utbb-fdsoi design and migration methodology -...

61
UTBB-FDSOI Design & Migration Methodology Philippe Flatresse Technology R&D Central CAD & Design Solutions

Upload: phamanh

Post on 25-Feb-2018

222 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: UTBB-FDSOI Design and Migration Methodology - imagcmp.imag.fr/IMG/pdf/utbb-fdsoidesign_migration_methodology_.pdf · Migration Methodology Philippe Flatresse Technology R&D Central

UTBB-FDSOI Design &Migration Methodology

Philippe Flatresse

Technology R&D

Central CAD & Design Solutions

Page 2: UTBB-FDSOI Design and Migration Methodology - imagcmp.imag.fr/IMG/pdf/utbb-fdsoidesign_migration_methodology_.pdf · Migration Methodology Philippe Flatresse Technology R&D Central

Outline

• Introduction

• Digital design in UTBB FD-SOI

• Standard Cells & Body biasing techniques

• SRAMs

• Analog design in UTBB FD-SOI

• Body bias generator

• ESD & IOs

• Circuit porting experience

• LDPC, MODAP examples

2

Sept 13

Page 3: UTBB-FDSOI Design and Migration Methodology - imagcmp.imag.fr/IMG/pdf/utbb-fdsoidesign_migration_methodology_.pdf · Migration Methodology Philippe Flatresse Technology R&D Central

28nm Planar UTBB FD-SOI: Structure

Substrate

High-KMetal Gate

Ultra Thin Body & BOX Fully Depleted SOI transistor

Thin Body(7nm)

36 Masks:7ML

Dual Vt - Dual Oxide

3

Sept 13

Page 4: UTBB-FDSOI Design and Migration Methodology - imagcmp.imag.fr/IMG/pdf/utbb-fdsoidesign_migration_methodology_.pdf · Migration Methodology Philippe Flatresse Technology R&D Central

28nm Planar UTBB FD-SOI: Advantages

Body-Bias

Hybrid zone

24nm

• Ultra thin body• Better SCE immunity

• Ultra thin BOX• Extended body biasing

• Total dielectric isolation• Latch up immunity

• No channel doping• Improved variability

• Easy Porting from Bulk

UTBB FD-SOI enables shorter channel length

4

Sept 13

Page 5: UTBB-FDSOI Design and Migration Methodology - imagcmp.imag.fr/IMG/pdf/utbb-fdsoidesign_migration_methodology_.pdf · Migration Methodology Philippe Flatresse Technology R&D Central

28FDSOI Process Flow at a Glance 5

STI module

Wells i/iWells i/i

Hybrid block

Ch. SiGe

Wells i/iGate stack

FEOL modules

Spacers

Wells i/iRaised SD

Junctions

OP block

Wells i/iSilicide

Wells i/iContact

MEOL modules

M1 module

Wells i/iMx module

M2x module

MiM decap

Wells i/iM8x module

Wells i/iFar BEOL

BEOL modules

Same as bulkAdjustment vs bulkNew module

Not use in FDSOI

Caption:

Handle wafer

Thin box

RaisedSD

Rectangularcontact

MG

M1

STI

NiSi Vt Adjust

-7 masks over 28LP Bulk Technology

Page 6: UTBB-FDSOI Design and Migration Methodology - imagcmp.imag.fr/IMG/pdf/utbb-fdsoidesign_migration_methodology_.pdf · Migration Methodology Philippe Flatresse Technology R&D Central

Devices Partitioning in 28nm UTBB FD-SOI

Device TypeUTBB

FD-SOIBULK

Logic 2Vt / PB0-16nm*

SRAM

Capacitance, Varactor

Drift MOS (OTP)

Digital I/O

Analog MOS

RF MOS

Resistors (Poly) (Active)

Diodes (antenna)

ESD Devices (FET)

(FET, diode, SCR)

Vertical Bipolar

UTBB FD-SOI

side

BoxSi

“HYBRID”Bulk side

(*) PB = Poly Bias28nm UTBB FD-SOI technology allows for modulating logic transistor effective gate length in the range 24-40nm for the authorized poly/contact pitch. The bias number (PB) indicates the additional value to the minimal length (24nm).

Key solutions for ESD protection & Performance enhancement

6

Sept 13

Page 7: UTBB-FDSOI Design and Migration Methodology - imagcmp.imag.fr/IMG/pdf/utbb-fdsoidesign_migration_methodology_.pdf · Migration Methodology Philippe Flatresse Technology R&D Central

UTBB FD-SOI Design EcoSystem

• Planar UTBB FD-SOI uses a conventional (bulk) design flow

• Cadence, Mentor, Synopsys, • Apache, Atrenta

• 4-terminals spice models available, derived from PSP

• Major simulators supported

7

Sept 13

Page 8: UTBB-FDSOI Design and Migration Methodology - imagcmp.imag.fr/IMG/pdf/utbb-fdsoidesign_migration_methodology_.pdf · Migration Methodology Philippe Flatresse Technology R&D Central

UTBB FD-SOI Specifics for power optimization

Adaptive VoltageScaling

Dynamic Voltage& Frequency

Scaling

Power / ClockGating

Process Monitoring &

Compensation

PowerSwitches

RTL Power Estimation

Reverse &Forward

Body Bias

Multi VtCapabilities

8

Sept 13

Page 9: UTBB-FDSOI Design and Migration Methodology - imagcmp.imag.fr/IMG/pdf/utbb-fdsoidesign_migration_methodology_.pdf · Migration Methodology Philippe Flatresse Technology R&D Central

