utilization of urban index and vegetation index transformation on

39
UTILIZATION OF URBAN INDEX AND VEGETATION INDEX TRANSFORMATION ON ASTER IMAGE SATELLITE FOR ANALYSIS URBAN ENVIRONMENT CONDITION (CASE: SEMARANG MUNICIPALITY) By : Hasti Widyasamratri Stude nt at Magi st e r of Urban and R egional Planning Gadjah Mada Univ e r sity Yugyakarta Indon esia

Upload: truongnhan

Post on 12-Jan-2017

237 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: utilization of urban index and vegetation index transformation on

U T I L I Z A T I O N O F URB A N IND E X A ND V E G E T A T I O N IND E X

T R A NSF O R M A T I O N O N AST E R I M A G E SA T E L L I T E F O R A N A L YSIS

URB A N E N V IR O N M E N T C O NDI T I O N

(C ASE : SE M A R A N G M UNI C IPA L I T Y)

By :

Hasti Widyasamratr i

Student at Magister of Urban and Regional Planning

Gadjah Mada University

Yugyakarta

Indonesia

Page 2: utilization of urban index and vegetation index transformation on

i

U T I L I Z A T I O N O F URB A N IND E X A ND V E G E T A T I O N IND E X T R A NSF O R M A T I O N O N AST E R I M A G E SA T E L L I T E F O R A N A L YSIS

URB A N E N V IR O N M E N T C O NDI T I O N (C ASE : SE M A R A N G M UNI C IPA L I T Y)

ABSTRACT

By:

Hasti Widyasamratri Student at Magister of Urban and Regional Planning

Gadjah Mada University

The existence of urban’s used region and vegetation are influencing each other of landscape utilization. This research used ASTER data to extract information of vegetation and urban built-up area in Semarang Municipality, Central Java Province. The objectives are to identify the distribution of vegetation, built-up area and analyse the urban environment condition of Semarang Municipality. Methods used in this research are urban index (UI) and normalization difference vegetation index (NDVI). UI transformation uses SWIR (band 5) and VNIR (band 2) to construct built-up density map. NDVI transformation uses VNIR (band 3N and 2) to create vegetation intensity map. Physical environment condition in Semarang Municipality can be seen through environment urban condition map created from the overlay of built-up area density and vegetation intensity. Socio-economic urban condition in Semarang Municipality is identified by PODES 2005. Moreover, descriptive analysis is also used to analyse built-up density, vegetation intensity, environment and socio-economic condition. The resultes from this research are, based on urban index transformation the built-up area density in Semarang municipality is high (48,66%), and based on vegetation index transformation the vegetation density is low (41,59%). Further, for urban condition analyse, urban centre area has worse environment condition and socio-economic condition is better. In the other side, urban fringe area has good environment and socio-economic condition. Keywords: ASTER, urban area, urban index, vegetation index, urban environment condition

Page 3: utilization of urban index and vegetation index transformation on

ii

 

Preface

1. Drs.R. Suharyadi, M.Sc as my supervisor who supervisor provides little

direction, criticism, suggestions during the process of education on

Geography Faculty, Gadjah Mada University.

2. Sigit Heru Murti BS, S.Si.Msi , Drs. Retnadi Heru Jatmiko, M.Sc, Dr.H.

Hartono, DEA.,DESS as my lecturer at Geography Faculty, Gadjah Mada

University.

3. Ir. Hariyadi Djamal, M.T and Asih Priyanti as my parents and all my

families on Yogyakarta.

4. Ir. Bakti Setiawan,MA,Ph.D as a head of Magister of Urban and

Regional Planning, Gadjah Mada University.

5. My friends at Geography Faculty (Cartography and Remote Sensing) and

Magister of Urban and Regional Planning, Gadjah Mada University.

Page 4: utilization of urban index and vegetation index transformation on

iii

 

C O N T E N T

Abstract................................................................................................... i

Preface................................................................................................... ii

Content................................................................................................... iii

Table......................................................................................................... iv

Picture.................................................................................................. v

1. Background........................................................................................... 1

2. Method............................................................................................... 2

2.1. Image Enhacement........................................................................ 2

2.2. Urban Index Transformation.......................................................... 3

2.3 Vegetation Index Transformation (Normalization Difference Vegetation Index).........................................................................

3

2.4 Built-Up Area Density Map.......................................................... 4

2.5. Vegetation Density Map................................................................... 5

3. Result................................................................................................ 5

3.1 Vegetation Index Transformation..................................................... 6

3. 2 Urban Index Transformation................................................................. 7

3.3 Urban Building Density Map Based on Urban Index Transformation 9

3. 4 Vegetation Density Map Based On Vegetation Index Transformation 14

3.5 Urban Environmental Conditions......................................................... 22

4. Conclusion..................................................................................................... 30

References........................................................................................................... 31

Appendix............................................................................................................. 42

Page 5: utilization of urban index and vegetation index transformation on

iv

 

Table

Table 1.1 ASTER Characteristic................................................................ 2

Table 3.1 NDVI Imagery Statistic............................................................. 6

Table 3.2 Urban Index Imagery Statistic............................................... 7

Table 3.3 Urban Index Transformation and Vegetation Transformation .. 8

Table 3.4 Regression Table (UI - Klap)................................................. 9

Table 3.5 Building Density Based On Urban Index Transformation......... 10

Table 3.6 Regression Table (NDVI - Klap)............................................ 15

Table 3.7 Vegetation Density Based On Vegetation Index

Transformation.....................................................................

