use of flue gas from combustion of landfill gas (lfg) as the

17
Use of Flue Gas from Combustion of Landfill Gas (LFG) As the Source of CO 2 For Algae Biomass Production with Scenedesmus obliquus: Growth, FAME’s, and Heavy Metals Joshua S. Wilkenfeld 1 , Pallab Sarker 2 , Anne Kapuscinski 2 Algae Biomass Summit Orlando Florida 2 October, 2003 1 Algae Cultivation Specialist, Contractor 2 Environmental Studies Program, Dartmouth College [email protected] 1

Upload: others

Post on 12-Feb-2022

3 views

Category:

Documents


0 download

TRANSCRIPT

Use of Flue Gas from Combustion of Landfill Gas (LFG) As the Source of CO2 For Algae Biomass

Production with Scenedesmus obliquus: Growth, FAME’s, and Heavy Metals

Joshua S. Wilkenfeld1, Pallab Sarker2, Anne Kapuscinski2

Algae Biomass Summit Orlando Florida 2 October, 2003

1Algae Cultivation Specialist, Contractor 2Environmental Studies Program, Dartmouth College

[email protected]

1

Benemann, 2013

“The concept of C02 utilization and fuel production by microalgae was first proposed over four decades ago…” Benemann & Oswald,1996

2

“The utilization of the flue gas [from incinerated municipal waste] containing 10-13% (v/v) CO2 and 8-10% (v/v) O2 for a photobioreactor …enables [sic] to produce biomass [C. vulgaris], which for contaminants. …cannot be neglected…” Douskova et al., 2008

?!?

3

• “Mercury is the only heavy metal reported in [raw] gaseous emissions from landfills. Measured levels have consistently been low enough to suggest little cause for concern

• …the mean concentration of mercury is between 5 and 10 μg/m3 …theoretically possible that other metals, such as arsenic, could be transformed in a landfill into organic forms volatile enough to escape to the atmosphere

• …combustion of landfill gas will convert organic mercury [and other metals] to inorganic forms.” Aucott, 2006

4

Compare growth (c/ml) and standing-crop production (g/L) of S. obliquus grown with :

• Commercial CO2

• Flue-gas from LFG-fired 300 KW Guascor CHP generator

Test gasses, algae, supernatant, and FG condensate for

Arsenic (As) Cadmium (Cd)

Cobalt (Co) Lead (Pb)

Mercury (Hg) Tin (Sn)

Compare results to and available EPA air and

effluent regulations LFG = Land Fill Gas CHP = Combined Heat & Power 5

Bower 1: , and mix of

Blower 2: Mix of

control mixes

Multiple to check gas mixes using LANDTECH GEM 2000 gas analyzer 6

Starting density: 10.4 x106 c/mL (0.2 g/L afdw)

Daily monitoring/adjusting of gas mixes and flow rates (2% CO2, 0.47 LPM = 1 SCFM)

Daily record of temp, pH, and cell counts

afdw: DOC-0, 3, 6, 10 & 13

FAMEs: DOC-0, 6 & 13

Metals in algae & supernatant: DOC-13

Metals in gases & FG condensate: One time 7

24 Hours After Inoculation 48 Hours After Inoculation

8

• Little control over ambient temp; range was 18.6-26.5 °C

• pH: After stocking, pH in both CO2 treats stayed around 7.5. pH in Air Only climbed steadily to high of 11.0.

• NO3: Was being consumed in all treatments; much less so in Air only (lower c/mL)

• PO4: With Latchat chemistry, seems to disappear in 3-4 days, but unclear if this is limiting.

Min Max Mean AIR+CO2 7.2 8.2 7.5

AIR 8.2 11.0 10.0

AIR+Flue Gas 7.3 8.4 7.6

Min Max Mean AIR+CO2 18.6 26.5 22.9

AIR 18.7 25.9 22.6

AIR+Flue Gas 18.7 25.3 22.4

9

0

50

100

150

200

250

300

0 6 13

NO

3-N

in

mg/

L (p

pm

)

Days of Culture (DOC)

NO3-N FG Condensate BG-11 Media

Starter Culture Air+CO2

Air Air+Flue Gas

0

2

4

6

8

0 6 13

PO

4-P

in

mg/

L (p

pm

)

Days of Culture (DOC)

PO4-P FG Condensate BG-11 MediaStarter Culture Air+CO2Air Air+Flue Gas

0.00

2.00

4.00

6.00

8.00

0 6 13

NO

2-N

in

mg/

L (p

pm

)

Days of Culture (DOC)

NO2-N FG Condensate BG-11 MediaStarter Culture Air+CO2Air Air+Flue Gas

0.0

0.5

1.0

1.5

0 6 13

NH

4-N

in

mg/

L (p

pm

)

Days of Culture (DOC)

NH4-N BG-11 Media Starter CultureAir+CO2 AirAir+Flue Gas

• Cell Density (c/ml) & Biomass (mg/ml): No significant difference between flue gas or CO2