How to migrate Libraries on UTBB

• Full DP re-characterization with dedicated SOI models• Charac for various BB conditions depending on the performances targeted

• Retuning of limited number of critical IPs: Analog, IOs, Fuse

Analog IPsRedesign

9

Std-CellsPorting

MemoriesPorting

FusesRedesign

Power switchPorting

Analog IPRetuning

IO - ESD updateRetuning

Sept 13

Page 10: UTBB-FDSOI Design and Migration Methodology - imagcmp.imag.fr/IMG/pdf/utbb-fdsoidesign_migration_methodology_.pdf · Migration Methodology Philippe Flatresse Technology R&D Central

Standard cells & Body bias techniques

Page 11: UTBB-FDSOI Design and Migration Methodology - imagcmp.imag.fr/IMG/pdf/utbb-fdsoidesign_migration_methodology_.pdf · Migration Methodology Philippe Flatresse Technology R&D Central

Stdcell Offer11

Low Power: RVT/LVT 12T/8T

Mainstream: RVT/LVT 12T/8T

CORE

P0

P4

P10

P16

CLK(CLK, CORESYNC, CLKHP)

PR

ECO

CORI

CORR

SHIFT

SHIFT_EG

CORHP

PRHP

• High Density (8T) and High Performance (12T)

• Dual VT : RVT and LVT.

• Multi Channel Length (Poly Bias) cells ,

• Footprint compatible

Sept 13

Page 12: UTBB-FDSOI Design and Migration Methodology - imagcmp.imag.fr/IMG/pdf/utbb-fdsoidesign_migration_methodology_.pdf · Migration Methodology Philippe Flatresse Technology R&D Central

Body Bias concept in UTBB FD-SOI

Vb

No area penalty compared to Bulk

Reuse of Bulk design techniques

Speed/Power control

12

Sept 13

Page 13: UTBB-FDSOI Design and Migration Methodology - imagcmp.imag.fr/IMG/pdf/utbb-fdsoidesign_migration_methodology_.pdf · Migration Methodology Philippe Flatresse Technology R&D Central

Body Bias: Speed/Power control

Body Bias not degraded with scaling in FDSOIBody biasing fully inefficient in Finfet

13

Sept 13

Page 14: UTBB-FDSOI Design and Migration Methodology - imagcmp.imag.fr/IMG/pdf/utbb-fdsoidesign_migration_methodology_.pdf · Migration Methodology Philippe Flatresse Technology R&D Central

Extended Body Bias Range in UTBB FD-SOI

BULK UTBB FD-SOI

IGIDL(RBB)

IPN(FBB)

NMOS PMOS

14

noBB

FBBRBB

-300mV +300mV

noBB

FBBRBB

-3V +3V

Efficient knob for speed/leakage optimization

Sept 13

Page 15: UTBB-FDSOI Design and Migration Methodology - imagcmp.imag.fr/IMG/pdf/utbb-fdsoidesign_migration_methodology_.pdf · Migration Methodology Philippe Flatresse Technology R&D Central

-3V

UTBB FD-SOI: Extended Body Voltage Range• Conventional Well (CW) - RBB

p-Well n-Well

NMOS PMOSGndsn Vddsp

• Flip Well (FW) - FBB

n-Well p-Well

NMOS PMOSGndsn Gndsp

noBB

FBBRBB

+3V-3V

Vdd/2+ 300mV

noBB

FBBRBB

+3V

-300mV

Efficient knob for speed/leakage optimization

15

Sept 13

Page 16: UTBB-FDSOI Design and Migration Methodology - imagcmp.imag.fr/IMG/pdf/utbb-fdsoidesign_migration_methodology_.pdf · Migration Methodology Philippe Flatresse Technology R&D Central

RBB/FBB Efficiency - Silicon Benchmark 16

Sept 13

Page 17: UTBB-FDSOI Design and Migration Methodology - imagcmp.imag.fr/IMG/pdf/utbb-fdsoidesign_migration_methodology_.pdf · Migration Methodology Philippe Flatresse Technology R&D Central

UTBB FD-SOI: Constraints in RVT/LVT mixability

• RVT: Conventional Well (CW)

• LVT: Flip Well (FW)

p-Well n-Well

NMOS PMOSGndsn Vddsp

n-Well p-Well

NMOS PMOSGndsn Gndsp

Multi-Vt co-integration thanks to poly biasing

17

Sept 13

Page 18: UTBB-FDSOI Design and Migration Methodology - imagcmp.imag.fr/IMG/pdf/utbb-fdsoidesign_migration_methodology_.pdf · Migration Methodology Philippe Flatresse Technology R&D Central

Extended Poly biasing in UTBB FD-SOI

From 24nm (PB0) up to 40nm (PB16)

• UTBB FD-SOI enables shorter channel length

• Enabling wider transistor effective gate length modulation

• CPP (Drawn) = 136 nm ( relaxed, min is 126nm)

Key solution for multi-VT & leakage optimization

18

Sept 13

Page 19: UTBB-FDSOI Design and Migration Methodology - imagcmp.imag.fr/IMG/pdf/utbb-fdsoidesign_migration_methodology_.pdf · Migration Methodology Philippe Flatresse Technology R&D Central