16

Table 3.8 Cross-Tab Between Vegetation Density and Bulding Density.. 16

Table 3.9 Combination 6 /(VBrs)........................................................ 18

Table 3.10 Combination 2/(VBrst)............................................................ 18

Table 3.11 Combination 2/(VBsr).............................................................. 18

Table 3.12 Combination 6/(VBss)............................................................................................ 19

Table 3.13 Combination 6/(VBst)............................................................. 19

Table 3.14 Combination 1/(VBsst)............................................................ 19

Table 3.15 Combination 20/(VBtr)........................................................... 19

Table 3.16 Combination 111 /(VBrt)...................................................................................... 20

Table 3.17 Combination 1/(VBts)............................................................. 21

Table 3.18 Combination 5/(VBtt).............................................................. 21

Table 3.19 Combination 1/(VBtst)............................................................. 21

Table 3.20 Combination 15/(VBstr).......................................................... 21

Table 3.21 Combination 1/(VBstt)............................................................. 21

Table 3.22 Environment Condition and Social-Economy Condition........ 22

Table 3.23 Socio-Economic Variables....................................................... 26

Table 3.24 Environment-Socio Economic Condition................................ 27

Page 6: utilization of urban index and vegetation index transformation on

v

 

Picture

Picture 3.1 Image Composite of Research Area.................................... 5

Picture 3.2 NDVI Histogram.................................................................. 6

Picture 3.3 Urban Index Transformation Histogram............................... 7

Picture 3.4 Urban Index-Building Density Regression.............................. 10

Picture 3.5 Urban Index Transformation Map........................................... 11

Picture 3.6 Vegetation Index Transformation.......................................... 12

Picture 3.7 Urban Building Density.......................................................... 13

Picture 3.8 Very High Building Density (Urban Area).............................. 14

Picture 3. 9 NDVI - Vegetation Density Regression................................. 15

Picture 3.10 Vegetation Density Map........................................................ 17

Picture 3.11 Urban Index Transformation Map....................................... 23

Picture 3.12 Interaction Condition Between Environment and Social-

Economic.......................................................................

24

Picture 3.13 Socioeconomic Condition Map.............................................. 25

Page 7: utilization of urban index and vegetation index transformation on

1

 

1. Background

The direct impact on urban areas development rapidly is increasing built-

up area. Planning in urban areas such as development of infrastructure facilities

and transportation, vegetation (trees) which considered the process of manufacture

will crop and it makes the vegetation on urban areas is reduced. Semarang

municipality is one of the city in Indonesia which growth rapidly. Instead as a

capital of Central Java, Semarang municipality also a city harbour in the middle of

the Java Island. The consequences of this development are urbanization which

accompanied by the population growth (natural grow and migration), and phisical

development (built-up area) (Eco Urban Master Program, 2008). The

development of Semarang municipality has reduced vegetation area. The

existence of objects in urban vegetation can indicate of how many areas are

dominated by non-vegetation objects.

Satellite imagery as as a source of spatial data that have a relatively fast

time of recording and can record an object in a wide scale, can be used to identify

the interesting facts in the urban areas of relatively rapid growth. In general, the

concept of remote sensing techniques to analyze the vegetation object base on its

spectral response that is given. The spectral waveleght to identify vegetoation

object is near infra red (0,7 μm- 1,3 μm). Monitoring land cover changes using the

various methods of vegetation index, monitoring the condition of the urban

environment through the presence of vegetation, is one of ASTER satellite

imagery application in the study of vegetation. Besides observing the urban areas

through vegetation, remote sensing for urban study can observe urban area from

the urban morphologis (built-up area). On the spectral channel, built up area

object is the result of soil derivation that sensitive in green channel (0,5 μm – 0,6

μm) and mid-infra red (2,145 μm - 2,185 μm, SWIR channel 5 on ASTER). The

aplication of vegetation index transformation (NDVI) and urban index

transformation (urban index) using ASTER (Advanced Spaceborne Thermal

Emision and Reflection Radiometer) imagery for urban study because this satellite

Page 8: utilization of urban index and vegetation index transformation on

2

 

imagery has near infra red channel (to identify vegetation object) and also mid-

infra red channel (to identify built up area object).

. Table 1.1 ASTER Characteristic

Characteristic V NIR (µm) SW IR (µm) T IR (µm)

Spectral Range Band 1( 0.52 -0.60) Nadir looking Band 2 (0.63 - 0.69) Nadir looking Band 3( 0.76 - 0.86) Nadir looking Band 3( 0.76 - 0.86) Backward looking

Band 4(1.600-1.700) Band 5( 2.145 2.185) Band 6( 2.185-2.225) Band 7(2.235 -2.285) Band 8(2.295 -2.365) Band 9(2.360 -2.430)

Band 10(8.125-8.475) Band 11(8.475 -8.825) Band 12(8.925 -9.275) Band 13(10.25 -10.95) Band 14(10.95 -11.65)

Ground Resolution 15 m 30m 90m Data Rate (Mbits/sec)

62 23 4.3

C ross-track Pointing (deg.)

±24 ±8.55 ±8.55

C ross-track Pointing (km)

±318 ±116 ±116

Detector Type Si PtSi-Si HgCdTe Quantization (bits) 8 8 12 System Response Function

VNIR Chart VNIR Data

SWIR Chart SWIR Data

TIR Chart TIR Data

Source : http://asterweb.jpl.nasa.gov/characteristics.asp, August, 11, 2007

2. M ethod

This research is related to the use of remote sensing and digital image

processing analysis to obtain information aboutdistribution of vegetation and

urban built-up area. ASTER L1B is used in this research. L1B means, this image

has been corrected on geometric and radiometric correction.

2.1. Image Enhacement

Image processing enhancement in this research is the manipulation of

spatial feature (image composite and multi image manipulation). To enhance

vegetation object, near infrared and red channel is used in this research, and mid

infrared to enhance built-up urban area.

Page 9: utilization of urban index and vegetation index transformation on

3

 

2.2. Urban Index T ransformation

Remote sensing can be used to obtain a description of building density

with a spectral tansformation called urban index transformation (Kawamura et.

Al, 1996). It assumed that high pixel value indicates built-up area intensively.

                               

12525 UI

ChannelVNIRChannelSWIRChannelVNIRChannelSWIR                                   (1) 

SWIR (Short Wave Infrared) channel = band 5

VNIR (Visible and Near Infrared) channel = band 2

ASTER image which used in this research have a different spatial

resolution in the infrared channel and near infrared, so the resize process needs to

be done first, the size of 30 m (infrared channel) to a size of 15 m.

2.3 Vegetation Index T ransformation (Normalization Difference

Vegetation Index)

This methode can identify vegetation object effectively. NDVI values

indicate the amount of vegetation object in each pixel. Higher NDVI value in it

will indicates more green vegetation.

