uv · introduction density of finite rank operators and the p-approximation property a trace...

80
Introduction Density of finite rank operators and the p-approximation property A trace characterization of the p-approximation property Open problems The p-approximation property in Banach spaces J. M. Delgado Department of Mathematics University of Huelva V ENCUENTRO DE ANÁLISIS FUNCIONAL Y SUS APLICACIONES Salobreña 2009 J. M. Delgado The p-approximation property

Upload: others

Post on 25-Jul-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: UV · Introduction Density of finite rank operators and the p-approximation property A trace characterization of the p-approximation property Open problems The approximation property

IntroductionDensity of finite rank operators and the p-approximation property

A trace characterization of the p-approximation propertyOpen problems

The p-approximation propertyin Banach spaces

J. M. Delgado

Department of MathematicsUniversity of Huelva

V ENCUENTRO DE ANÁLISIS FUNCIONAL Y SUS APLICACIONESSalobreña 2009

J. M. Delgado The p-approximation property

Page 2: UV · Introduction Density of finite rank operators and the p-approximation property A trace characterization of the p-approximation property Open problems The approximation property

IntroductionDensity of finite rank operators and the p-approximation property

A trace characterization of the p-approximation propertyOpen problems

Outline

1 Introduction

2 Density of finite rank operators and the p-approximation property

3 A trace characterization of the p-approximation property

4 Open problems

J. M. Delgado The p-approximation property

Page 3: UV · Introduction Density of finite rank operators and the p-approximation property A trace characterization of the p-approximation property Open problems The approximation property

IntroductionDensity of finite rank operators and the p-approximation property

A trace characterization of the p-approximation propertyOpen problems

Outline

1 Introduction

2 Density of finite rank operators and the p-approximation property

3 A trace characterization of the p-approximation property

4 Open problems

J. M. Delgado The p-approximation property

Page 4: UV · Introduction Density of finite rank operators and the p-approximation property A trace characterization of the p-approximation property Open problems The approximation property

IntroductionDensity of finite rank operators and the p-approximation property

A trace characterization of the p-approximation propertyOpen problems

Notation

– X ,Y Banach spaces, BX = {x ∈ X : ‖x‖ ≤ 1}– L(Y ,X ) is the space of bounded operators from Y into X– F(Y ,X ) = {T ∈ L(Y ,X ) : T has finite rank}– K(Y ,X ) = {T ∈ L(Y ,X ) : T is compact}

– p ∈ [1,∞) ⇒ p′ =p

p − 1

(⇔ 1

p + 1p′ = 1

)

– `p(X ) = {(xn) ⊂ X :∑

n ‖xn‖p <∞}

‖(xn)‖p = (∑

n ‖xn‖p)1/p

– `wp (X ) = {(xn) ⊂ X :

∑n |〈x∗, xn〉|p <∞, for all x∗ ∈ X ∗}

‖(xn)‖wp = supx∗∈BX∗

(∑

n |〈x∗, xn〉|p)1/p

– Np(Y ,X ) = {T ∈ L(Y ,X ) : T is p-nuclear}

– T : Y → X p-nuclear ⇔∃(y∗n ) ∈ `p(Y ∗)

∃(xn) ∈ `wp′(X )

:

J. M. Delgado The p-approximation property

Page 5: UV · Introduction Density of finite rank operators and the p-approximation property A trace characterization of the p-approximation property Open problems The approximation property

IntroductionDensity of finite rank operators and the p-approximation property

A trace characterization of the p-approximation propertyOpen problems

Notation

– X ,Y Banach spaces, BX = {x ∈ X : ‖x‖ ≤ 1}– L(Y ,X ) is the space of bounded operators from Y into X– F(Y ,X ) = {T ∈ L(Y ,X ) : T has finite rank}– K(Y ,X ) = {T ∈ L(Y ,X ) : T is compact}

– p ∈ [1,∞) ⇒ p′ =p

p − 1

(⇔ 1

p + 1p′ = 1

)– `p(X ) = {(xn) ⊂ X :

∑n ‖xn‖p <∞}

‖(xn)‖p = (∑

n ‖xn‖p)1/p

– `wp (X ) = {(xn) ⊂ X :

∑n |〈x∗, xn〉|p <∞, for all x∗ ∈ X ∗}

‖(xn)‖wp = supx∗∈BX∗

(∑

n |〈x∗, xn〉|p)1/p

– Np(Y ,X ) = {T ∈ L(Y ,X ) : T is p-nuclear}

– T : Y → X p-nuclear ⇔∃(y∗n ) ∈ `p(Y ∗)

∃(xn) ∈ `wp′(X )

:

J. M. Delgado The p-approximation property

Page 6: UV · Introduction Density of finite rank operators and the p-approximation property A trace characterization of the p-approximation property Open problems The approximation property