Speed/leakage performances FDSOI versus Bulk19

• 28nm Bulk at 1.0v, WC, -40c

• 28nm FDSOI at 0.85v, WC, 125c

LVT- PB16

RVT- PB10

RVTPB0

LVT- PB10

LVT- PB4

LVT- PB0RVT- PB0

LVT- PB4

LVT- PB0

RVT- PB4

RVT- PB10

RVT- PB4

UTBB FD-SOI LVT [PB0-PB16] offers the same leakage range as RVT/LVT bulk flavors for better performances

Page 20: UTBB-FDSOI Design and Migration Methodology - imagcmp.imag.fr/IMG/pdf/utbb-fdsoidesign_migration_methodology_.pdf · Migration Methodology Philippe Flatresse Technology R&D Central

GND

p-WELL

n-WELL

NMOSnetwork

PMOSnetwork

VDD

20

RVT LVT

Fine grain multi-VT co-integrationS3S 2013, Monterey - California

GND

n-WELL

p-WELL

NMOSnetwork

PMOSnetwork

GND

p-WELL

n-WELL

NMOSnetwork

PMOSnetwork

PB6

RVT-like SNW

GND

n-WELL

NMOSnetwork

PMOSnetwork

RVT

LVT

RVT-like and SNW solutions enable multi-VT like optimization

Sept 13

Page 21: UTBB-FDSOI Design and Migration Methodology - imagcmp.imag.fr/IMG/pdf/utbb-fdsoidesign_migration_methodology_.pdf · Migration Methodology Philippe Flatresse Technology R&D Central

Single Well for Co-integration – “miX”-ing21

1,02; 398

1,33; 1814

1,52; 6363

1,43; 436

1,76; 1868

1,91; 4217

100

1000

10000

1,00 1,50 2,00

Leak

age

Pow

er @

FF

/125

C (m

W)

Frequency @ SS/WC_temp (GHz)

28LP @ 1.0V

28FD @ 1.0V

RVT

LVT

LVT

RVT/ RVTmix

LVTmix

SLVT

SLVT +26%

LVT +32%

RVT +40%

• Standard RVT/LVT mimicked thanks to• Forward body biasing, width sizing or poly biasing

• Single Well ease the remapping from Bulk to SOI• More than 30% higher performance for the same leakage as bulk

Sept 13

Page 22: UTBB-FDSOI Design and Migration Methodology - imagcmp.imag.fr/IMG/pdf/utbb-fdsoidesign_migration_methodology_.pdf · Migration Methodology Philippe Flatresse Technology R&D Central

Porting methodology : Digital sections 22

RTL & PnR database (From Bulk)

Std. Flow with one type: • RTL Verif• Synthesis• Pnr• STA

• DRC + LVS + Extraction

RVT/LVT

mixed in Bulk?

• AFE Block

N Y

TOP Integration & Checks

• Replace Libs • STA• ECO

Post Layout Verif• PL Netlist + SDF + Sims

AMS Verification

Sept 13

Page 23: UTBB-FDSOI Design and Migration Methodology - imagcmp.imag.fr/IMG/pdf/utbb-fdsoidesign_migration_methodology_.pdf · Migration Methodology Philippe Flatresse Technology R&D Central

28nm UTBB-FDSOI SRAM

Page 24: UTBB-FDSOI Design and Migration Methodology - imagcmp.imag.fr/IMG/pdf/utbb-fdsoidesign_migration_methodology_.pdf · Migration Methodology Philippe Flatresse Technology R&D Central

28FDSOI SRAM Offer 24

Bit-cells 28LP 28FDSOI Comments

D120 cell

Gnds=0VVdds=Vdd

FBBmax=0.3VRBBmax=0.3V

RVT

Gnds=0VVdds=0V

Body biasFBBmax (V>0)=0.3VFull RBB (V<0)

B152 cell

Gnds=0VVdds=Vdd

FBBmax=0.3VRBBmax=0.3V

LVT(Flip-Well)

Gnds=0VVdds=0V

Body BiasFull FBB (V>0)RBBmax (V<0)=-0.3V

RF251 cell

6T-part: cf152LL/197LLRead-Port:

Gnds=0VVdds=Vdd

FBBmax=0.3VRBBmax=0.3V

RP(RVTLVT)

Gnds=0V

Full FBB (V>0)RBBmax (V<0)=-0.3V

L197 cell(ST specific)

Gnds=0VVdds=Vdd

FBBmax=0.3VRBBmax=0.3V

Single-WellGnds=0VVdds=0V

NMOS PMOS NMOS PMOS

NMOS PMOSNMOS PMOS

NMOS PMOS

NMOS NMOS

NMOS PMOS

Sept 13

Page 25: UTBB-FDSOI Design and Migration Methodology - imagcmp.imag.fr/IMG/pdf/utbb-fdsoidesign_migration_methodology_.pdf · Migration Methodology Philippe Flatresse Technology R&D Central

SRAM Vmin Comparison 25

Sept 13

Page 26: UTBB-FDSOI Design and Migration Methodology - imagcmp.imag.fr/IMG/pdf/utbb-fdsoidesign_migration_methodology_.pdf · Migration Methodology Philippe Flatresse Technology R&D Central

PPA with 28FDSOI at same voltage as 28Bulk

0

500

1000

1500

2000

0.5 2 8 32 128 512

Fre

qu

en

cy (

MH

z)