ND V I = dChanneledChannelNearInfrardChanneledChannelNearInfrar

ReRe

                               (2)

 

 

Page 10: utilization of urban index and vegetation index transformation on

4

 

Or :

ND V I    =2323

bandNbandbandNband

  (3)

Besides analyzed on physical condition, socio-economic conditions will also be

analyzed in this research.

2.4 Built-Up A rea Density Map

Built-up density map obtained from urban index (ASTER) and the results

of fields checking. Furthermore, urban index and field data will calculated using

regression.

2.5. Vegetation Density Map

Vegetation density map also obtained from NDVI (ASTER) and the

results of field checking. This map also creat from field data, NDVI, and then

calculated using regression. By knowing the built-up density of blocks sample, we

also know about the vegetation density in it.

Page 11: utilization of urban index and vegetation index transformation on

5

 

3. Result

3.1 Image Enhancement

(a)

(b)

Picture 3.1 Image Composite of Research Area

(a) Before cropping (b) After cropping

Source : Image Processing, 2009

Page 12: utilization of urban index and vegetation index transformation on

6

 

3.1 Vegetation Index T ransformation

Vegetation index transformation in the digital image processing needs two

channels, red channel and near infrared channels. First, to make NDVI, satellite

imagery which have spectral radiance value should be converted to radiance at

sensor.

Picture 3.2 illustrates the value of the DN (digital number) from NDVI image, the

adjacent line in the distance histogram shows that in that area the value of the DN

clustered.

Table 3.1 NDVI Imagery Statistic

Data M in Max M ean St dev

NDVI Imagery Before Converted

-0. 458316 0. 646343 0. 075721 0. 209540

NDVI Imagery After Converted

-0. 676573 0.390263 -0. 245406 0.190670

Source : processing result, 2009

NDVI  NDVI 

  (a) (b)

 Picture 3.2 NDVI Histogram

(a) Before Converted (b) After Conversted

Source : Image Processing, 2009

  

Page 13: utilization of urban index and vegetation index transformation on

7

 

3. 2 Urban Index T ransformation

The funcion of urban index transformation in this research is to identify

objects such as buildings, roads, yards, etc. For note, this index can`t identify the

urban seattlement. In accordance with the existing reference in this research, that

the relationship between building density is very closely linked to the presence of

vegetation in the field. In a satellite imagery, urban index appears brighter

especially on the high density built-up area.

Table 3.2 Urban Index Imagery Statistic

Data M in Max M ean St dev

Urban Index Imagery Before Converted

0 184.60 102.98 56.68

Urban Index Imagery After Converted

0 154.10 31.92 12.62

Source : processing, 2009

To create a map of vegetation density and building density, the field check

is required to obtain the required data objects. By taking a sample in each area

Urban Index Value Urban Index Value 

(a) (b)

Picture 3.3 Urban Index Transformation Histogram

(a) Before Converted (b) After Converted

Source :Digital Image Processing , 2009

Page 14: utilization of urban index and vegetation index transformation on

8

 

(300 m2) can be calculated then the entire building area by multiplying the

number of buildings in the area sample.

Table 3.3 Urban Index Transformation and Vegetation Transformation

Source : processing and f ield surveying, 2009

No. mE mN UI ND V I Building Density (%) Vegetation Density (%)

1. 435682 9225470 45.51 -0.2 61 39 2. 435703 9224522 39.13 -0.21 60 40 3. 435980 9222080 34.66 -0.32 85 15 4. 432636 9217986 20.4 -0.19 75 25 5. 432753 9222532 43.55 -0.33 84 16 6. 442211 9230236 49.58 -0.29 60 40 7. 438808 9225068 52.78 -0.36 73 27 8. 442212 9230228 54.74 -0.32 85 15 9. 442559 9230696 45.09 -0.24 77 23

10. 434269 9230608 46.47 -0.4 71 29 11. 435020 9228188 35.57 -0.36 95 17 12. 436383 9226086 44.58 -0.23 78 22 13. 433125 9230850 39.31 -0.4 83 17 14. 432754 9222530 43.55 -0.21 85 15 15. 437262 9225544 40.81 -0.42 84 16 16. 440313 9227910 39.43 -0.07 41 59 17. 440174 9229680 65.08 -0.31 82 18 18. 437861 9229548 44.58 -0.32 82 18 19. 443157 9226852 54.74 -0.19 67 33 20. 432547 9227588 44.05 -0.29 60 40 21. 443599 9226916 43.15 -0.29 60 40 22. 443803 9227552 41.2 -0.21 75 25 23. 433215 9225276 55.98 -0.37 90 10 24. 443429 9228126 36.08 -0.21 75 25 25. 440447 9219836 52.63 -0.26 70 30 26. 435552 9222960 40.09 -0.29 60 40 27. 439223 9219542 69.79 -0.37 90 10 28. 432688 9224010 34.63 -0.25 65 35 29. 436217 9227476 35.36 -0.26 63 37 30. 431910 9227882 39.66 -0.28 63 37 31. 432669 9229706 33.11 -0.26 63 37 32. 435874 9226452 42,58 -0,37 90 10 33. 436389 9226082 44.58 -0.24 77 23 34. 426012 9223657 48.03 -0.34 78 22 35. 438135 9215724 44.58 -0.32 82 18 36. 439751 9220574 26.74 0.05 25 75 37. 425399 9223552 20.53 0.19 20 80 38. 426012 9221074 35.25 -0.13 48 52 39. 430814 9220772 21.37 0.17 18 82 40. 426659 9226232 38.43 0.02 40 60

Page 15: utilization of urban index and vegetation index transformation on

9

 

Each sample will have different built-up area size, if the built-up area

density reaches 100% it means there is no vegetation area. Therefore, in addition

to getting the value of the building density, we also get vegetation density on that

block samples.

