using classes 1 classes and function members — an introduction to oop (object-oriented...

34
Using Classes 1 Classes and Function Members — An Introduction to OOP (Object-Oriented Programming) Chapter 7 The "++" in C++

Upload: blake-casey

Post on 27-Dec-2015

221 views

Category:

Documents


0 download

TRANSCRIPT

Using Classes

1

Classes and Function Members —An Introduction to

OOP (Object-Oriented Programming)

Chapter 7

The "++" in C++

Classes

The iostream library provides the objects cin, cout and cerr. These objects were not originally provided in C++, but were added to the language using its class mechanism — a major modification of C's struct.

This mechanism allows any programmer toadd new types to the language. They arenecessary to model real-world objects that havemultiple attributes; e.g., 2

temperature.

An object is a program entity whose type is a class. Their main difference from other thingswe've been calling "program objects" is that in addition to storing data values they also havebuilt-in operations for operating on this data.

3

Classname identifier;

object

anObject

operations

data

Although objects can be processed by "shipping them off" to functions for processing,

externalFunction(anObject)they can also operate on themselves using their built-in operations, which are functions. Thesefunctions are called by means of the "push-button"dot operator:

anObject.internalFunction(...)

We say that . sends a message to anObject.

4

anObject

operations

data

internalFunction(...)

I/O Classes

5

Bell Labs’ Jerry Schwarz used the class mechanismto create:

• an istream class, to define the object cin; and

• an ostream class, to define cout and cerr.

The resulting I/O system was so powerful and yet easy to use that it was incorporated into the language.

We will study these classes and the operations they provide later after we look at another class provided in C++.

The String ClassC has a library of basic functions that can be used to process strings, which are simply char arrays (see slide #9).

C++ added a new string class that provides:• an easy way to store strings, and• a large assortment of useful built-in

string-processing operations.

To use the string type, we must #include <string>

6

Lab 7

Read §7.4carefully

Warning: #include <string> NOT#include <string.h>which is C's string-processing library

<cstring>

Some string Operations(others in §7.4)

Operation string functionread a word from input (e.g., cin) input >> str;read an entire line from input getline(instream, str);

find the length of string str str.size()check if str is empty str.empty()access the char in str at index i str[i]concatenate str1 and str2 str1 + str2compare str1 and str2 str1 == str2 (or !=, <, >, <=, >=)access a substring str str.substr(pos, numChars)insert a substring into a str str.insert(pos, subStr);remove a substring from str str.remove(pos, numChars);find first occurrence of string aStr

in str starting at position pos str.find(aStr, pos)find first occurrence of any char of str.find_first_of(aStr, pos)string aStr in str starting at pos

Skip leadingwhite space;read until nextwhite space; leave it in stream

Read all chars up to but not including the next newlinecharacter; remove itfrom stream

7

First one used in Lab 7

Print out handy reference sheet in Lab 7

Constant string::npos is returned for unsuccessful searches

Note that some string operations are "normal" functions:

getline(cin, aString);

Other string operations are internal agents — built-in function members that determine how the object is to respond to messages they receive. These messages are sent using the ("push button") dot operator.

aString.size();

For example, aString "knows" how big it is, so when it receives the size() message via the dot operator, it responds with the appropriate answer.

In a sense, class objects are "smarter" than regular char, int, double, ... objects because they can do things for themselves.

8The "I can do it myself" principle of OOP

They are external agents that act on objects.

String ObjectsVariables, such as string variables, whose data is stored in an array (a sequence of items) are called indexed variables because each individual item can be accessed by attaching an index (also called a subscript), enclosed in square brackets, to the variable's name: var[index].

string name = "John Q. Doe";

Using the subscript operator []to access individual chars:

oJ h n Q .name0 1 2 3 4 5 6

D o7 8 9

e10

char firstInitial = name[0];

9 // last name -> Roe

For example, suppose name is declared by

Note that indexes are numbered

beginning with 0.

name's value is an array of 11 characters:

// firstInitial = 'J'

name[8] = 'R';

Dynamic string Objects

name = "Mary M. Smith"; // name.size() =

Objects of type string can grow and shrink as necessary to store their contents (unlike C-style strings):

oJ h n Q .name0 1 2 3 4 5 6

D o7 8 9

e10

aM r y M .name0 1 2 3 4 5 6

S m7 8 9

i10

t11

h12

string name = "John Q. Doe"; // name.size() =

More examples: myName.size()

string myName;

11

13

myName = "John Calvin";myName = "Susie Doe";

0119 10

Note: The diagram for the string object name on the preceding slide is really not correct. It shows only the data part of this object and not the built-in operations. But to save space, we will usually show only the string of characters that it stores.