Capacity (Kbit)

C28LP_DPREGLV

C28LP_SPHDDR

C28LP_SPREGLVDR

C28SOI_DPREGLV

C28SOI_SPHDDR

C28SOI_SPREGLVDR

50

500

0.5 2 8 32 128 512

Lea

ka

ge

(u

W)

Capacity (Kbit)

C28LP_DPREGLV

C28LP_SPHDDR

C28LP_SPREGLVDR

C28SOI_DPREGLV

C28SOI_SPHDDR

C28SOI_SPREGLVDR

0

0.5

1

1.5

2

2.5

0.5 2 8 32 128 512

Acc

ess

Tim

e (

ns)

Capacity (Kbit)

C28LP_DPREGLV

C28LP_SPHDDR

C28LP_SPREGLVDR

C28SOI_DPREGLV

C28SOI_SPHDDR

C28SOI_SPREGLVDR

Access time reduction in FDSOI vs Bulk: DPREG : -44% / SPHD : -43% / SPREG : -36%

Max frequency gain in FDSOI vs BulkDPREG : 65% / SPHD : 77% / SPREG : 75%

Dynamic power saving in FDSOI vs Bulk DPREG : -13% / SPHD : -18% / SPREG : -14%

Leakage saving in FDSOI vs Bulk DPREG : -29% / SPHD : -19% / SPREG : -40%

0

5

10

15

20

25

0.5 2 8 32 128 512

Dy

na

mic

Po

we

r (

uW

/MH

z)

Capacity (Kbit)

C28LP_DPREGLV

C28LP_SPHDDR

C28LP_SPREGLVDR

C28SOI_DPREGLV

C28SOI_SPHDDR

C28SOI_SPREGLVDR

Timlng: Bulk and SOI@Slow 0.9V -40C leakage/Dynamic power : Bulk / FDSOI@Fast 1.0V 125C26

Sept 13

Page 27: UTBB-FDSOI Design and Migration Methodology - imagcmp.imag.fr/IMG/pdf/utbb-fdsoidesign_migration_methodology_.pdf · Migration Methodology Philippe Flatresse Technology R&D Central

28nm UTBB-FDSOI Analog design

Page 28: UTBB-FDSOI Design and Migration Methodology - imagcmp.imag.fr/IMG/pdf/utbb-fdsoidesign_migration_methodology_.pdf · Migration Methodology Philippe Flatresse Technology R&D Central

Porting methodology : Analog sections 28

Schematic (From Bulk): • RVT MOS : No Change• LVT MOS : Bulk connection change• CDM rules integration : Few changes in specific cases

Layout (From Bulk): • Pcell based : Automatic hybrid addition• Handcrafted : Manual Hybrid layer addition + Adjustment for spacing• CDM & Antenna rules integration : S/D need antenna check

Layout : • Clean DRC + LVS• Extract Post layout netlist

Characterization• Analog top simulations • Timing Extraction

TO Integration & Digital Flow

Post Layout Tuning• Schematic + Layout

• LVS, DRC, Extraction

~80% activity automated by PDK tools for Pcell based

designs

Sept 13

Page 29: UTBB-FDSOI Design and Migration Methodology - imagcmp.imag.fr/IMG/pdf/utbb-fdsoidesign_migration_methodology_.pdf · Migration Methodology Philippe Flatresse Technology R&D Central

PLLs porting example: Analog blocks

• VCO (current controlled ring oscillator based design)• Using thin oxide transistors (SG) for high speed requirement (few GHz).

• Same current is kept in VCO to get same analog performances

• No power gain in this specific stage

• PFD (Phase Frequency Detector) and CP (Charge Pump) are compatible with direct porting with minor manual retuning

• Up to 60% leakage gain with UTBB EG (analog supply)

• ~10% dynamic power gain (analog supply)

• Bandgap: design retuning• Performances are intimately dependent on PNP characteristics

• A design update is needed here to restore identical performances in term of temperature control, PSRR, reference current spread and amplifier stability

29

Global PLL power status: 10-15% gain on dynamic and leakage powers

Sept 13

Page 30: UTBB-FDSOI Design and Migration Methodology - imagcmp.imag.fr/IMG/pdf/utbb-fdsoidesign_migration_methodology_.pdf · Migration Methodology Philippe Flatresse Technology R&D Central

PLLs porting example: Digital blocks

• PLL is a mix of RVT and LVT blocks

• RVT blocks• UTBB FD-SOI RVT faster than bulk LP RVT

• Used in small blocks having overall low leakage contribution

• Blind and fast porting Layout unchanged

• ~10% gain on dynamic power, negligible PLL leakage v ariation

• LVT blocks• UTBB FD-SOI LVT much faster than bulk LP LVT but more leaking at constant definition

• 25% leakage gain by using speed/leakage tuning advantage of UTBB FD-SOI

• Higher PB => Same performance => Reduced leakage• No Area Penalty since the gate sizing is done at constant overall device size

• ~10% gain on dynamic power

30

UTBB PLL

Sept 13

Page 31: UTBB-FDSOI Design and Migration Methodology - imagcmp.imag.fr/IMG/pdf/utbb-fdsoidesign_migration_methodology_.pdf · Migration Methodology Philippe Flatresse Technology R&D Central

Experience return for mixed signal IPs porting

• Low porting cycle time from 28nm LP to 28nm UTBB FD-SOI• ~3 months for complex IPs: LPDDR2 1066, PLLs up to 4.6Ghz, D-PHY 1Gbps