3.3 Urban Building Density Map Based on Urban Index T ransformation

Urban building density in an area can be based on the value of the urban

index transformation which generated by remote sensing satellite imagery. The

large percentage of building density in each area will be comparable with the

increase in the value of the urban index. There are 5 class of bulding density, very

high, high, medium, low, and non built-up area. Based on the results of the urban

index transformation, it appears that buil-up area has brighter color. The result

from urban index transformation is a single band that was built from the results of

mathematical operations to the channel that has a special built-up area spectral

character. Gradation levels of expression in the picture 3.4 shows the difference

intensity value pixels and it made before the check field, to make an urban

building density map, check to be performed on the field. Steps undertaken to

create a density map based on urban index transformation, we have to make some

mathematics equality between field data and the satellite imagery.

Table 3.4 Regression Table (UI - Klap)

Source: processing, 2009

UI : urban index trasformation digital value on sample location

K lap : percent building density (field check)

Y : urban index transformation from image processing.

X : building density value (field check).

 

Data r r2 A b Persamaan Regresi y = a + bx

UI vs K lap

0, 563

0, 317

25,306

1,024

Y = 25,306 + 1,024X

Page 16: utilization of urban index and vegetation index transformation on

10

 

 

     

 

 

Determinasi coefficient (r2) of 0.317, it means that building density in the

urban area not only influenced by urban index transformation value. Urban index

imaging, work to identify all objects that have a spectral character building such

as roads, dry land.

Table 3.5 Building Density Based On Urban Index Transformation

Source : processing, 2009

No. U I Value Width (ha)

Land Width (%)

Density (%) C lass

1. > 147.2 11,511.75 30.80 61-80 Very High

2. 111.4 – 147.2

18,185.80 48.66 41-60 High

3. 74.6 – 110.4 5,373.45 14.37 21-40 Medium

4. 37.8 – 73.6 1,873 5.01 0-20 Low

5. < 37.8 426 1.13 - Non built-up area

Building Density 

Picture 3.4 Urban Index-Building Density Regression Source : Statistical Analysis, 2009

Page 17: utilization of urban index and vegetation index transformation on

11

 

Regency Boundary 

Picture 3.5

Page 18: utilization of urban index and vegetation index transformation on

12

 

Source : ASTER Imagery Recording On September, 17, 2006 and Digital RBI Map Semarang Municipality Scale 1:25.000

Created by : Hasti Widyasamratri

Magister of Urban and Regional Planning

Gadjah Mada University

Picture 3.6 Vegetation Index Transformation Map

Projection : Tranverse Mercator

Projection System : Universal Transverse Mercator

Datum : WGS-1984

Zone : 49 M

VEGETATION INDEX TRANSFORMATION MAP

Scale 1:150.000

Java Sea

Low : - 0.67

High : 0.39

N

: Research Area

mE

mN

River

Local Roads

Regency Boundaries

Districts Boundaries

National Roads

Page 19: utilization of urban index and vegetation index transformation on

13

 

URBAN BUILDING DENSITY MAP BASED ON URBAN INDEX

TRANSFORMATION

Scale 1:100.000

LEGEND

National Roads

River

Regency Boundaries

Medium Density

Non Built-Up Area

Low

High Density

Very High Density

Projection : Tranverse Mercator

Projection System : Universal Transverse Mercator

Datum : WGS-1984

Zone : 49 M

: Research Area

Source : ASTER Imagery Recording On September, 17, 2006 and Digital RBI Map Semarang Municipality Scale 1:25.000

Created by : Hasti Widyasamratri

Magister of Urban and Regional Planning

Gadjah Mada University

Picture 3.7 Urban Building Density

Page 20: utilization of urban index and vegetation index transformation on

14

 

The ditribution of medium building density are almost evenly (picture 3.7), with

the largest grouping in the northern region extends from west to east. Object

(built-up area) that dominates in this region can be identified from urban index

transformation. Objects such as airplane runway , field, factory roofs that the roof

made of asbestos, in this image will have extremely value of urban index and

identified as high-density buildings.

3. 4 Vegetation Density Map Based On Vegetation Index T ransformation

The existence of the built-up object and vegetation object in the urban

areas are the two things that are associated. Vegetation density calculation is done

on the same block with the determination of built-up area density. so that when

the value of the built-up area in some blocks sample is known then the value of

vegetation density can also be known. In principle, to process the data density of

vegetation is done with the area's tree canopy by using the distance between the

outside of the canopy and trunk (r = radial average on each tree). By taking a

sample of each area in the whole area can be calculated by multiplying the

number of canopy trees in the sample area. After the broad feature in the sample

can be obtained then the percentage of density can be searched with a wide

Picture 3.8

Coordinat : 435020 mT 9228188 mU Description : Very High Building Density (Urban Area) Source : F ield Documentation, 2009

 

Page 21: utilization of urban index and vegetation index transformation on

15

 

canopy to share with a whole block of sample, then multiplied by 100% which

can be written {(L / width of block sample) x 100% }, L is width of canopy.

NDVI generated by remote sensing imagery, even NDVI has greeness value but it

can not describe the amount of vegetation in an area. To make vegetation density

map, check to be performed on the field. Steps undertaken to create a density map

based on vegetation index transformation, we have to make some mathematics

equality

between field data and the satellite imagery.

Table 3.6 Regression Table (NDVI - Klap)

Source : Processing, 2009

NDVI : vegetation index transformation digital value on sample

K lap : percent vegetation density (field check)

Y : vegetation index transformation from image processing

X : vegetation density value (field check).

Data r r2 A b Regression y = a + bx

NDVI vs K lap

0, 899

0, 808

60,74

117,76

Y = 60,742+117,76X

Picture 3. 9 NDVI - Vegetation Density Regression

Source: Statistical Analysis, 2009

Page 22: utilization of urban index and vegetation index transformation on

16

 

Table 3.7 Vegetation Density Based On Vegetation Index Transformation

Source : processing, 2009

Based on table 3.7 and picture 3.7 area that has level density very high is

in the southern part of Semarang municipality with the NDVI values in the range

of 0,03-0,39 (61-80%). To describe the condition of the urban environment in the

Semarang municipality from urban density map (UI) and vegetation density map

(NDVI), will be made cross-table. Cross-table is a technique to presenting

nominal data analysis in descriptive statistics in this case the data are the

classification level of building density and vegetation density.