11

name

oJ h n Q .0 1 2 3 4 5 6

D o7 8 9

e10

A large number of built-in string operations like those described on earlier slides — e.g.,

size() empty()insert() find()find_first_of() find_last_of()

. . .

Another C++ class you may find useful is for complex numbers:

12

Another C++ Class (Template)

Mathematically: a + bi C++: complex<T>(a,b)

1.5 + 3.2i complex<double>(1.5, 3.2)

i complex<double>(0, 1)

Inputs Outputs (1.5, 3.2) (1.5,3.2)

(0, 1) (0, 1)

3.14 (3.14,0)

complex<T>, where T may be float, double, or long double.

13

Figure 7.2 Quadratic Equation Solver — Complex Roots /* This program solves quadratic equations using the quadratic formula.   Input: the three coefficients of a quadratic equation Output: the complex roots of the equation.-----------------------------------------------------------*/ #include <iostream> // cout, cin, <<, >>#include <complex> // complex types using namespace std;  int main() { complex<double> a, b, c; cout << "Enter the coefficients of a quadratic equation: "; cin >> a >> b >> c;

  complex<double> discriminant = b*b - 4.0*a*c, root1, root2; root1 = (-b + sqrt(discriminant)) / (2.0*a); root2 = (-b - sqrt(discriminant)) / (2.0*a); cout << "Roots are " << root1 << " and " << root2 << endl; }

14

Sample runs:

Enter the coefficients of a quadratic equation: 1 4 3Roots are (-1,0) and (-3,0) Enter the coefficients of a quadratic equation: 2 0 -8Roots are (2,0) and (-2,0) Enter the coefficients of a quadratic equation: 2 0 8Roots are (0,2) and (-0,-2) Enter the coefficients of a quadratic equation: 1 2 3Roots are (-1,1.41421) and (-1,-1.41421) Enter the coefficients of a quadratic equation: (1,2) (3,4) (5,6)Roots are (-0.22822,0.63589) and (-1.97178,-0.23589)

The I/O Classes

15

As we noted earlier, C++ provides an istream class for processing input and an ostream class for processing output and that

• cin is an object of type istream

• cout and cerr are objects of type ostream

To use these classes effectively, you must be aware of the large collections of operations provided by them (although like the string class, it really isn't feasible to memorize all of them and how they are used.)

Read § 7.3 carefully; note the diagrams of streams; note how I/O actually takes place.

format manipulators

Some ostream Operationsostream function Description

cout << expr Insert expr into cout

cout.put(ch); Tell cout, "Insert ch into yourself"

cout << flush Write contents of cout to screen

cout << endl Write a newline to cout and flush it

cout << fixed Display reals in fixed-point notation

cout << scientific Display reals in scientific notation

cout << showpoint Display decimal point and trailing zeros for

real whole numbers

cout << noshowpoint Hide decimal point and trailing zeros for

real whole numbers

Read §7.3carefully

16

cout is buffered; cerr is

not.

= default

Once used, stay in effect(except for setw())

More ostream Operations

ostream function Descriptioncout << showpos Display sign for positive valuescout << noshowpos Hide sign for positive valuescout << boolalpha Display true, false as "true",

"false"cout << noboolalpha Display true, false as 1, 0cout << setprecision(n) Display n decimal places for

realscout << setw(w) Display next value in field of

width wcout << left Left-justify subsequent valuescout << right Right-justify subsequent valuescout << setfill(ch) Fill leading/trailing blanks with

ch #include <iomanip> for

these

Read §7.3carefully

17

18

Example:#include <iostream>#include <iomanip>using namespace std;

int main(){ int n1 = 111, n2 = 22; double d1 = 3.0 , d2 = 4.5678; char c1 = 'A', c2 = 'B';

cout << "1. " << n1 << n2 << d1 << d2 << c1 << c2 << endl;

cout << "2. " << n1 << " " << n2 << " " << d1 << " " << d2 << " "<< c1 << " " << c2 << endl;

cout << fixed << showpoint << setprecision(2);

cout << "3. " << n1 << " " << n2 << " " << d1 << " " << d2 << " " << c1 << " " << c2 << endl;

cout << "4. " << setw(5) << n1 << " " << n2 << " " << setw(8) << d1 << " " << setw(2) << d2 << " " << c1 << " " << c2 << endl;