IntroductionDensity of finite rank operators and the p-approximation property

A trace characterization of the p-approximation propertyOpen problems

Notation

– X ,Y Banach spaces, BX = {x ∈ X : ‖x‖ ≤ 1}– L(Y ,X ) is the space of bounded operators from Y into X– F(Y ,X ) = {T ∈ L(Y ,X ) : T has finite rank}– K(Y ,X ) = {T ∈ L(Y ,X ) : T is compact}

– p ∈ [1,∞) ⇒ p′ =p

p − 1

(⇔ 1

p + 1p′ = 1

)– `p(X ) = {(xn) ⊂ X :

∑n ‖xn‖p <∞}

‖(xn)‖p = (∑

n ‖xn‖p)1/p

– `wp (X ) = {(xn) ⊂ X :

∑n |〈x∗, xn〉|p <∞, for all x∗ ∈ X ∗}

‖(xn)‖wp = supx∗∈BX∗

(∑

n |〈x∗, xn〉|p)1/p

– Np(Y ,X ) = {T ∈ L(Y ,X ) : T is p-nuclear}

– T : Y → X p-nuclear ⇔∃(y∗n ) ∈ `p(Y ∗)

∃(xn) ∈ `wp′(X )

: T =∑

n y∗n ⊗ xn

J. M. Delgado The p-approximation property

Page 7: UV · Introduction Density of finite rank operators and the p-approximation property A trace characterization of the p-approximation property Open problems The approximation property

IntroductionDensity of finite rank operators and the p-approximation property

A trace characterization of the p-approximation propertyOpen problems

Notation

– X ,Y Banach spaces, BX = {x ∈ X : ‖x‖ ≤ 1}– L(Y ,X ) is the space of bounded operators from Y into X– F(Y ,X ) = {T ∈ L(Y ,X ) : T has finite rank}– K(Y ,X ) = {T ∈ L(Y ,X ) : T is compact}

– p ∈ [1,∞) ⇒ p′ =p

p − 1

(⇔ 1

p + 1p′ = 1

)– `p(X ) = {(xn) ⊂ X :

∑n ‖xn‖p <∞}

‖(xn)‖p = (∑

n ‖xn‖p)1/p

– `wp (X ) = {(xn) ⊂ X :

∑n |〈x∗, xn〉|p <∞, for all x∗ ∈ X ∗}

‖(xn)‖wp = supx∗∈BX∗

(∑

n |〈x∗, xn〉|p)1/p

– Np(Y ,X ) = {T ∈ L(Y ,X ) : T is p-nuclear}

– T : Y → X p-nuclear ⇔∃(y∗n ) ∈ `p(Y ∗)

∃(xn) ∈ `wp′(X )

: T (·) =∑

n〈y∗n , ·〉xn

J. M. Delgado The p-approximation property

Page 8: UV · Introduction Density of finite rank operators and the p-approximation property A trace characterization of the p-approximation property Open problems The approximation property

IntroductionDensity of finite rank operators and the p-approximation property

A trace characterization of the p-approximation propertyOpen problems

The approximation property

(Tn) ⊂ F(Y ,X )

Tn‖·‖−→ T

⇒T ∈ K(Y ,X )

⇔ F(Y ,X )‖·‖⊂ K(Y ,X )

X hasSchauder basis ⇒ For every Banach Y , F(Y ,X )

‖·‖= K(Y ,X )

J. M. Delgado The p-approximation property

Page 9: UV · Introduction Density of finite rank operators and the p-approximation property A trace characterization of the p-approximation property Open problems The approximation property

IntroductionDensity of finite rank operators and the p-approximation property

A trace characterization of the p-approximation propertyOpen problems

The approximation property

(Tn) ⊂ F(Y ,X )

Tn‖·‖−→ T

⇒T ∈ K(Y ,X ) ⇔ F(Y ,X )‖·‖⊂ K(Y ,X )

X hasSchauder basis ⇒ For every Banach Y , F(Y ,X )

‖·‖= K(Y ,X )

J. M. Delgado The p-approximation property

Page 10: UV · Introduction Density of finite rank operators and the p-approximation property A trace characterization of the p-approximation property Open problems The approximation property

IntroductionDensity of finite rank operators and the p-approximation property

A trace characterization of the p-approximation propertyOpen problems

The approximation property

(Tn) ⊂ F(Y ,X )

Tn‖·‖−→ T

⇒T ∈ K(Y ,X ) ⇔ F(Y ,X )‖·‖⊂ K(Y ,X )

X hasSchauder basis ⇒ For every Banach Y , F(Y ,X )

‖·‖= K(Y ,X )

J. M. Delgado The p-approximation property

Page 11: UV · Introduction Density of finite rank operators and the p-approximation property A trace characterization of the p-approximation property Open problems The approximation property

IntroductionDensity of finite rank operators and the p-approximation property

A trace characterization of the p-approximation propertyOpen problems

The approximation property

Theorem [Grothendieck, 1955]

X a Banach space. The following statements are equivalent:

1 For every Banach space Y , F(Y ,X )‖·‖

= K(Y ,X ).2 The identity map IX belongs to F(X ,X )

τc .