Table 3.8 Cross-Tab Between Vegetation Density and Bulding Density

Source : Processing, 2009, *) : table numbers

No. ND V I Width (ha)

Width (%)

Density (%) G reeness

1. < - 0.45 3873.72 10.36 - Non-vegetation area /dry land/water

2. - 0.30 – ( – 0.45) 15,545 41.59 0-20 Low

3. - 0.15 - (– 0.29) 4110.72 11 21-40 Medium

4. - 0.14 - 0.03 7,929 21.21 41-60 High

5. 0.03 - 0.39 4,899 13.10 61-80 Very High

BuildingDensity V egetation Density Low Medium H igh V ery H igh

Low - 2/(VBsr)*11 20/(VBtr)*15 15/(VBstr)*20

Medium 6 /(VBrs)*9 6/(VBss)*12 1/(VBts)*17 - High 111 /(VBrt)*16 6/(VBst)*13 5/(VBtt)*18 1/(VBstt)*21

Very High 2 /(VBrst)*10 1/(VBsst)*14 1/(VBtst)*19 -

Page 23: utilization of urban index and vegetation index transformation on

17

 

VEGETATION DENSITY

MAP BASED ON NDVI

Scale 1:100.000

River

Local Roads

Regency Boundaries

Districts Boundaries

National Roads

Medium

Non Vegetation Area/dry land/water

Low

High

Very High

Projection : Tranverse Mercator

Projection System : Universal Transverse Mercator

Datum : WGS-1984

Zone : 49 M

: Research Area

Source : ASTER Imagery Recording On September, 17, 2006 and Digital RBI Map Semarang Municipality Scale 1:25.000

Created by : Hasti Widyasamratri

Magister of Urban and Regional Planning

Gadjah Mada University

Picture 3.10 Vegetation Density Map

N

Java Sea

mE

mN

Page 24: utilization of urban index and vegetation index transformation on

18

 

The number in the table is the amount of area that has a combination of the two

classification variables, total areas are 177 villages. Based on table 3.8, the highest

combination classifiacation are in the low vegetatin density and high building density

(111 villages). It means that area has a high density of vegetation is tend to be low.

Theoretically the existence of the object vegetation in urban areas will affect the object

of the building.

Table 3.9 Combination 6 /(VBrs)

Source : Processing, 2009

Table 3.10 Combination 2/(VBrst)

No. Distr ict V illage

1. Ngaliyan Purwoyoso, dan Ngaliyan, Source : Processing, 2009

Table 3.11 Combination 2/(VBsr)

No. Distr ict V illage

1. Ngaliyan Podorejo

2. Genuk Kudu

Source : Processing, 2009

 

 

 

No. Distr ict V illage 1. Candisari Karanganyar Gunung, Jatingaleh 2. Tembalang Jangli 3. Banyumanik Ngesrep, Padangsari 4. Tembalang Tembalang

Page 25: utilization of urban index and vegetation index transformation on

19

 

Table 3.12 Combination 6/(VBss)

No. Ditr ict V illage

1. Banyumanik Pedalangan

2. Genuk Sambungharjo, Bangetayu Wetan, Karang Roto.

3. Gunungpati Sukorejo

4. Ngaliyan Wonosari Source : Processing, 2009

Table 3.13 Combination 6/(VBst)

No. Distr ict V illage

1. Candisari Tegalsari 2. Gajahmungkur Bendan Duwur, Karangrejo

3. Semarang Selatan Pleburan

4. Tembalang Mangunharjo, Rowosari Source : Processing, 2009

Table 3.14 Combination 1/(VBsst)

Source : Processing, 2009

Table 3.15 Combination 20/(VBtr)

No. Distr ict V illage

1. Banyumanik Tinjomoyo, Srondol Kulon, dan Jabungan.

2. Genuk Penggaron Lor

3. Gunungpati Sadeng, Kandri, Sekaran, Pungangan, Kalisegoro, Patemon, Mangunsari

Source : Processing, 2009

No. Distr ict V illage

1. Ngaliyan Bambangkerep

Page 26: utilization of urban index and vegetation index transformation on

20

 

Table 3.16 Combination 111 /(VBrt)

No. District V ellage 1. Candisari Candi, Jomblang, Wonotingal, dan Kaliwiru. 2. Gajahmungkur Kelurahan Petompon, Bendungan, Lempongsari,

Sampangan, Bendan Ngisor, dan Gajahmungkur. 3. Gayamsari Kelurahan Tambakrejo, Kaligawe, Sawahbesar,

Sambirejo, Siwalan, Pandean Lamper, dan Gayamsari

4. Genuk Trimulyo, Terboyo Wetan, Terboyo Kulon, Banjardowo, Genuksari, Gebangsari, Mukhtiharo Lor, dan Bangetayu Kulon.

5. Ngaliyan Tambakaji, Kalipancur. 6. Pedurungan Mukhtiharo Kulon, Tlogosari Kulon, Tlogosari Wetan,

Tlogomulyo, Kalicari, Palebon, Pedurungan Tengah, Pedurungan Lor, Pedurungan Kidul, Gemah, dan Plamongan Sari

7. Semarang Barat Tambak Harjo, Tawangsari, Tawangmas, Krobokan, Karangayu, Kalibanteng Kulon, Krapayak, Gisikorono, Cabean, Salamanmloyo, Kalibanteng Kidul, Bojong Salaman, Bongsari, Kembangarum, Ngemplaksimongan, dan Manyaran.

8. Semarang Selatan Bulustalan, Barusari, Randusari, Mugassari, Wonodri, Peterongan, Lamper Lor, Lamper Tengah, dan Lamper Kidul.

Tengah, dan Lamper Kidul 9. Semarang Tengah Purwodinatan, Kauman, Brumbungan, Miroto, Jagalan,

Kranggan, Gabahan, Karang Kidul, dan Pekunden. 10. Semarang Timur Kemijen, Mlatiharjo, Mlatibaru, Rejomulyo,

Kebonagung, Bugangan, Rejosari, Sarirejo, Karang Turi, dan Karang Tempel.