• …against ~twice effort when doing standard porting from Bulk to Bulk

• Leveraging on • Higher performances of UTBB devices• Layout compatibility with existing areas in Bulk• Automatic porting tools from PDK managing ~80% of activity to get DRC/LVS clean

• Porting from bulk using same design environment, at constant abstract• Secure concurrent development of whole SoC

• UTBB FD-SOI devices offering finer granularity in performance optimization• 2 Vt for thin and thick oxyde transistors

• Each Vt covering wider range of speed and leakage (LVT leakage tuning over 30x range)

• Power saving• Digital blocks of IPs: ~25% leakage power gain ; ~10% dynamic power gain

• Analog blocks of IPs: no generic value, depends on feature/performance specificity

31

Sept 13

Page 32: UTBB-FDSOI Design and Migration Methodology - imagcmp.imag.fr/IMG/pdf/utbb-fdsoidesign_migration_methodology_.pdf · Migration Methodology Philippe Flatresse Technology R&D Central

Body-Bias Generator

Page 33: UTBB-FDSOI Design and Migration Methodology - imagcmp.imag.fr/IMG/pdf/utbb-fdsoidesign_migration_methodology_.pdf · Migration Methodology Philippe Flatresse Technology R&D Central

Body-Bias voltages generation

• How to generate programmable body voltages ?

gnds grid

PW

PW

NM

OS

PM

OS

D-N

W

P-S

UBN

W

vdds grid

FBB : positive V 0V

t

FBB : negative V0Vt

DAC

0 → -1.3V

Neg. Charge Pump

1V8

GND

-1V8

DAC

0 → 1.3V

33

Sept 13

Page 34: UTBB-FDSOI Design and Migration Methodology - imagcmp.imag.fr/IMG/pdf/utbb-fdsoidesign_migration_methodology_.pdf · Migration Methodology Philippe Flatresse Technology R&D Central

Output Amplifiers designgnds grid

1V8

GNDvdds grid

DAC

DAC Neg

Pump

-1V8

• AB-class for fast transients

• Symmetrical outputs

PW

PW

D-N

W

P-S

UB

NW

Vhigh

Vlow

• Low Vt PMOS

• Ultra-low Vt NMOS (full FBB)

Vhigh

Vlow

in+in- in-

+

+-

-

34

Sept 13

Page 35: UTBB-FDSOI Design and Migration Methodology - imagcmp.imag.fr/IMG/pdf/utbb-fdsoidesign_migration_methodology_.pdf · Migration Methodology Philippe Flatresse Technology R&D Central

BBGEN ID card 35

Charge pump

Item Value

Size (µm) 400x800

Vbbp range 0 → -1300mV

Vbbn range 0 → 1300mV

Settling time0→|1300mV|

1.3µs @ max load

Quiescent current 4mA typ

Load range 1-20 nF + 10Ω min ESR

Techno Options None

BEOL 10ML

Supply 1.8V

Ext cap 1µF

Sept 13

Page 36: UTBB-FDSOI Design and Migration Methodology - imagcmp.imag.fr/IMG/pdf/utbb-fdsoidesign_migration_methodology_.pdf · Migration Methodology Philippe Flatresse Technology R&D Central

ESD & IO Strategy in UTBB FD-SOI

Sept 13

Page 37: UTBB-FDSOI Design and Migration Methodology - imagcmp.imag.fr/IMG/pdf/utbb-fdsoidesign_migration_methodology_.pdf · Migration Methodology Philippe Flatresse Technology R&D Central

Objectives

Slide 37

• Understand specific Fully-Depleted SOI (FDSOI)

technology constraints for the ESD designer

• Discuss ESD devices placement to reach the

optimum ESD performance

• Demonstrate the efficiency of Hybrid Bulk/FDSOI

co-integration to design ESD networks

37

Sept 13

Page 38: UTBB-FDSOI Design and Migration Methodology - imagcmp.imag.fr/IMG/pdf/utbb-fdsoidesign_migration_methodology_.pdf · Migration Methodology Philippe Flatresse Technology R&D Central

ESD devices placement rules (1 of 4)

Slide 38

STI Diode

Not optimal due to high forward recovery time…

…but very high voltage tolerance

Shallow BOX kills the diode → Hybrid Bulk only

Gated Diode

Surface conduction makes it very efficient

Diode architecture also compatible with BOX

→ Hybrid Bulk OR Thin Film

38

Sept 13

Page 39: UTBB-FDSOI Design and Migration Methodology - imagcmp.imag.fr/IMG/pdf/utbb-fdsoidesign_migration_methodology_.pdf · Migration Methodology Philippe Flatresse Technology R&D Central

ESD devices placement rules (2 of 4)

NFET operated as BigFET ESD Clamp

Operates in linear regime, no self-heating & BJT

→ Thin Film to benefit from better NFET perf. and body biasing features

MOS capacitance used for RC trigger circuit

Abrupt decrease in moderate inversion (FDSOI)

BOXVb Vt=f(Vb) ( 60-100mV/V)

39

Sept 13

Page 40: UTBB-FDSOI Design and Migration Methodology - imagcmp.imag.fr/IMG/pdf/utbb-fdsoidesign_migration_methodology_.pdf · Migration Methodology Philippe Flatresse Technology R&D Central

ESD devices placement rules (3 of 4) Un-silicided ESD FETs used as lateral bipolars

GGNMOS Lateral bipolar conduction compatible with both Hybrid Bulk and Thin Film

but…

IO

Gnd

Vdd

Hybrid

Hybrid Thin Film

Layoutcompatibility

+ +

MaximumESD current

+ -

Triggeringvoltage

-(High)

+(Low)

FDSOI

40

Sept 13

Page 41: UTBB-FDSOI Design and Migration Methodology - imagcmp.imag.fr/IMG/pdf/utbb-fdsoidesign_migration_methodology_.pdf · Migration Methodology Philippe Flatresse Technology R&D Central

ESD devices placement rules (4 of 4)How to protect thin film designs with Hybrid ESD dev ices ?