DefinitionA Banach space X has the approximation property (AP) if the identitymap IX can be approximated by finite rank operators uniformly onevery compact subset of X (≡ IX ∈ F(X ,X )

τc ).

All the classical Banach spaces of sequences and functions hasthe AP.Enflo (1973): L(`2, `2) does not have the AP.

J. M. Delgado The p-approximation property

Page 12: UV · Introduction Density of finite rank operators and the p-approximation property A trace characterization of the p-approximation property Open problems The approximation property

IntroductionDensity of finite rank operators and the p-approximation property

A trace characterization of the p-approximation propertyOpen problems

The approximation property

Theorem [Grothendieck, 1955]

X a Banach space. The following statements are equivalent:

1 For every Banach space Y , F(Y ,X )‖·‖

= K(Y ,X ).2 The identity map IX belongs to F(X ,X )

τc .

DefinitionA Banach space X has the approximation property (AP) if the identitymap IX can be approximated by finite rank operators uniformly onevery compact subset of X (≡ IX ∈ F(X ,X )

τc ).

All the classical Banach spaces of sequences and functions hasthe AP.Enflo (1973): L(`2, `2) does not have the AP.

J. M. Delgado The p-approximation property

Page 13: UV · Introduction Density of finite rank operators and the p-approximation property A trace characterization of the p-approximation property Open problems The approximation property

IntroductionDensity of finite rank operators and the p-approximation property

A trace characterization of the p-approximation propertyOpen problems

The approximation property

Theorem [Grothendieck, 1955]

X a Banach space. The following statements are equivalent:

1 For every Banach space Y , F(Y ,X )‖·‖

= K(Y ,X ).2 The identity map IX belongs to F(X ,X )

τc .

DefinitionA Banach space X has the approximation property (AP) if the identitymap IX can be approximated by finite rank operators uniformly onevery compact subset of X (≡ IX ∈ F(X ,X )

τc ).

All the classical Banach spaces of sequences and functions hasthe AP.

Enflo (1973): L(`2, `2) does not have the AP.

J. M. Delgado The p-approximation property

Page 14: UV · Introduction Density of finite rank operators and the p-approximation property A trace characterization of the p-approximation property Open problems The approximation property

IntroductionDensity of finite rank operators and the p-approximation property

A trace characterization of the p-approximation propertyOpen problems

The approximation property

Theorem [Grothendieck, 1955]

X a Banach space. The following statements are equivalent:

1 For every Banach space Y , F(Y ,X )‖·‖

= K(Y ,X ).2 The identity map IX belongs to F(X ,X )

τc .

DefinitionA Banach space X has the approximation property (AP) if the identitymap IX can be approximated by finite rank operators uniformly onevery compact subset of X (≡ IX ∈ F(X ,X )

τc ).

All the classical Banach spaces of sequences and functions hasthe AP.Enflo (1973): L(`2, `2) does not have the AP.

J. M. Delgado The p-approximation property

Page 15: UV · Introduction Density of finite rank operators and the p-approximation property A trace characterization of the p-approximation property Open problems The approximation property

IntroductionDensity of finite rank operators and the p-approximation property

A trace characterization of the p-approximation propertyOpen problems

Approximation property in terms of tensor products

J1Y ∗⊗̂πX −→ N1(Y ,X )∑n y∗n ⊗ xn 7→

∑n〈y∗n , ·〉xn∑

n ‖y∗n ‖‖xn‖ < ∞

Theorem [Grothendieck, 1955]

X a Banach space. The following statements are equivalent:1 X has the AP.2 For every Banach space Y , F(Y ,X )

‖·‖= K(Y ,X ).

3 For every Banach space Y , Y ∗⊗̂πX ' N1(Y ,X ).

J. M. Delgado The p-approximation property

Page 16: UV · Introduction Density of finite rank operators and the p-approximation property A trace characterization of the p-approximation property Open problems The approximation property

IntroductionDensity of finite rank operators and the p-approximation property

A trace characterization of the p-approximation propertyOpen problems

Approximation property in terms of tensor products

J1Y ∗⊗̂πX −→ N1(Y ,X )∑n y∗n ⊗ xn 7→

∑n〈y∗n , ·〉xn∑

n ‖y∗n ‖‖xn‖ < ∞

Theorem [Grothendieck, 1955]

X a Banach space. The following statements are equivalent:1 X has the AP.2 For every Banach space Y , F(Y ,X )

‖·‖= K(Y ,X ).