(p>0.05), but both are significantly greater than air (p<0.05)

• Productivity (g/L/d)

• Starter Culture:

DOC = 37 Approx. 35% evap. c/ml = 210-million Afdw = 4,399 mg/L

0

20

40

60

80

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13

c/m

l x 1

0 6

Days of Culture (DOC)

Air+CO2 MeanAir MeanAir+FG Mean

0

500

1,000

1,500

2,000

2,500

0 3 6 10 13

afd

w (

mg

/L)

Days of Culture (DOC)

a

a

b

a a

b

10

Air & CO2 0.141

Air 0.084

Air + FG 0.163

a a b

a a b

• Six of 17 FA’s = 91% of total FA’s at start

• By end, major FE’s have dropped to around 80% in treatments with CO2 or FG

• Biggest changes: Increase in Palmitoleic (16-1) and Oleic (18:1n9, and a 50% drop in ALA (18:3n3) and)

Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry by Chemical Analysis and Instrumentation Laboratory, NMSU

Fatty Acid

DOC-0 DOC-6 DOC-13

Starter Culture

Air + CO2

Air Air + FG Air + CO2

Air Air + FG Air + CO2

Air Air + FG

Myristic 14:0 0.46 0.56 0.65 0.55 0.36 0.46 0.34 0.49 0.45 0.43

Myristoleic 14:1 0.63 0.55 0.68 0.59 0.59 0.45 0.62 0.65 0.49 0.63

Pentadecanoic 15:0 0.27 0.32 0.34 0.29 0.34 0.14 0.29 0.53 0.14 0.33

Pentadecenoic 15:1 0.22 0.27 0.32 0.22 0.34 0.18 0.39 0.37 0.24 0.31

Palmitic 16:0 22.59 22.71 25.78 22.69 24.32 21.77 23.21 29.20 22.81 25.88

Palmitelaidic 16:1 0.71 0.98 1.09 0.91 3.26 1.52 3.10 3.69 1.50 2.94

Palmitoleic 16:1 0.76 0.96 1.16 0.91 7.24 0.45 5.84 9.22 0.30 5.12

Hexadecadienoic 16:2 0.69 0.75 0.77 0.78 1.49 0.69 1.49 1.33 0.89 1.88

Heptadecanoic 17:0 0.21 0.24 0.26 0.22 0.44 0.19 0.35 0.54 0.24 0.45

Hexadecatrienoic 16:3 1.74 1.51 1.51 1.56 0.41 0.74 0.40 1.19 1.03 0.93

Hexadecatetraenoic 16:4 9.03 8.69 7.73 9.15 10.31 11.79 11.23 6.11 11.09 6.50

Stearic 18:0 0.79 0.87 0.83 0.88 1.19 0.84 1.09 2.54 1.01 1.92

Oleic 18:1n9 9.64 10.22 11.03 10.08 14.81 15.41 13.99 17.50 14.43 18.01

Linoleic (LA) 18:2n6 9.18 8.84 8.54 8.89 11.55 7.12 12.02 9.85 8.24 14.28

Gamma-Linolenic (GLA) 18:3n6 1.44 1.34 1.31 1.42 1.02 0.61 1.06 1.23 0.84 1.60

Alpha-Linolenic (ALA) 18:3n3 33.40 33.24 30.99 33.26 19.09 31.71 20.79 13.17 30.94 15.76

Octadecatetraenoic 18:4 8.26 7.96 7.01 7.60 3.25 5.92 3.82 2.39 5.37 3.04

Total %: Six Major Fatty Acids 92.09 91.66 91.08 91.66 83.33 93.72 85.05 78.22 92.87 83.46

Total %: 11 Minor Fatty Acids 7.91 8.34 8.92 8.34 16.67 6.28 14.95 21.78 7.13 16.54

11

• %FAME/Unit wt not significantly different (P>0.05)

• Slight decline of % FAME by DOC-13

• Yield of FAME/L is significantly different (P<0.05)

• % FAME and mg/L on DOC-0 are greater for starter (Time and evap = high c/ml and mg/L)

20

84

127

20

58

101

21

107

180

0

20

40

60

80

100

120

140

160

180

200

0 6 13

8-Mar-13 14-Mar-13 21-Mar-13

Tota

l FA

ME

(mg

/L)

Day of Culture (DOC) and Date

Starter Culture Air+CO2 Air Air+Flue Gas514

a

Day of Culture (DOC)

0

2

4

6

8

10

12

0 6 13

8-Mar-13 14-Mar-13 21-Mar-13

% F

AM

E (m

g/1

00m

g d

w) Starter Culture Air+CO2 Air Air+Flue Gas

Day of Culture (DOC)

DOC-37

12

a a

b

ab b

13

Metal

Analyte

PQL

(µg)