11. Semarang Utara Bandarharo, Tanjungmas, Pandansari, Sekayu, Bangunharjo, Pendrikan Lor, Dadapsari, Panggung Kidul, Kembangsari, Pruwosari, Pendrikan Kidul, Kuningan, Panggung Lor, Bulu Lor, dan Plombokan.

12. Tembalang Sendangguwo, Kedungmundu, Tandang, Sambiroto, Sendang Mulyo, dan Bulusan.

13. Tugu Mangunharo, Mangkang Kulon, Mangkang Wetan, Randu Garut, Karang Anyar, Tugurejo, dan Jerakah.

Source : Processing, 2009

Page 27: utilization of urban index and vegetation index transformation on

21

 

Table 3.17 Combination 1/(VBts) No. Distr ict V illage

1. Banyumaik Gedawang Source : Processing, 2009

Table 3.18 Combination 5/(VBtt)

No. Distr ict V illage

1. Banyumanik Sumurbroto

2. Gunungpati Nongkosawit

3. Mijen Tambangan, Polaman

4. Tembalang Meteseh

Source : Processing, 2009

Table 3.19 Combination 1/(VBtst)

No. Distr ict V illage

1. Tembalang Kramas

Source : Processing, 2009

Table 3.20 Combination 15/(VBstr)

No. Distr ict V illage

1. Banyumanik Banyumanik, Pudak Payung

2. Gunungpati Jatirejo, Ngijo, Cepoko, Gunungpati, Plalangan, Pakintelan, Sumurejo

3. Mijen Pesantren, Mijen, Purwosari, Cangkiran, Bubakan, Karangmalang.

Source : Processing, 2009

Table 3.21 Combination 1/(VBstt)

Source : Processing, 2009

No. Ditr ict V illage

1. Banyumanik Srondol Wetan

Page 28: utilization of urban index and vegetation index transformation on

22

 

3.5 Urban Environmental Conditions

Physically, the development of Semarang, tends toward the west (Tugu District)

to the east (Genuk Ditrict), and further areas which others followed, especially toward

the south. To see the spatial caracter of urban environmental conditions, an urban

environment map was eastablished based on the existence of vegetation area and built-

up area.

From picture 3.11 can be seen if more than half the area in the Semarang

municipality has a poor environmental conditions (Tugu, Semarang Tengah, Semarang

Barat, Semarang Utara, Semarang Timur, Gayamsari, Semarang Selatan, dan

Pedurungan). Urban environmental conditions are very poor can be shown by the high

value of urban index (high density building) and low vegetation index value (low

vegetation density). The range of urban index values on this research are betwen 0

(minimum value) to 184.60 (maximum value) with the distribution of high value in

northern Semarang municipality. Based on data obtained from the PODES (Potensi

Desa) 2005, the majority of the population in Semarang municipality can be categorized

as an adequate amount of in financial terms (very high until medium/avarage income).

Table 3.22 Environment Condition and Social-Economy Condition

Source : Processing, 2009

No. Condition No. Condition

1. Poor environment condition, very high income

5. Very poor environment condition, very high income

2. Medium environment condition, High income

6. Very poor environment condition, lowest income

3. Very good environment condition, Very high income

7. Poor environment condition, medium income

4. Very poor environnment condition, lowest income

Page 29: utilization of urban index and vegetation index transformation on

23

 

URBAN ENVIRONMENT CONDITION MAP

Scale 1:100.000

River

Local Roads

County Boundaries

Districts Boundaries

National Roads

Projection : Tranverse Mercator

Projection System : Universal Transverse Mercator

Datum : WGS-1984

Zone : 49 M

Source : ASTER Imagery Recording On September, 17, 2006 and Digital RBI Map Semarang Municipality Scale 1:25.000

Created by : Hasti Widyasamratri

Magister of Urban and Regional Planning

Gadjah Mada University

Picture 3.11 Urban Index Transformation Map

: Research Area

N

mE

mN

Medium

Very Good

Good

Poor

Very Poor

Java Sea

Page 30: utilization of urban index and vegetation index transformation on

24

 

INTERACTION CONDITION BETWEEN ENVIRONMENT AND

SOCIAL­ECONOMIC

Scale 1:100.000

River

Local Roads

County Boundaries

Districts Boundaries

National Roads

Very Poor Environment Condition, Very High Income

Good Environmnet, Condition, High income

Medium Evirionment condition, High Income

Very Poor Environment Condition, High Income

Poor Environment Condition, Medium Income

Very Poor Environment Condition, Lower Income

Very Poor Environment Condition, Lowest Income Projection : Tranverse Mercator

Projection System : Universal Transverse Mercator

Source : ASTER Imagery Recording On September, 17, 2006 and Digital RBI Map Semarang Municipality Scale 1:25.000

Created by : Hasti Widyasamratri

Magister of Urban and Regional Planning

Gadjah Mada University

Picture 3.12 Interaction Condition Between Environment and Social-Economic

Java Sea

N

mE

mN

: Research Area

Page 31: utilization of urban index and vegetation index transformation on

25

 

Spatially, socioeconomic conditions in the Semarang municipality evenly

distributed, but for the environmental conditions in urban areas farther from the

center of environmental conditions showed a better condition. It can be seen from

the presence of vegetation objects whose numbers are still quite a lot especially in

southern Semarang municipality. From the morphology, Semarang municipality

has a varied topography,from lowland (coastal) to the hills. Topographic

conditions and soil types that are in a region will participate in how people use

them. An alluvial soils are usually located in coastal plains up to the hills with a

height of 3-30 fold mdpal will be more suitable for building (northern Semarang

municipality). This type of soil is more resistant to erosion and thus more stable if it is

used to hold a heavy load, that`s why a large number of building is being

concentrated on northern Semarang municipality. A volcanic soil type which

more unstable and susceptible to erosion is not suitable to set up building (built up

area) and used as agricultural land, that`s why a large number of agricultural land

is being concentrated on southern Semarang municipality. This is also indicated

by the value of urban high index in northern Semarang municipality.

Analysis in this study is also supported with population density variable

and average income of the community to see its contribution to the level of

greenness and building density. Populatin density data and average income data

obtained from secondary data (Badan Pusat Statistik), and its standard figure used

by local governments. Can be assumed if in an area dominated by the built-up

area then the number of people are these areas will also be high.