Output:1. 1112234.5678AB2. 111 22 3 4.5678 A B3. 111 22 3.00 4.57 A B4. 111 22 3.00 4.57 A B

------------------------------------------------------------------------------------------------------------------------

Some istream Operations

istream function Description

cin >> var; Skip white space and extract characters from cin up to the first one that can't be in a value for var; convert and store it in var.

cin.get(ch); Tell cin, "Put your next character; (whitespace or not) into ch."

19

Tabs, spaces, end-of-lines

Both are used in Lab 7

Examples (cont. from earlier):

cout << "> "; cin >> n1 >> d1 >> n2 >> d2 >> c1 >> c2; cout << "Output:\n" << n1 << " " << n2 << " " << d1 << " " << d2 << " " << c1 << " " << c2 << endl;

20

Input/Output: cin:> 12.234.4ABOutput:1 3 2.20 4.40 A B

1 2 . 2 3 4 . 4 A B

Input/Output: cin:> 1 2.2 3 4.4 A BOutput:1 3 2.20 4.40 A B

1 2 . 2 3 4 . 4 A B

--------------------

--------------------

Same as before

21

Input/Output: cin:> 12.2 34.4A5BOutput:4 5 12.20 0.40 3 A

The character B is left in cin for the next input statement.

Input/Output: cin:> 12.2 34.4ABOutput:12 34 0.20 0.40 A B

cout << "> "; cin >> n1 >> d1 >> n2 >> d2 >> c1 >> c2; cout << "Output:\n" << n1 << " " << n2 << " " << d1 << " " << d2 << " " << c1 << " " << c2 << endl;

cout << "> "; cin >> d1 >> c1 >> n1 >> d2 >> c2 >> n2; cout << "Output:\n" << n1 << " " << n2 << " " << d1 << " " << d2 << " " << c1 << " " << c2 << endl;

1 2 . 2 3 4 . 4 A B

1 2 . 2 3 4 . 4 A 5 B

--------------------

--------------------

22

for (int i = 1; i <= 5; i++)

{ cout << "> "; cin >> d1 >> c1 >> n1 >> d2 >> c2 >> n2; cout << "Output:\n" << n1 << " " << n2 << " " << d1 << " " << d2 << " " << c1 << " " << c2 << endl; }

In the last example, a character was left in cin for the next input statement. To see how this can cause problems, suppose the following code came after the preceding example:

> Output:4 5 12.20 0.40 3 A> Output:4 5 12.20 0.40 3 A> Output:4 5 12.20 0.40 3 A> Output:4 5 12.20 0.40 3 A> Output:4 5 12.20 0.40 3 A

The following operations on istreams like cin show how we can recover from bad input.

When executed, the following output would be produced. Execution would not pause to allow input of new values for the variables. They retain their old values.

More istream Operations

istream function Description

cin.good() Ask cin, "Are you in good shape?"

cin.bad() Ask cin, "Is something wrong?"

cin.fail() Ask cin, "Did the last operation fail?"

cin.clear(); Tell cin, "Reset yourself to be good."

cin.ignore(n, ch); Tell cin, ignore the next n characters, or until ch occurs, whichever comes first. 23

24

if (cin.fail()) // input failure? { cerr << "\n** Non-numeric input!\n"; cin.clear(); // reset all I/O status flags cin.ignore(80, '\n'); // skip next 80 input chars } // or until end-of-line char else break;

Example showing how to read a valid real number:double number;

cout << "Enter a real number: "; cin >> number;

while (true) // or for(;;) {

}

Infinite Loop

Random Numbers

The text provides a RandomInt class.Objects of this class are integers with "random" values, which can be used to simulate all sorts of "random" occurrences.

