RM 3.5

2001 2002 2003 2004 2005 20060

2

4

6

8

10

12

14

16

18

C:\MNriver\RAS\101413\LMNRRAS.wq03

Time

Dis

solv

ed O

xyge

n (m

g/l)

Legend

Obs: Minnesota Lower 5601.1

Dissolved Oxygen (mg/l)

Simulation

2001 2002 2003 2004 2005 20060.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

C:\MNriver\RAS\101413\LMNRRAS.wq03

Time

Ort

ho

pho

sph

ate

(m

g/l)

Legend

Obs: Minnesota Lower 5601.1

Orthophosphate (mg/l)

Simulation

2001 2002 2003 2004 2005 20060.0

0.5

1.0

1.5

2.0

C:\MNriver\RAS\101413\LMNRRAS.wq03

Time

Org

an

ic P

ho

sph

oru

s (m

g/l)

Legend

Obs: Minnesota Lower 5601.1

Organic Phosphorus (mg/l)

Simulation

Dissolved inorganic phosphorousOrganic phosphorous

Dissolved oxygen

2001 2002 2003 2004 2005 20060

5

10

15

20

C:\Development\WQdll\Testing\LMNR-RASWQ\LMNRRAS.wq03

Time

Alg

ae

(m

g/l)

Legend

Obs: Minnesota Lower 5601.1

Algae (mg/l)

Simulation

Algal concentration

Comparison of Modeled Results and

Observed Data at RM 3.5

2001 2002 2003 2004 2005 20060.0

0.2

0.4

0.6

0.8

1.0

1.2

C:\MNriver\RAS\101413\LMNRRAS.wq03

Time

Am

mon

ium

Nitro

ge

n (

mg

/l)

Legend

Obs: Minnesota Lower 5601.1

Ammonium Nitrogen (mg/l)

Simulation

2001 2002 2003 2004 2005 20060.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

C:\MNriver\RAS\101413\LMNRRAS.wq03

Time

Org

an

ic N

itro

ge

n (m

g/l)

Legend

Obs: Minnesota Lower 5601.1

Organic Nitrogen (mg/l)

Simulation

Organic nitrogen

Ammonium nitrogen

2001 2002 2003 2004 2005 20060

2

4

6

8

10

12

14

16

C:\MNriver\RAS\101413\LMNRRAS.wq03

Time

Nitr

ate

Nitr

og

en

(NO

3) (m

g/l)

Legend

Obs: Minnesota Lower 5601.1

Nitrate Nitrogen(NO3) (mg/l)

Simulation

Nitrate-Nitrite nitrogen

2001 2002 2003 2004 2005 20060

5

10

15

20

C:\Development\WQdll\Testing\LMNR-RASWQ\LMNRRAS.wq03

Time

Alg

ae

(m

g/l),D

issolv

ed

Oxyge

n (m

g/l)

Legend

Algae (mg/l)

Dissolved Oxygen (mg/l)

Simulation

Algae vs. Dissolved oxygen

Linked HSPF and HEC-RAS model

for the Calleguas Creek Watershed

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Jan20

06

Mar

20

06

May

2006

Jul2

006

Sep

20

06

Nov

200

6

Jan20

07

Mar

20

07

May

2007

Jul2

007

Sep

20

07

Nov

200

7

Jan20

08

Mar

20

08

May

2008

Jul2

008

Sep

20

08

Nov

200

8

Jan20

09

NH

4 (

mg/L

)

Ammonium Nitrogen

Observed

Simulated

0

1

2

3

4

5

6

7

8

9

10

Jan20

06

Mar

20

06

May

2006

Jul2

006

Sep

20

06

Nov

200

6

Jan20

07

Mar

20

07

May

2007

Jul2

007

Sep

20

07

Nov

200

7

Jan20

08

Mar

20

08

May

2008

Jul2

008

Sep

20

08

Nov

200

8

Jan20

09

TP

(m

g/L

)

Total Phosphorus

Observed

Simulated

0

1000

2000

3000

4000

5000

6000

7000

Jan20

06

Mar

20

06

May

2006

Jul2

006

Sep

20

06

Nov

200

6

Jan20

07

Mar

20

07

May

2007

Jul2

007

Sep

20

07

Nov

200

7

Jan20

08

Mar

20

08

May

2008

Jul2

008

Sep

20

08

Nov

200

8

Jan20

09

TS

S (

mg/L

)

Total Suspended Solids

Observed

Simulated

Linked HSPF and HEC-RAS model

for the Patuxent Watershed

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Jan-95 Jan-96 Jan-97 Jan-98 Jan-99 Jan-00

Alg

(m

g/l)

Algal Concentration

Patuxent River near Bowie, MD

Observed Simulated

4

6

8

10

12

14

DO

(m

g/l)

Dissolved Oxygen Concentration

Patuxent River near Bowie, MD

Observed Simulated

Missouri River Recovery Management Plan

Missouri River Recovery Management Plan

and Environmental Impact Statement

Missouri River Recovery Management Plan

and Environmental Impact Statement

1995 1997 1999 2001 2003 2005 2007 2009 2011 20130

5

10

15

20

25

30

35

C:\Projects\MoR\083016\GavtoRulo\Alt1\gavunstdy.wq03

Time

Wate

r T

em

pera

ture

(C

)

Legend

Obs: Missouri River Weeping to Nishn 562.74

Water Temperature (C)

