utilization of multi-criteria influence diagrams in ... · (tgt. b) • maximize kills-losses (kill...

19
Utilization of Multi-Criteria Influence Diagrams in Simulation Metamodeling Jouni Pousi, Jirka Poropudas, Dr. Tech. Kai Virtanen and Prof. Raimo P. Hämäläinen

Upload: others

Post on 15-Mar-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Utilization of Multi-Criteria Influence Diagrams in ... · (Tgt. B) • Maximize kills-losses (Kill diff.) Simulation inputs in the MCID: decisions Blue target Target A Target B Decision

Utilization of Multi-Criteria

Influence Diagrams in

Simulation Metamodeling

Jouni Pousi, Jirka Poropudas,

Dr. Tech. Kai Virtanen and Prof. Raimo P. Hämäläinen

Page 2: Utilization of Multi-Criteria Influence Diagrams in ... · (Tgt. B) • Maximize kills-losses (Kill diff.) Simulation inputs in the MCID: decisions Blue target Target A Target B Decision

Simulation outputs for the

DM

Complex system dynamics

• Very large discrete event

simulation model

• Monte Carlo analysis

• Interactive use inefficient and

laborous

Introduction of Multiple Criteria Decision Making

(MCDM) perspective to simulation metamodeling

Simulation inputs

Metamodel

• Constructed based on a large

sample of simulation computations

• Simplified auxiliary input-output

mapping

Easy

Page 3: Utilization of Multi-Criteria Influence Diagrams in ... · (Tgt. B) • Maximize kills-losses (Kill diff.) Simulation inputs in the MCID: decisions Blue target Target A Target B Decision

Simulation metamodeling with MCDM

Metamodel allows easier analysis of

the complex decision problem

Objectives

- Multiple criteria

- Uncertainty

Complex system dynamics

- Discrete event

simulation model

- Uncertainty

Metamodel

Multi-Criteria

Influence Diagram

Page 4: Utilization of Multi-Criteria Influence Diagrams in ... · (Tgt. B) • Maximize kills-losses (Kill diff.) Simulation inputs in the MCID: decisions Blue target Target A Target B Decision

Increasing complexity of models

increases the need for metamodeling• Metamodel helps

– Sensitivity and what-if analysis

– Optimization of a simulation output

– Model validation

• Several existing approaches, seminal book by Friedman 1996

– Regression models, neural networks, splines, kriging models, games,

dynamic Bayesian networks, ...

New features allowed by multi-criteria influence diagrams

– Inclusion of preferences of the decision maker (DM)

– Solving efficient decision alternatives

– Selection of the most preferred decision alternative

– Sensitivity with respect to preferences

Page 5: Utilization of Multi-Criteria Influence Diagrams in ... · (Tgt. B) • Maximize kills-losses (Kill diff.) Simulation inputs in the MCID: decisions Blue target Target A Target B Decision

Multi-Criteria Influence Diagram (MCID)

Influence diagram (Howard and Matheson, 1984)

Modeling decision problems under uncertainty

Nodes:

Decision D, chance X, and utility U

Utility node: DM’s utility function

Preferences

Scores on the objectives

MCID (Diehl and Haimes, 2004)

Modeling multi-criteria decision problems under uncertainty

Multiple utility nodes Ui

D1

D2X1

X2 X3

U1U2

X0

Page 6: Utilization of Multi-Criteria Influence Diagrams in ... · (Tgt. B) • Maximize kills-losses (Kill diff.) Simulation inputs in the MCID: decisions Blue target Target A Target B Decision

MCID in simulation metamodeling

Simulation inputs described by:

Decision or chance nodes

Simulation state described by:

Chance nodes

Simulation outputs described by:

Chance nodes

Objectives and preferences of DM:

Utility nodes and functions

Estimation of structure and probabilities?From raw simulation data

Expert knowledge

Available software: GeNIe (free), Hugin, ...