Innovative BIMOS concept in Hybrid Bulk

R

Cur

rent

[A]

Voltage [V]

R

Triggering voltage tuned by external resistance

Same High current performance than GGNMOS

41

Sept 13

Page 42: UTBB-FDSOI Design and Migration Methodology - imagcmp.imag.fr/IMG/pdf/utbb-fdsoidesign_migration_methodology_.pdf · Migration Methodology Philippe Flatresse Technology R&D Central

0

0.5

1

1.5

2

0 2 4 6

Cur

rent

[A]

Voltage [V]

GGNMOS Hybrid

GGNMOS FDSOI

BIMOS Hybrid 10kOHMS

ESD FETs: Hybrid vs Thin Film• Silicon results: TLP(100ns) performance comparison

/2.8

42

Sept 13

Page 43: UTBB-FDSOI Design and Migration Methodology - imagcmp.imag.fr/IMG/pdf/utbb-fdsoidesign_migration_methodology_.pdf · Migration Methodology Philippe Flatresse Technology R&D Central

Gated diodes: Hybrid vs Thin Film• Silicon results: (vf)TLP performance comparison

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0.0 1.0 2.0 3.0 4.0

Cur

rent

[A]

Voltage [V]

HYBRID BULKFDSOI

9 ns

100 ns /2/2

43

Sept 13

Page 44: UTBB-FDSOI Design and Migration Methodology - imagcmp.imag.fr/IMG/pdf/utbb-fdsoidesign_migration_methodology_.pdf · Migration Methodology Philippe Flatresse Technology R&D Central

ESD clamp SPICE comparison of different design scenarios.

R BOX

Design Scenario Leakage @Vdd

Vovershoot *(2kV HBM)

Vmax *(2kv HBM)

Reference = Bulk 28LP(clamp pwell@GND)

48nA 1.4V 1.5V

FDSOI/porting (Bulk direct porting)

4nA 1.4V 1.5V

FDSOI/boosted (dynamic body biasing) **

4nA 1.1V 1.3V

FDSOI/boosted_LVT(dynamic body biasing + ground

plane swap) **

40nA 0.9V 1.15V

**

Volta

ge

Time

*

23%

44

Page 45: UTBB-FDSOI Design and Migration Methodology - imagcmp.imag.fr/IMG/pdf/utbb-fdsoidesign_migration_methodology_.pdf · Migration Methodology Philippe Flatresse Technology R&D Central

Standalone supply clamp analysis 40µm width IO power cell: ESD devices split

Hybrid

FDSOI

R

R

Secondary protection for non-calibrated ESD

RC triggered BigFET+ reverse diode

45

Sept 13

Page 46: UTBB-FDSOI Design and Migration Methodology - imagcmp.imag.fr/IMG/pdf/utbb-fdsoidesign_migration_methodology_.pdf · Migration Methodology Philippe Flatresse Technology R&D Central

FDSOI/boosted_LVT design allows a 30% clamp width reduction wrt

28LP Bulk design

similar clamp placement rules with smaller clamp

Same clamp cell with relaxed placement rules

Application to the ESD remote network

30% gain

1mm(28LP Bulk) → 1.5mm(28nm FDSOI)

30% gain

46

Page 47: UTBB-FDSOI Design and Migration Methodology - imagcmp.imag.fr/IMG/pdf/utbb-fdsoidesign_migration_methodology_.pdf · Migration Methodology Philippe Flatresse Technology R&D Central

FDSOI is latch-up free

• Remaining Injectors in Hybrid zones (mainly ESD devices). • LU between Hybrid parts.

• LU due to abutment between IO Pad and Wells (especially if NW@0V)

• Reduced set of LU rules apply on Hybrid zones

47

P+ N+ P+P+ N+ N+

Nwell

I/O PadVddeVss

P+

I/O Pad

VssNwE

Vdde

NwEI/O Core

Page 48: UTBB-FDSOI Design and Migration Methodology - imagcmp.imag.fr/IMG/pdf/utbb-fdsoidesign_migration_methodology_.pdf · Migration Methodology Philippe Flatresse Technology R&D Central

Process induced damage in FDSOI

• In Bulk technology, Gatesare isolated from the substrate antenna rules to protect gates

• In SOI technology, both Gates and SD are isolated from the substrate antenna rules to protect gates and SD

N+

Pwell

Psub

P+

Nwell

N+

Pwell

Psub

P+

Nwell

V+ V+

V+ V+ V+ V+

48

Sept 13

Page 49: UTBB-FDSOI Design and Migration Methodology - imagcmp.imag.fr/IMG/pdf/utbb-fdsoidesign_migration_methodology_.pdf · Migration Methodology Philippe Flatresse Technology R&D Central