Simulation

1995 1997 1999 2001 2003 2005 2007 2009 2011 20130

5

10

15

20

25

30

35

C:\Projects\MoR\083016\GavtoRulo\Alt1\gavunstdy.wq03

Time

Wate

r T

em

pera

ture

(C

)

Legend

Obs: Missouri River Tarkio to BigNem 498.04

Water Temperature (C)

Simulation

USGS 06813500

USGS 06807000

1995 1997 1999 2001 2003 2005 2007 2009 2011 20130

5

10

15

20

25

30

35

C:\Projects\MoR\083016\RulotoMouth\Alt1Osage\RulotoMouth.wq01

Time

Wate

r T

em

pera

ture

(C

)

Legend

Obs: MISSOURI RM 463-391 448.17

Water Temperature (C)

Simulation

USGS 06818000

1995 1997 1999 2001 2003 2005 2007 2009 2011 20130

5

10

15

20

25

30

35

40

C:\Projects\MoR\083016\RulotoMouth\Alt1Osage\RulotoMouth.wq01

Time

Wate

r T

em

pera

ture

(C

)Legend

Obs: MISSOURI RM 104-0 97.93

Water Temperature (C)

Simulation

USGS 06934500

Columbia River System Operations

(CRSO)

Courtesy of Dan Turner

▪ CRSO

► 12 Corps dams

► 2 BOR dams

► BPA markets the power

generated from the dams

▪ Evaluate impact of

operation and

configuration of federal

dams on:

► Water temperature

► Total dissolved gases

(TDG)

Enhancement of CE-QUAL-W2

Qout

z

x

w

u

g

a

Slope=S=tanaRiver Section Reservoir Section

• SYSTDG

• SedFlux, Carbon Cycle, HgSM

CRSO Water Quality Models

CE-QUAL W2, 2-D modeling

HEC-RAS, 1-D modeling

model connections

Canadian System

Albeni Falls

Libby

Grand Coulee

Dworshak

Hungry

Horse

Lower

GraniteLittle

GooseLower

Mon.Ice

HarborMcNaryJohn DayThe DallesBonneville

Snake River

Anatone

Rock Island

Clearwater River

Orofino

Columbia River

International Bndy

Chief Joseph

Wanapum

Priest Rapids

Rocky Reach

Hanford Reach

Columbia River

Washougal

Federal dam

Non-Federal dam

Boundary condition gage

Courtesy of Dan Turner

SRH-2D (Sedimentation and River

Hydraulics) Water Quality• TEMP, GC modules

• NSMI, HgSM modules

AdH (Adaptive Hydraulics) Water Quality

Three testing modes:

► No flow “bathtub”

► Simple flume

► Field case

• TEMP, GC modules

• NSMI, CSM modules

RVSM (Riparian Vegetation Simulation Module)

Developed for 1D and 2D Hydraulic Models

RVSM

▪ Seedling establishment

• Germination period

• Seed dispersal

▪ Plant growth

• Growth rate (stalk, root)

• Max height/depth for stalk/root

• Effects on roughness through growth

▪ Mortality

• Competition

• Scour (high flows on young plant)

• Drowning (inundated for duration)

• Desiccation (root growth < GW drop)

• Ice, burying

Can

opy

heig

ht

Canopy width

Plan

t heig

ht

Ro

ot d

epth

Stem diameter

▪ Processes of vegetation life cycle

Cross

section N-1

Cross

section N

Cross

section N+1

Left bank line

Right bank line

Vegetation

polygons

Left and right

bank points on

cross section

Left river

boundary

Right river

boundary

▪ Plant height, root depth, canopy

width, stem diameter etc. are computed

RVSM --> 1D/2D Hydraulic Models

One-dimensional (1D) models Two-dimensional (2D) models

• HEC-RAS – 1D/2D

• SRH - 1D/2D

Application of HEC-RAS-1D-RVSM to

Sacramento River

• Study area➢ from Red Bluff to Colusa with

107 miles

➢ Ecological management zone

➢ Abundant vegetation data

➢ Restoration projects were

implemented

• Purposes➢ Model interactions between

flow and vegetation

➢ Predict vegetation area change

➢ Examine what caused

vegetation establishment

change

Application of HEC-RAS-1D-RVSM to

Sacramento River

Year Cottonwood Mixed

forest

Riparian

shrub

Invasive

species

Grass

Area from

mapping

(acre)

1999 5319 8842 3310 77 3169

2007 6621 6621 4127 122 4280

Change

ratio

1.35 0.75 1.25 1.59 1.35

Area from

model (acre)

1999 5308 8827 3275 72 3233

2007 6028 8246 3891 153 4609

Change

ratio

1.14 0.93 1.19 2.12 1.42

Acknowledgements▪ USACE - ERDC

► Mark Dortch, Carl Cerco, Tate McAlpin, David Smith, Gaurav

Savant

▪ USACE - HEC

► Todd Staissberg, Mark Jensen, Steve Piper, Alex Sanchez

▪ RMA

► John DeGeorge, Stephen Andrews

▪ USBR - TSC

► Yong Lai, Blair Greimann, Victor Huang

▪ USACE - NWD

► Jeff Tripe, Kara Reeves

► Kathryn Tackley, Dan Turner

▪ Universities

► James Martin (MSU), Kevin Farley (Manhattan), Junna Wang

(UCD)