D1

D2X1

X2 X3

U1U2

X0

Page 7: Utilization of Multi-Criteria Influence Diagrams in ... · (Tgt. B) • Maximize kills-losses (Kill diff.) Simulation inputs in the MCID: decisions Blue target Target A Target B Decision

Use of MCID in metamodeling

• Generation of efficient decision alternatives

– Probability distributions of utilities for each decision alternative

– E.g. expected utilities of decision alternatives

– Identification of the most preferred solution

• Time evolution of probability distributions in simulation

• What-if analysis – the impact of evidence

– Probability distributions of chance nodes for fixed values (evidence) of

other nodes

– Efficient decision alternatives for fixed values (evidence) of other nodes

• Sensitivity analysis

– Effect of the changes in the probability distributions on the set of efficient

decision alternatives

Page 8: Utilization of Multi-Criteria Influence Diagrams in ... · (Tgt. B) • Maximize kills-losses (Kill diff.) Simulation inputs in the MCID: decisions Blue target Target A Target B Decision

Air combat example

• Blue DM decides on

– Target to defend (blue target)

• Target A or target B

– Air combat tactics (blue tactics)

• Tactic 1 or tactic 2

• Uncertain strategy of Red DM

– Target to attack (red target)

• Target A or target B

– Air combat tactics (red tactics)

• Tactic 1 or tactic 2

• Bad situation for blue if decides

to defend wrong target

Target A

Bad situation

for blue

or

Good situation

for blue

Target B

Page 9: Utilization of Multi-Criteria Influence Diagrams in ... · (Tgt. B) • Maximize kills-losses (Kill diff.) Simulation inputs in the MCID: decisions Blue target Target A Target B Decision

Generation of data by stochastic simulation

• Blue tactics

• Blue target

• Red tactics

• Red target

• Number of blue

aircraft killed

• Number of red

aircraft killed

• Target A

survives?

• Target B

survives?Decision making logic

Aircraft, weapons,

and hardware modelsSimulation input Simulation output

Multiple simulation runs

Page 10: Utilization of Multi-Criteria Influence Diagrams in ... · (Tgt. B) • Maximize kills-losses (Kill diff.) Simulation inputs in the MCID: decisions Blue target Target A Target B Decision

Introducing objectives to the MCID

Blue

tactic

Blue

target

Red

tactic

Red

target

Target A

survives

Target B

survives

Num.

blue

killed

Num.

red

killed

Tgt. A Tgt. BKill

diff.

Simulation inputs

Simulation outputs

Objectives of DM

• Maximize probability

that target A survives

(Tgt. A)

• Maximize probability

that target B survives

(Tgt. B)

• Maximize kills-losses

(Kill diff.)

Page 11: Utilization of Multi-Criteria Influence Diagrams in ... · (Tgt. B) • Maximize kills-losses (Kill diff.) Simulation inputs in the MCID: decisions Blue target Target A Target B Decision

Simulation inputs in the MCID: decisions

Blue target

Target A Target B

Decision nodes contain

DM’s decision alternatives

Blue

tactic

Blue

target

Red

tactic

Red

target

Target A

survives

Target B

survives

Num.

blue

killed

Num.

red

killed

Tgt. A Tgt. BKill

diff.

Page 12: Utilization of Multi-Criteria Influence Diagrams in ... · (Tgt. B) • Maximize kills-losses (Kill diff.) Simulation inputs in the MCID: decisions Blue target Target A Target B Decision

Simulation inputs in the MCID: chance nodes

Uncertain strategy of red DM

represented by probability distributions

Red target

Target A 0.7

Target B 0.3

Red tactic

Red target A B

Tactic 1 0.2 0.8

Tactic 2 0.8 0.2

Blue

tactic

Blue

target

Red

tactic

Red

target

Target A

survives

Target B

survives

Num.

blue

killed

Num.

red

killed

Tgt. A Tgt. BKill

diff.

Page 13: Utilization of Multi-Criteria Influence Diagrams in ... · (Tgt. B) • Maximize kills-losses (Kill diff.) Simulation inputs in the MCID: decisions Blue target Target A Target B Decision

Simulation outputs in the MCID

Simulation output probability distributions

estimated from generated data

Num. blue killed

Blue

targetA ...

Red

targetA ...

Blue

tactic1 2 ...

Red

tactic1 2 1 2 ...

0 0.075 0.471 0.329 0.773 ...

1 0.157 0.231 0.215 0.148 ...

2 0.127 0.153 0.155 0.041 ...

3 0.238 0.095 0.108 0.033 ...

4 0.403 0.05 0.193 0.005 ...

Blue

tactic

Blue

target

Red

tactic

Red

target

Target A

survives

Target B

survives

Num.

blue

killed

Num.

red

killed

Tgt. A Tgt. BKill

diff.