Page 32: utilization of urban index and vegetation index transformation on

26

 

Table 3.23 Socio-Economic Variables

Source : Perda Kota Semarang No. 2 Th 1999, BAPPENAS Pro-poor Planning and Budgeting

 

No. District V illage Width (ha)

Population (jw)

Income (Thousand)

1. Pedurungan Muktiharjo Kidul 143,144 39,530 < 664.3 2. Genuk Trimulyo 332,364 3,757 > 2,777.2

Muktiharjo Lor 117,286 4,332 > 2,777.2 Gebangsari 149,799 6,698 > 2,777.2

3. Semarang Timur Karangtempel 91,846 7,527 > 2,777.2 4. Gayamsari Sawahbesar 42,703 16,674 > 2,777.2

Sambirejo 81,327 11,031 > 2,777.2 5. Mijen Polaman 159 1,643 > 2,777.2

Cangkiran 285,625 2,979 > 2,777.2 Karangmalang 212,645 2,227 > 2,777.2

6. Gunungpati Sukorejo 288,063 9,632 1,455.8 – 2,777.2 Pungangan 343,946 3,406 1,455.8 – 2,777.2

Nongkosawit 190,906 3,918 1,455.8 – 2,777.2 Cepoko 245,405 2,337 > 2,777.2 Gunungpati 667,679 5,808 1.455,8 – 2.777,2

7. Banyumanik Pedalangan 235,877 8,445 > 2.777,2 Tinjomoyo 202,479 10,325 > 2.777,2 Srondol Wetan 226,484 21,163 1.455,8 – 2.777,2

8. Semarang Selatan Wonodri 86,125 6,825 > 2.777,2 9. Candisari Wonotingal 44,879 5,727 > 2.777,2

10. Gajahmungkur Gajahmungkur 251,535 13,220 > 2.777,2

Page 33: utilization of urban index and vegetation index transformation on

27

 

Table 3.24 Environment-Socio Economic Condition

Sumber : hasil pemrosesan, 2008

Income V egetation Building Descr iption

+ + + + + ■■■■■ ***** Very High

+ + + + ■■■■  **** High

+ + + ■■■ *** Medium

+ + ■■ ** Low

+ ■ * Lowest

No District V illage Income

V egetation Building

1. Pedurungan Muktiharjo Kidul + ■  *** 2. Genuk Trimulyo + + + + + ■  *** Muktiharjo Lor + + + + + ■  *** Gebangsari + + + + + ■  ***

3. Semarang Timur Karangtempel + + + + + ■  *** 4. Gayamsari Sawahbesar + + + + + ■  *** Sambirejo + + + + + ■  ***

5. Mijen Polaman + + + + + ■■■■  ** Cangkiran + + + + + ■■■  * Karangmalang + + + + + ■■■■  **

6. Gunungpati Sukorejo + + + + ■■  ** Pungangan + + + + ■■■  ** Nongkosawit + + + + ■■■■  *** Cepoko + + + + + ■  * Gunungpati + + + + ■■■■  *

7. Banyumanik Pedalangan + + + + + ■  ** Tinjomoyo + + + + + ■■■  ** Srondol Wetan + + + + ■■■  ***

8. Semarang Selatan Wonodri + + + + + ■  *** 9. Candisari Wonotingal + + + + + ■  ***

10. Gajahmungkur Gajahmungkur + + + + + ■  **

Page 34: utilization of urban index and vegetation index transformation on

28

 

SOCIOECONOMIC CONDITION

MAP

Source : ASTER Imagery Recording On September, 17, 2006 and Digital RBI Map Semarang Municipality Scale 1:25.000

Created by : Hasti Widyasamratri

Magister of Urban and Regional Planning

Gadjah Mada University

mE

mN

N

River

Local Roads

County Boundaries

Districts Boundaries

National Roads

Medium Income

Very High Income

High Income

Low Income

Lowest Income

Projection : Tranverse Mercator

Projection System : Universal Transverse Mercator

: Research Area

Java Sea

Picture 3.13 Socioeconomic Condition Map

Page 35: utilization of urban index and vegetation index transformation on

29

 

Based on table 3.24 Muktiharjo Kidul has low income, medium building

density, and low vegetation density. These are characteristic of a condition on

urban area which dominated by buildings and dense population. Economically, as

a region located in the center of activities this area attract residents from other

areas to work here. The result is the circulation of commodity and services

relatively quickly and the standard of living of high society will indirectly

increase the income level of the community. From the picture 3.6 can be

explained if the physical condition of the urban environment in certain sense also

affect the social conditions of the urban economy. This was evidenced by the high

income, but environmental conditions on urban area are tend to be bad (Trimulyo,

Genuk Distric up to Sambirejo, Gayamsari Ditrict). Areas along the Genuk

District-Semarang Timur- Gayamsari is a central area of activities especially for

industrial, office, commercial, and residential which means that the standard of

living there is relatively high causing a range of income also high. In the southern

Semarang municipality land will be more dominated by the settlement in

predominately working in the northern Semarang municipality and coused the

price of land in that area become expensif. Only people who have high incomes

who can buy land in that area

Page 36: utilization of urban index and vegetation index transformation on

30

 

4. Conclusion

1. Semarang municipality has very high building density 30.80% of the total area

or 11,511.75 ha (Tugu, Semarang Barat, Semarang Tengah, Semarang Timur,

Semarang Utara, and Gayamsari). High building density 48.66% of the total

area or 18.185,80 ha (Pedurungan, Semarang Selatan, Candisari,

Gajahmungkur, and Tembalang). Medium building density 14. 37% of the

total area or 5,373.45 ha (Banyumanik). Low building density 5,01% of the

total area or 1, 873 ha (Genuk, Ngaliyan, Mijen and Gunungpati.).