Projected

Emission

from

Combustion

of Nat.Gas

Permitted

Air

Discharge

Levels2

Landfill

Gas Main

Supply

Line

Flue Gas

Main

Supply

Line

Air+CO2

Inlet

Air+CO2

Exhaust

Air+FG

Inlet

Air+FG

Exhaust

Arsenic 0.0100 0.0032 0.0500 < 0.0100 < 0.0100 < 0.0100 < 0.0100 < 0.0100 < 0.0100

Beryllium 0.0010 0.0002 0.3600 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010

Cadmium 0.0010 0.0176 0.04-0.05 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010

Chromium 0.0100 0.0224 0.4650 < 0.0100 < 0.0100 < 0.0100 < 0.0100 < 0.0100 < 0.0100

Copper 0.0100 0.0136 0.5-1.0 < 0.0100 < 0.0100 < 0.0100 < 0.0100 < 0.0100 < 0.0100

Lead 0.0200 0.0080 0.02-0.5 < 0.0200 < 0.0200 < 0.0200 < 0.0200 < 0.0200 < 0.0200

Nickel 0.0100 0.0336 0.4440 < 0.0100 < 0.0100 < 0.0100 < 0.0100 < 0.0100 < 0.0100

MERCURY 0.0005 0.0042 0.05-0.08 0.0016 0.0013 0.0021 ND 0.0013 0.0019

Zinc 0.0100 0.4640 1.0000 0.0161 0.0324 0.0177 0.0323 0.0168 0.0163

1 PQL = Practical Quantitation Limits 2 http://www.epa.gov/ttnchie1/ap42/ch01/final/c01s04.pdf 2 Rao, 199?, Montgomery County Department of Public Works and Transportation,Division of Solid Waste Services * Adirondack Environmental Services (gas analysis, NIMAM): Metals, (ICP-AES); Mercury: Atomic Absorption

• Most of the metals are below detection limits

1 BDL = Below Detection Limits; Analysis by ICP-MS (Inductively coupled plasma mass spectrometry) 2 Pollution Prevention and Abatement Handbook WORLD BANK GROUP,Effective July 1998

Metal Arsenic

(As)

Cadmium

(Cd)

Chromium

(Cr)

Lead

(Pb)

Mercury

(Hg)

Tin

(Sn)

Air+CO2 BDL1 BDL 0.0899 BDL BDL 0.0013

Air BDL BDL 0.2271 BDL BDL 0.0018

Air+FG BDL BDL 0.2054 BDL BDL 0.0218

BG-11 Medium BDL BDL BDL 0.0010 BDL 0.0001

FG Condensate 0.0027 0.0053 0.0053 2.2532 BDL 0.0027

Regulations For

Effluent2 0.1 0.1 0.5 0.1 0.01 2.0

Sample Specific

Definition Limit

(SSDL)

0.00004 0.00003 0.00060 0.00001 0.00050 0.00004

14

Metal Arsenic

(As)

Cadmium

(Cd)

Chromium

(Cr)

Lead

(Pb)

Mercury

(Hg)

Tin

(Sn)

Air+CO2 BDL1 BDL 0.0214 0.0062 BDL 0.0899

Air ?!? BDL BDL 0.0382 0.0292 BDL 0.2271

Air+FG BDL BDL 0.0174 0.0104 BDL 0.2054

Douskova et al., 2009 0.2-1 0.05-1 ND 0.1-1.5 0.1-1 ND

Strictest Food

Regulations2 0.10 0.05 1.00 0.02 0.50 50.00

Sample Specific

Definition Limit

(SSDL)

0.0198 0.0149 0.2975 ? 0.0050 0.2479 0.0198

1BDL = Below Detection Limits; Analysis by Dartmouth College Earth Sciences Program using ICP-MS (Inductively coupled plasma mass spectrometry)

2 International Standards: Codex Alimentarius Standard 193-1995, and Hong Kong CAP 132V e b5 2 EC Commission Regulation No 1881.2006

15

Scenedesmus obliquus grown with either

than

with air alone

With a and a flow rate of 0.26 LPM/L of

culture (0.56 SCFM/L of culture; v:v), at a

level of 7.5-7

,

well above what is permissible in effluent (0.1 ppm) or in food

(0.02 ppm)

16

DOC-37

Vermnot Sustainable Jobs Fund: For funding CHE’s VSJF Algae Biofuel Grant

DE-FG36-08GO88182 (VBI-FY09, VBI-FY10); Special thanks to Ellen Kahler and Netaka White

U.S. Department of Energy: For providing funds to VSJF

Carbon Harvest Energy, LTD: They had a dream…

Dartmouth College, Environmental Studies Program: Dr. Anne Kapuscinski (Chair) Dr. Pallab Sarker (Senior Research Associate) and Paul Zietz (Environmental Measurements Lab Manager) for funding from Kapuscinski's Sherman Fairchild Professorship in Sustainability Science, access to lab facilities, library and their support throughout the research.

Senator Patrick Lehey: For his interest in and support of sustainability in Vermont

17