Page 14: Utilization of Multi-Criteria Influence Diagrams in ... · (Tgt. B) • Maximize kills-losses (Kill diff.) Simulation inputs in the MCID: decisions Blue target Target A Target B Decision

Utility functions in the MCID

Utilities of outcomes elicited from DM

Kill diff.

Num.

blue

killed

0 ...

Num.

red

killed

0 1 2 3 4 ...

Utility 0.500 0.625 0.750 0.875 1.000 ...

Blue

tactic

Blue

target

Red

tactic

Red

target

Target A

survives

Target B

survives

Num.

blue

killed

Num.

red

killed

Tgt. A Tgt. BKill

diff.

Page 15: Utilization of Multi-Criteria Influence Diagrams in ... · (Tgt. B) • Maximize kills-losses (Kill diff.) Simulation inputs in the MCID: decisions Blue target Target A Target B Decision

Efficient decision alternatives

B, 1

B, 2

A, 2

A, 1

Efficient decision

alternatives

marked with xP(Target A Survives)

P(T

arg

et

B S

urv

ives)

Kill

difference

Page 16: Utilization of Multi-Criteria Influence Diagrams in ... · (Tgt. B) • Maximize kills-losses (Kill diff.) Simulation inputs in the MCID: decisions Blue target Target A Target B Decision

What-if analysis: red uses tactic 1

B, 1

B, 2

A, 2

A, 1

B, 1

A, 1

B, 2

A, 2

P(T

arg

et

B S

urv

ive

s)

P(Target A Survives)

Kill

difference

Kill

differenceP(Target A Survives)

P(T

arg

et

B S

urv

ive

s)

No evidence Evidence

Probability of red attacking target A

decreases from 0.7 to 0.37

Page 17: Utilization of Multi-Criteria Influence Diagrams in ... · (Tgt. B) • Maximize kills-losses (Kill diff.) Simulation inputs in the MCID: decisions Blue target Target A Target B Decision

Sensitivity analysis: probability of red

attacking target A decreases from 0.7 to 0.3

B, 1

A, 1

A, 2

B, 2P

(Targ

et

B S

urv

ives)

P(Target A Survives)

Kill

difference

Page 18: Utilization of Multi-Criteria Influence Diagrams in ... · (Tgt. B) • Maximize kills-losses (Kill diff.) Simulation inputs in the MCID: decisions Blue target Target A Target B Decision

Conclusion: Simulation metamodeling

benefits from new tools - MCDM and MCID

• MCDM provides

– DM’s preferences with respect to multiple criteria

• MCID provides

– New analysis capabilities

– Flexible and transparent modeling

• Efficient calculation: Easy-to-use software available

• Our case: Simulation analysis of air combat

• Future work

– Dynamic decision making

– Multiple DMs

– Input modeling – the impact of correlated inputs

Page 19: Utilization of Multi-Criteria Influence Diagrams in ... · (Tgt. B) • Maximize kills-losses (Kill diff.) Simulation inputs in the MCID: decisions Blue target Target A Target B Decision

References

• Diehl M. and Haimes. Y.Y. 2004. Influence Diagrams with Multiple Objectives

and Tradeoff Analysis. IEEE Transactions on Systems, Man and Cybernetics,

Part A: Systems and Humans 34 (3): 293-304.

• Friedman, L.V. 1996. The Simulation Metamodel. Norwell, MA, USA: Kluwer

Academic Publishers.

• Howard, R.A. and J.E. Matheson. 2005. Influence Diagrams. Decision Analysis

2 (3):127-143.

• Jensen, F.V. 2001. Bayesian Networks and Decision Graphs (Information

Science and Statistics). Secaucus, NJ, USA: Springer-Verlag New York, Inc.

• Law, A.M. and W.D. Kelton. 2000. Simulation Modelling and Analysis. New York,

NY, USA: McGraw-Hill Higher Education.

• Poropudas, J. and Virtanen, K. 2010. Game Theoretic Validation and Analysis of

Air Combat Simulation Models. IEEE Transactions on Systems, Man, and

Cybernetics - Part A: Systems and Humans, 40(5):1057-1070.

• Poropudas, J. and Virtanen, K. 2011Simulation Metamodeling with Dynamic

Bayesian Networks. European Journal of Operational Research, To Appear.