#include "RandomInt.h"...RandomInt die1(1,6), die2(1,6); // two dice

die1.generate(); // roll the dicedie2.generate();

cout << "dice roll = " // display results << die1 + die2 << endl;

25

Slides 25-30are optional

More info in §7.5

RandomInt Objects

The range of random values is specified when an object is declared:

#include "RandomInt.h"...const int HEADS = 0, TAILS = 1;

RandomInt coin(HEADS,TAILS);

coin.generate(); // flip coin

cout << coin << endl; // display result

26

RandomInt OperationsOperation RandomInt functionDisplay a RandomInt ostream << randIntDeclare a RandomInt RandomInt name;Declare a RandomInt

within range first..last RandomInt name(first, last);

Generate new random value randInt.generate();Generate new random value

from range first..last randInt.generate(first, last);

Add two RandomInt values randInt1 + randInt2 (also -, *, /)

Compare two RandomInt values randInt1 == randInt2 (also !=, <, >, <=, >=)

27

Figure 7.4 Simulate Shielding of a Nuclear Reactor

/* This program simulates particles entering the shield described in the text and determines what percentage of them reaches the outside. Input: thickness of the shield, limit on the number of direction changes, number of neutrons, current direction a neutron traveled Output: the percentage of neutrons reaching the outside --------------------------------------------------------------------*/

#include <iostream> // cin, cout, <<, >>using namespace std;#include "RandomInt.h" // random integer generator

int main(){ int thickness, collisionLimit, neutrons;

cout << "\nEnter the thickness of the shield, the limit on the \n" << "number of collisions, and the number of neutrons:\n"; cin >> thickness >> collisionLimit >> neutrons;

28

29

RandomInt direction(1,4);

int forward, collisions, oldDirection, escaped = 0;

for (int i = 1; i <= neutrons; i++) { // Next neutron forward = oldDirection = collisions = 0;

while (forward < thickness && forward >= 0 && collisions < collisionLimit) { direction.generate();

if (direction != oldDirection) collisions++; oldDirection = direction;

if (direction == 1) forward++; else if (direction == 2) forward--; } if (forward >= thickness) escaped++; } cout << '\n' << 100 * double(escaped) / double(neutrons) << "% of the particles escaped.\n";}

Sample runs: 

Enter the thickness of the shield, the limit on thenumber of collisions, and the number of neutrons:1 1 100 26% of the particles escaped Enter the thickness of the shield, the limit on thenumber of collisions, and the number of neutrons:100 5 1000

0% of the particles escaped Enter the thickness of the shield, the limit on thenumber of collisions, and the number of neutrons:4 5 100 3% of the particles escaped Enter the thickness of the shield, the limit on thenumber of collisions, and the number of neutrons:8 10 500 0.2% of the particles escaped

30

Well-designed classes provide a rich set of operations that make them useful for many problems.

Operations can be external (normal) functions to which objects are passed for processing; or they may be internal function members of the class.

Function members receive messages to class objects and determine the response.

31

Some Final Notes about Classes

Read

To use a class effectively, you must know what capabilities the class provides; and how to use those capabilities.

32

• Be aware of the functionality a class provides (but don’t memorize the nitty-gritty details).

• Know where (in a reference book) to look up the operations a class supports.

• Then, when a problem involves an operation on a class object, scan the list of operations looking for one that you can use — don’t reinvent the wheel!

Read

/* translate.cpp is an English-to-Pig-Latin translator.

==> PUT YOUR USUAL OPENING DOCUMENTATION HERE: NAME,==> COURSE AND SECTION, DATE Input: English sentences. Precondition: Each sentence contains at least one word. Output: The equivalent Pig-latin sentence. ---------------------------------------------------------------*/

#include <iostream> // cin, cout, <<, >>#include <string> // class stringusing namespace std;

//==> PUT YOUR PROTOTYPE OF FUNCTION englishToPigLatin() HERE

int main(){ //==> PUT YOUR USUAL OPENING STATEMENT HERE TO OUTPUT- //==> YOUR NAME, LAB #, COURSE AND SECTION INFO

cout << "Pig Latin translator.\n";

string englishWord, pigLatinWord; char separator;

33

cout << "\nEnter an English sentence (xxx to stop):\n"; cin >> englishWord; while (englishWord != "xxx") { separator = ' '; while (separator != '\n') { pigLatinWord = englishToPigLatin(englishWord); cout << pigLatinWord; cin.get(separator); if (separator != '\n') cout << ' '; else { cout << endl; cout << "\nEnter next English sentence (xxx to stop):\n"; } cin >> englishWord; } }}

//==> PUT YOUR DEFINITION OF FUNCTION englishToPigLatin() HERE

341 2