ESD strategy 49

• ESD strategy is portable from Bulk to UTBB FD-SOI us ing Hybrid area

Advanced ESD Strategy

Distributed ESD clamps

Fully predictable by Spice simulations

Elementary devices UTBB silicon validated

Parameter Condition Minimum Value

ESD Voltage Protection

HBM 2kV

MM 100V

CDM 500V

Injection currentAmbient temperature 200mA

80°C 100mA

HBMMM

Sept 13

Page 50: UTBB-FDSOI Design and Migration Methodology - imagcmp.imag.fr/IMG/pdf/utbb-fdsoidesign_migration_methodology_.pdf · Migration Methodology Philippe Flatresse Technology R&D Central

Bulk to UTBB-FDSOI:Circuit portability experience

Page 51: UTBB-FDSOI Design and Migration Methodology - imagcmp.imag.fr/IMG/pdf/utbb-fdsoidesign_migration_methodology_.pdf · Migration Methodology Philippe Flatresse Technology R&D Central

UTBB FDSOI: Proof of concept

BULK LIKEDesign:

Conv. Well

UTBB FD-SOIDesign:Flip Well

Technologies28nm LP

FDSOI & BULK

Transistors150 Million

RVT, LVT, EG

Interconnect7 Cu Metal +

AL RDL

Die size 10mm²

LDPC core 0.25mm²

Vdd [0.35V; 1.5 V]

Vbb [-1V ; 1V]

51

Sept 13

Page 52: UTBB-FDSOI Design and Migration Methodology - imagcmp.imag.fr/IMG/pdf/utbb-fdsoidesign_migration_methodology_.pdf · Migration Methodology Philippe Flatresse Technology R&D Central

0

100

200

300

400

500

600

0.3 0.5 0.7 0.9 1.1 1.3 1.5

Fre

qu

en

cy (

MH

z)

Vdd (V)

UTBB FD-SOI Max Frequency vs. BULK

Wide operating range 6MHz/0.35V to 525MHz/1.5V

BULK-LP (ref)

noBBFBB=1V

+73%

+168%

0.35V

+46%

FBB=0.3VUTBB FD-SOI

LDPC 6T-SRAM (FBB 1V) functional down to 0.41V

52

Sept 13

Page 53: UTBB-FDSOI Design and Migration Methodology - imagcmp.imag.fr/IMG/pdf/utbb-fdsoidesign_migration_methodology_.pdf · Migration Methodology Philippe Flatresse Technology R&D Central

UTBB FD-SOI Total Power vs. BULK

0

2

4

6

8

No

rma

lize

d T

ota

l P

ow

er

(a.u

.)

Frequency (MHz)

0 100 200 300 400 500 600

noBB

FBB=1V

FBB=0.3V

BULK-LP

UTBB FD-SOI

Vdd: 0.6V to 1.5V step 100mV

Sept 13

Page 54: UTBB-FDSOI Design and Migration Methodology - imagcmp.imag.fr/IMG/pdf/utbb-fdsoidesign_migration_methodology_.pdf · Migration Methodology Philippe Flatresse Technology R&D Central

28BULK - LP28UTBB - FW28UTBB - CW

UTBB FD-SOI Leakage Power vs. BULK

Wide body-bias modulation: 10X leakage benefit

0.01

0.1

1

10

Vback-bias (V)

RBB FBB

FWCW

UTBB range

Nor

mal

ized

Lea

kage

Pow

er(a

.u.)

-1 0 1Vdd=0.6VVdd=0.6V

10X

10X

2X

54

Sept 13

Page 55: UTBB-FDSOI Design and Migration Methodology - imagcmp.imag.fr/IMG/pdf/utbb-fdsoidesign_migration_methodology_.pdf · Migration Methodology Philippe Flatresse Technology R&D Central

UTBB FD-SOI Energy Efficiency vs. BULK

50% EDP savings thanks to (Vdd, Vbb) modulation

0.4

0.6

0.8

1

1.2

1.4

0 2 4 6 8 10 12 14 16

En

erg

y D

ela

y P

rod

uct

(a

.u.)

Delay (ns)

0 2 4 6 8 10 12 14 16

BULK-LP

UTBB FD-SOI

(1V, 0.3V) => Ref(1V, 0.3V) => Ref

(0.8V, 0V) => -34%(0.8V, 0V) => -34%

(0.7V, 1V) => -50%(0.7V, 1V) => -50%

Vdd: 1.5V to 0.6V step 100mV

55

Sept 13

Page 56: UTBB-FDSOI Design and Migration Methodology - imagcmp.imag.fr/IMG/pdf/utbb-fdsoidesign_migration_methodology_.pdf · Migration Methodology Philippe Flatresse Technology R&D Central

Half Node Effort for Full Node Benefit

RF7400RF7400

AB8540

DB8580

Dual qHD or WUXGADual qHD or WUXGA

12 Mpix & 5Mp12 Mpix & 5Mp

PMUPMU ChargingCharging AudioAudioUSB HSUSB HS SIMSIM

AV8100AV8100

ImagingISP

ImagingISP

GraphicsIMG SGX544-MP1

GraphicsIMG SGX544-MP1

PeripheralsPeripherals

RF7450RF7450 TranceiverTranceiverRF

front-endRF

front-end

SDMMCSD

MMC

eMMCeMMC eMMCeMMC

ARM® CortexARM® Cortex

A9A9 A9A9

NEONNEON

VideoVideo

HW Dec.HW Dec.

