using well-stirred-reactor modeling and physical scaling ... · pdf filefm global 2012...

20
Using Well-Stirred-Reactor Modeling and Physical Scaling to Develop a Water Mist Protection to Extinguish Ignitable Liquid Fires in a Naturally-Ventilated Building Hong-Zeng (Bert) Yu FM Global 2012 International Water Mist Conference Barcelona, Spain November 14-15, 2012

Upload: dinhtram

Post on 06-Mar-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Using Well-Stirred-Reactor Modeling and Physical Scaling ... · PDF fileFM Global 2012 International ... – Downward spray momentum per nozzle: 31.5 newtons – Nozzle spacing:

Using Well-Stirred-Reactor Modeling

and Physical Scaling to Develop a Water Mist

Protection to Extinguish Ignitable Liquid Fires

in a Naturally-Ventilated Building

Hong-Zeng (Bert) Yu

FM Global

2012 International Water Mist Conference

Barcelona, Spain

November 14-15, 2012

Page 2: Using Well-Stirred-Reactor Modeling and Physical Scaling ... · PDF fileFM Global 2012 International ... – Downward spray momentum per nozzle: 31.5 newtons – Nozzle spacing:

Ignitable Liquid Occupancies

• Dispensing (Use) occupancy

• Storage occupancy

Page 3: Using Well-Stirred-Reactor Modeling and Physical Scaling ... · PDF fileFM Global 2012 International ... – Downward spray momentum per nozzle: 31.5 newtons – Nozzle spacing:

Challenges for Water Mist Protection

of Use Occupancy

• Low flash point liquids

• Large door openings

• High ceilings

• Ceiling nozzles only

• Obstructed fires

Page 4: Using Well-Stirred-Reactor Modeling and Physical Scaling ... · PDF fileFM Global 2012 International ... – Downward spray momentum per nozzle: 31.5 newtons – Nozzle spacing:

Previous Development

• Used a 0.49-scale facility to determine a total flooding protection to extinguish heptane spill fires in a 7.47x7.47x7.47-m building with door openings ranging from 1.83x3.73 m high to 3.73x3.73 m.

• Validated the water mist protection in the full-scale building.

Page 5: Using Well-Stirred-Reactor Modeling and Physical Scaling ... · PDF fileFM Global 2012 International ... – Downward spray momentum per nozzle: 31.5 newtons – Nozzle spacing:

Previous Full-Scale Validation Test

Conditions for a 7.47x7.47x7.47-m Building

• Door opening: from 1.83x3.73 m to 3.73x3.73 m

• Simulated fuel tanks: two 1.83 m diameter x 2.74 m

high tanks, 0.91 m apart, and

0.91 m above floor

• Fire scenario: cascading heptane fire spilling from

the top of one tank at 38 liter/min

• Mezzanine obstruction: 70% opening, perforated

steel grating 3.05 m above

the floor

Page 6: Using Well-Stirred-Reactor Modeling and Physical Scaling ... · PDF fileFM Global 2012 International ... – Downward spray momentum per nozzle: 31.5 newtons – Nozzle spacing:

Question: Can the protection be linearly extended to

larger buildings ?

By linearly extending the protection with the floor area, what would be the largest 7.5-m high building in which the fire can be extinguished within 5 minutes after ignition?

The protection characteristics and fire hazard are as follows:

• Water mist discharge after ignition: 30 s.

• Full-scale water mist protection:

– Median droplet size: 108 μm

– Discharge rate per nozzle: 17.9 liters/min

– Spray angle: 60o

– Downward spray momentum per nozzle: 31.5 newtons

– Nozzle spacing: 1.86 x 1.86 m

• Fire hazard:

– Door opening: 3.73x3.73 m

– Fuel tanks: 1.83 m diameter x 2.74 m high; 0.91 m above the floor

– Heptane spill rate: 38 liters/min (max. 8 MW)

– Mezzanine: perforated steel grating with 70% opening; 3.1 m above floor

Page 7: Using Well-Stirred-Reactor Modeling and Physical Scaling ... · PDF fileFM Global 2012 International ... – Downward spray momentum per nozzle: 31.5 newtons – Nozzle spacing:

Water Mist Scaling Relationships

Scaling Parameters Red 1

Scale Ratio S=L2/L1 S1

Time S1/2

Temperature, Concentrations S0

Drop Number Density S-3/4

Velocity S1/2

Ventilation Rate S5/2

Fire Heat Release Rate S5/2

Water Mist Discharge Rate S5/2

Axial Spray Momentum S3

Droplet Diameter S1/4

g

gd

uudRe

Page 8: Using Well-Stirred-Reactor Modeling and Physical Scaling ... · PDF fileFM Global 2012 International ... – Downward spray momentum per nozzle: 31.5 newtons – Nozzle spacing:

0.49-Scale Test Conditions and Expectation

Conditions

• Water mist discharge after ignition: 21 s.

• Water mist spray characteristics: – Median size: 90 μm

– Discharge rate per nozzle: 2.85 liters/min

– Spray angle: 60o

– Downward spray momentum: 3.5 Newton (at 41 bar, for the selected nozzle)

– Nozzle spacing: 0.91x0.91 m

• Fire hazard: – Enclosure height: 3.66 m

– Door opening: 1.83x1.83 m

– Fuel tanks: 0.91m diameter x 1.37 m high; 0.44 m above the floor

– Heptane spill rate: 6.1 liters/min (max. 1.3 MW)

– Mezzanine: perforated steel grating with 70% opening, 1.46 m above

the floor

Expectation

Fire is to be extinguished less than 3.5 minutes after ignition.

Page 9: Using Well-Stirred-Reactor Modeling and Physical Scaling ... · PDF fileFM Global 2012 International ... – Downward spray momentum per nozzle: 31.5 newtons – Nozzle spacing:

Well-Stirred Reactor Calculations for the 0.49-Scale

Mockup - 1

Enclosure dimensions:

5.49x24.4x3.66 m high (134 m2)

Total water mist discharge rate:

385 liters/min

Door opening: 1.83x1.83 m

Two door nozzles:

Each discharges 2.85 liters/min.

0 50 100 150 200 250 3001200

1400

1600

1800

2000

2200

2400

2600

Time from Ignition (s)

Fla

me T

em

pera

ture

(K

)

126 s

14

15

16

17

18

19

20

21

22

Dry

-based O

2 C

oncentr

ation

(%

)

0

50

100

Bulk

Enclo

sure

Gas T

em

pera

ture

(oC

)

Water mist discharge

Page 10: Using Well-Stirred-Reactor Modeling and Physical Scaling ... · PDF fileFM Global 2012 International ... – Downward spray momentum per nozzle: 31.5 newtons – Nozzle spacing:

Well-Stirred Reactor Calculations for the 0.49-Scale

Mockup - 2

300 310 320 330 340 350 360 370 380 390 4000

50

100

150

200

Ca

lcu

late

d F

ire

Extin

gu

ish

me

nt T

ime

fro

m Ig

nitio

n (

s)

Total Ceiling Nozzle Discharge Rate (liters/min)

Enclosure dimensions:

5.49x24.4x3.66 m high (134 m2)

Total water mist discharge rate:

322, 333, 385 liters/min

Door opening: 1.83x1.83 m

Two door nozzles:

Each discharges 2.85 liters/min.

Page 11: Using Well-Stirred-Reactor Modeling and Physical Scaling ... · PDF fileFM Global 2012 International ... – Downward spray momentum per nozzle: 31.5 newtons – Nozzle spacing:

0.49-Scale Mock-up Plan View

Mock-up building dimensions: 24.38 x 5.49 x 3.66 m high

(134 m2 x 3.66 m)

7.16 m

5.49 m

24.38 m

1.83 x 1.83 m door opening

1.83 x 5.49 m m ezzanine 1.46 m above the floor

Hold ing tank

TC tree

Page 12: Using Well-Stirred-Reactor Modeling and Physical Scaling ... · PDF fileFM Global 2012 International ... – Downward spray momentum per nozzle: 31.5 newtons – Nozzle spacing:

Nozzle Piping in 0.49-Scale Enclosure

Page 13: Using Well-Stirred-Reactor Modeling and Physical Scaling ... · PDF fileFM Global 2012 International ... – Downward spray momentum per nozzle: 31.5 newtons – Nozzle spacing:

0.49-Scale Mock-Up

Page 14: Using Well-Stirred-Reactor Modeling and Physical Scaling ... · PDF fileFM Global 2012 International ... – Downward spray momentum per nozzle: 31.5 newtons – Nozzle spacing:

0.49-Scale Mock-Up

Page 15: Using Well-Stirred-Reactor Modeling and Physical Scaling ... · PDF fileFM Global 2012 International ... – Downward spray momentum per nozzle: 31.5 newtons – Nozzle spacing:

Door Nozzles

Page 16: Using Well-Stirred-Reactor Modeling and Physical Scaling ... · PDF fileFM Global 2012 International ... – Downward spray momentum per nozzle: 31.5 newtons – Nozzle spacing:

A Heptane Spill Fire Test in the 0.49-Scale Building

Building dimensions: 5.49x24.4x3.66 m high (134 m2 x 3.66 m high)

Total water mist discharge rate: 385 liters/min

Fire extinguishing time

Tested 62 - 93 s after ignition.

Calculated 126 s after ignition.

Page 17: Using Well-Stirred-Reactor Modeling and Physical Scaling ... · PDF fileFM Global 2012 International ... – Downward spray momentum per nozzle: 31.5 newtons – Nozzle spacing:

Comparison of Measured and Calculated Temperatures

Building dimensions: 5.49x24.4x3.66 m high (134 m2 x 3.66 m high)

Total water mist discharge rate: 385 liters/min

0 100 200 3000

50

100

150

Bu

ildin

g B

ulk

Ga

s T

em

pe

ratu

re (

oC

)

Time from Ignition (s)

Calculated bulk gas temperature

0.30 m below ceiling

0.76 m

1.22 m

1.52 m

1.83 m

2.13 m

2.44 m

2.74 m

3.05 m

B

Door

Page 18: Using Well-Stirred-Reactor Modeling and Physical Scaling ... · PDF fileFM Global 2012 International ... – Downward spray momentum per nozzle: 31.5 newtons – Nozzle spacing:

Summary of 0.49-Scale Results

300 310 320 330 340 350 360 370 380 390 4000

50

100

150

200

250

300

350

400

Fir

e E

xtin

gu

ish

me

nt T

ime

fro

m Ig

nitio

n (

s)

Total Ceiling Nozzle Discharge Rate (liters/min)

Calculated

Measured, based on the thermocouple

0.15 m above, and below the spill tank

Building dimensions: 5.49x24.4x3.66 m high (134 m2 x 3.66 m high)

Door opening: 1.83 x 1.83 m

Page 19: Using Well-Stirred-Reactor Modeling and Physical Scaling ... · PDF fileFM Global 2012 International ... – Downward spray momentum per nozzle: 31.5 newtons – Nozzle spacing:

Full-Scale Protection

• Building dimensions: 11.5 x 50.8 x 7.5 m high (584 m2 x 7.5 m high)

• Water mist discharge after ignition: less than 30 s.

• Full-scale water mist protection:

– Median droplet size: 108 μm

– Discharge rate per nozzle: 17.9 liters/min

– Spray angle: 60o

– Downward spray momentum per nozzle: 31.5 newtons

– Nozzle spacing: 1.83 x 1.83 m

• Fire hazard:

– Door opening: 3.66x3.66 m

– Fuel tanks: 1.83 m diameter x 2.74 m high; 0.91 m above the floor

– Heptane spill rate: 38 liters/min

– Mezzanine: perforated steel grating with 70% opening; 3.1 m above floor

Page 20: Using Well-Stirred-Reactor Modeling and Physical Scaling ... · PDF fileFM Global 2012 International ... – Downward spray momentum per nozzle: 31.5 newtons – Nozzle spacing:

Conclusions

• A development of water mist protection has been demonstrated by using physical scaling and well-stirred-reactor modeling.

• These engineering tools help reduce the protection development cost and turn-around time.