2. Semarang municipality has low vegetation greeness 41,59% of the total area or

15, 545  ha (Tugu, Semarang Barat, Semarang Tengah, Semarang Timur,

Semarang Utara, dan Gayamsari). Medium vegetation greeness 11% of the

total area or 4,110.72 ha (Pedurungan, Semarang Selatan, Candisari,

Gajahmungkur, and Tembalang). High vegetation greeness 21.21% of the total

area or 7.929 ha (Banyumanik). Very high greeness 13.10% of the total area or

4,899 ha (Genuk, Ngaliyan, Mijen, and Gunungpati).

3. Poor environmental conditions with better socioeconomic conditioon located in

urban centers of Semarang municipality (Tugu, Ngaliyan, Semarang Barat,

Semarang Tengah, Semarang Timur, Semarang Utara, Gayamsari, Pedurungan,

Semarang Selatan, Candisari, and Gajahmungkur). Both environmental

conditions and socioeconomic with better condition located in urban fringe of

Semarang municipality (Mijen, Gunungpati, Banyumanik, and Tembalang).

Page 37: utilization of urban index and vegetation index transformation on

31 

 

References

Anam, A, 2004. Penentuan Basis Aturan Untuk Identifikasi Permukiman Kota Dalam Pengolahan Citra Digital Studi Kasus Kota Yogyakarta. Skripsi. Fak. Geografi, UGM, Yogyakarta

Bintarto, 1984. Interaksi Desa-Kota. Ghalia Indonesia, Jakarta

Branch, C. Melville, 1995. Perencanaan Kota Komprehensif. Gadjah Mada University Press, Yogyakarta

Budiharjo, Eko., dan Hardjohubodjo, Sudanti. 1993. Kota berwawasan Lingkungan. Penerbit Alumni, Bandung

Danakusumah, Evawati, 1997. Kemampuan Citra Digital Landsat Thematic Mapper dalam Menyajikan Berbagai Liputan Vegetasi di Sebagian Kesatuan Pemangkuan Hutan Kedu Utara, Kabupaten Magelang, Jawa Tengah. Tesis. Fak. Geografi, UGM, Yogyakarta

Danoedoro, Projo, 1989. Hubungan Antara Konsentrasi Kolorofil dan Informasi Spektral Vegetasi pada Data Multispektral SPOT Daerah Sekitar Lereng Gunung Merapi Bagian Selatan. Fak. Geografi, UGM, Yogyakarta

Danoedoro, Projo 1996. Pengolahan Citra Digital – Teori dan Aplikasinya dalam Bidang Penginderaan Jauh. Fak. Geografi, UGM, Yogyakarta

Faturochman, (editor), 2004. Dinamika Kependudukan dan Kebijakan. Pusat Studi Kependudukan dan Kebijakan Universitas Gadjah Mada, Yogyakarta

Hartshorn, A. Truman, 1980. Interpreting the City : An Urban Geography. John Wiley & Sons, New York

Howard, John. A, 1996. Pengindraan Jauh Untuk Sumber Daya Hutan. Gadjah

Mada University Press, Yogyakarta

Jensen, Ryan., Gatrell, Jay., Boulton, Jim., Harper, Bruce. 2004. Using Remote Sensing and Geographic Information System to Study Urban Quality of Life and Urban Forest Amenities. Diterima 20 Maret 2007, dari http//www.ecologyandsociety.org/vol9/iss5/art5/

Page 38: utilization of urban index and vegetation index transformation on

32 

 

Lillesand, Kiefer, Chipman, 2004. Remote Sensing and image Interpretation.Wiley & Sons, New York

Li, G., dan Weng, Q. 2007. Measuring the Quality of Life in City of Indiana Polis by Itegrating of Remote Sensing and Census Data. International Journal of Remote Sensing, Vol. 28, No. 2, P. 249-267. Diambil 28 Maret 2007, dari Taylor & Francis database

Mennis, Jeremy. 2006. Socioeconomic-Vegetation Relationship in Urban, Residential Land: The Case of Denver, Colorado. Photogrametric Engineering & Remote Sensing, Vol. 72, No.8, P.911-921. Diambil 28 Maret 2007, dari American Society for Photogrametriy and Remote Sensing database.

Mirza, Mutia, 2005. Hubungan Kerapatan Vegetasi dan NDVI dalam Kaitannya dengan Estimasi Nilai Koefisien Aliran (Studi Kasus : Beberapa Sub. DAS Kampar, Prop. Riau dan Sumatra Barat). Skripsi. Fak. Geografi, UGM, Yogyakarta

Northam, M.Ray, 1979. Urban Geography. John Wiley & Sons, New York

Nurcahyani, Fitri, 2007. Aplikasi Transformasi Spektral Urban Index untuk Memantau Pemekaran Fisik Kota Yogyakarta. Skripsi. Fak. Geografi, UGM, Yogyakarta

Purwadhi, Sri, Hardiyanti, 2001. Interpretasi citra Digital.. Grasindo, Yogyakarta

Tiyanto, Angga Putris, 2006. Pemanfaatan Citra Landsat ETM+ untuk Estimasi Temperatur Permukaan Vegetasi Melalui Analisis Citra Digital pada Sebagian Kab. Klaten-Prop. Jawa Tengah. Skripsi. Fak. Geografi, UGM, Yogyakarta

Tukiran, (editor), 2002. Mobilitas Penduduk Indonesia. Pusat Studi Kependudukan dan Kebijakan Universitas Gadjah Mada, Yogyakarta

Semarang Dalam Angka, 2004. BPS

Setiawan, Budi, 2006. Pola Persebaran Kompleks-Kompleks Perumahan Di Kota Semarang. Skripsi. Fak. Geografi, UGM, Yogyakarta

Singarimbun, Masri., dan Effendi, Sofian. 1995. Metode Penelitian Survei. LP3ES,Jakarta

Page 39: utilization of urban index and vegetation index transformation on

33 

 

Sugiyono, DR. 2003. Statistika untuk Penelitian. Alfabeta, Bandung

Yokaswendra, Jeffri, 2006. Prioritas Penentuan Jalur Hijau pada Sebagian Ruas Jalan Kota Yogyakarta. Skripsi. Fak. Geografi, UGM, Yogyakarta

Yunus, Hadi Sabari, 2005. Menejemen Perkotaan. Pustaka Pelajar, Yogyakarta