HW Enc.HW Enc. DisplayDisplay

CompositionComposition

NEONNEONLTE

HSPA+modem

LTEHSPA+modem

PoPPoP

LP-DDR533 MHzLP-DDR533 MHz

LP-DDR533 MHzLP-DDR533 MHz

CW1260CW1260

CG2905CG2905

ST21NFCAST21NFCA

e-SEe-SE

RF7400

AB8540

DB8580

Dual qHD or WUXGA

12 Mpix & 5Mp

PMU Charging AudioUSB HS SIM

AV8100

ImagingISP

GraphicsIMG SGX544-MP1

Peripherals

RF7450 TranceiverRF

front-end

SDMMC

eMMC eMMC

ARM® Cortex

A9 A9

NEON

Video

HW Dec.

HW Enc. Display

Composition

NEONLTE

HSPA+modem

PoP

LP-DDR533 MHz

LP-DDR533 MHz

CW1260

CG2905

ST21NFCA

e-SE

L8580

Great User Experience

• High performance system thanks to Dual 32bits LPDDR2 @ 533MHz support

• High quality 300dpi 4.5” HD display support

• Advanced 3D UI & Gaming with 1.2Gpx/s, 105Mtr/s & 22Gflops GPU

• Multi standard 1080p video codec's enabling Blue-Ray quality video

Mobile Broadband Everywhere

• 3GPP Rel. 8/9, LTE 100/50 Mbps, CA, HSPA+ 84/11 Mbps with MIMO and dual-cell capabilities

• TD-LTE/TD-SCDMA for Chinese market

• Worldwide coverage with up to 9 bands in one device

• Fully Leverage M7400 stand-alone LTE modem certification & deployment

Optimized Solution for Smartphones

• 28nm Single Chip LTE modem & Dual Core Application Processor @ 2.3GHz

• Best in class Low Power operation, 31DMIP/mW @ 0.6V

• Linux BSP for Android / Windows Phone 8

• Full set of connectivity

Combining Performance Boost with Best in Class Power Efficiency

28LP PG wk1229 FO wk124428FD PG wk1235 FO wk1243

Android booting wk1246CES show 2.8GHz + 0.63V/1GHz wk1302

28LP PG wk1229 FO wk124428FD PG wk1235 FO wk1243

Android booting wk1246CES show 2.8GHz + 0.63V/1GHz wk1302

56

Page 57: UTBB-FDSOI Design and Migration Methodology - imagcmp.imag.fr/IMG/pdf/utbb-fdsoidesign_migration_methodology_.pdf · Migration Methodology Philippe Flatresse Technology R&D Central

UTBB FD-SOI SOC implementation experience

• Same design flow as for 28nm LP• Same tools used

• Same design cycle time

• For porting, used direct mapping of IPs + ECO• Script based

• Faster than rerunning synthesis

• Floorplan reuse

SOC in UTBB FD-SOI design effort is equivalentto a half node migration

57

Sept 13

Page 58: UTBB-FDSOI Design and Migration Methodology - imagcmp.imag.fr/IMG/pdf/utbb-fdsoidesign_migration_methodology_.pdf · Migration Methodology Philippe Flatresse Technology R&D Central

UTBB FD-SOI key techniques for SOC implementation

Techniques Benefits

Full Flip Well implementation•Increased peak performance

•Increased energy efficiency

•Reduced leakage in idle mode

High performance L1Cache – 3GHz+

Multi OPP implementation

Aggressive body biasing

• CPU:

• Other SOC IPs

Techniques Benefits

Full RVT implementation •Fast execution

•Reduced dynamic power

•Reduced leakage in idle mode

Straightforward remapping from bulk

Reduced power supply

58

Sept 13

Page 59: UTBB-FDSOI Design and Migration Methodology - imagcmp.imag.fr/IMG/pdf/utbb-fdsoidesign_migration_methodology_.pdf · Migration Methodology Philippe Flatresse Technology R&D Central

Dynamic Process Scaling (Body Bias) Advantage

Hit 3GHz Target

>80% extra speed @ 1.3V FBB1GHz with FD-SOI

28nm planar UTBB FD-SOI

Same Perfs as 28LP with 200mV Less-400mV with 1.3V FBB

59

Sept 13

Page 60: UTBB-FDSOI Design and Migration Methodology - imagcmp.imag.fr/IMG/pdf/utbb-fdsoidesign_migration_methodology_.pdf · Migration Methodology Philippe Flatresse Technology R&D Central

Conclusion

• Breakthrough technology customers seeking a power/performance advantage

• UTBB librairies and Ips can be easily derived from Bulk

• Body Biasing techniques in UTBB-FDSOI• Key solution for high performance/low power application

• Best Speed / Power performances ever• Full Flexibility to cover full spectrum from LP to HP

• UTBB Credible alternative to FinFET

60

Sept 13

Page 61: UTBB-FDSOI Design and Migration Methodology - imagcmp.imag.fr/IMG/pdf/utbb-fdsoidesign_migration_methodology_.pdf · Migration Methodology Philippe Flatresse Technology R&D Central

Acknowledgements

I would like to thank for their valuable support :

• CCDS & STD teams from STMicroelectronics

• CEA-LETI teams

61

Sept 13