3 For every Banach space Y , Y ∗⊗̂πX ' N1(Y ,X ).

J. M. Delgado The p-approximation property

Page 17: UV · Introduction Density of finite rank operators and the p-approximation property A trace characterization of the p-approximation property Open problems The approximation property

IntroductionDensity of finite rank operators and the p-approximation property

A trace characterization of the p-approximation propertyOpen problems

Approximation property of order p via tensor products

Chevet–Saphar’s tensor norm: p ∈ [1,∞)

gp(u) = inf

{‖(y∗n )‖p‖(xn)‖`w

p′ (X) : u =m∑

n=1

y∗n ⊗ xn ∈ Y ∗ ⊗ X

}

JpY ∗⊗̂gp X −→ Np(Y ,X )∑

n y∗n ⊗ xn 7→∑

n〈y∗n , ·〉xn

Saphar (1970’s): p ∈ [1,∞]X has the approximation property of order p (APp) if, for everyBanach space Y , Y ∗⊗̂gp X ' Np(Y ,X ).Reinov (1980’s): p ∈ (0,1]X hast approximation property of order p (APp) if, for everyBanach space Y , the restriction of J1 to Hp is injective, whereHp = {u =

∑n y∗n ⊗ xn :

∑n(‖y∗n ‖‖xn‖)p <∞} ⊂ Y ∗⊗̂πX .

AP1 = AP

J. M. Delgado The p-approximation property

Page 18: UV · Introduction Density of finite rank operators and the p-approximation property A trace characterization of the p-approximation property Open problems The approximation property

IntroductionDensity of finite rank operators and the p-approximation property

A trace characterization of the p-approximation propertyOpen problems

Approximation property of order p via tensor products

Chevet–Saphar’s tensor norm: p ∈ [1,∞)

gp(u) = inf

{‖(y∗n )‖p‖(xn)‖`w

p′ (X) : u =m∑

n=1

y∗n ⊗ xn ∈ Y ∗ ⊗ X

}Jp

Y ∗⊗̂gp X −→ Np(Y ,X )∑n y∗n ⊗ xn 7→

∑n〈y∗n , ·〉xn

Saphar (1970’s): p ∈ [1,∞]X has the approximation property of order p (APp) if, for everyBanach space Y , Y ∗⊗̂gp X ' Np(Y ,X ).Reinov (1980’s): p ∈ (0,1]X hast approximation property of order p (APp) if, for everyBanach space Y , the restriction of J1 to Hp is injective, whereHp = {u =

∑n y∗n ⊗ xn :

∑n(‖y∗n ‖‖xn‖)p <∞} ⊂ Y ∗⊗̂πX .

AP1 = AP

J. M. Delgado The p-approximation property

Page 19: UV · Introduction Density of finite rank operators and the p-approximation property A trace characterization of the p-approximation property Open problems The approximation property

IntroductionDensity of finite rank operators and the p-approximation property

A trace characterization of the p-approximation propertyOpen problems

Approximation property of order p via tensor products

Chevet–Saphar’s tensor norm: p ∈ [1,∞)

gp(u) = inf

{‖(y∗n )‖p‖(xn)‖`w

p′ (X) : u =m∑

n=1

y∗n ⊗ xn ∈ Y ∗ ⊗ X

}Jp

Y ∗⊗̂gp X −→ Np(Y ,X )∑n y∗n ⊗ xn 7→

∑n〈y∗n , ·〉xn

Saphar (1970’s): p ∈ [1,∞]X has the approximation property of order p (APp) if, for everyBanach space Y , Y ∗⊗̂gp X ' Np(Y ,X ).

Reinov (1980’s): p ∈ (0,1]X hast approximation property of order p (APp) if, for everyBanach space Y , the restriction of J1 to Hp is injective, whereHp = {u =

∑n y∗n ⊗ xn :

∑n(‖y∗n ‖‖xn‖)p <∞} ⊂ Y ∗⊗̂πX .

AP1 = AP

J. M. Delgado The p-approximation property

Page 20: UV · Introduction Density of finite rank operators and the p-approximation property A trace characterization of the p-approximation property Open problems The approximation property

IntroductionDensity of finite rank operators and the p-approximation property

A trace characterization of the p-approximation propertyOpen problems

Approximation property of order p via tensor products

Chevet–Saphar’s tensor norm: p ∈ [1,∞)

gp(u) = inf

{‖(y∗n )‖p‖(xn)‖`w

p′ (X) : u =m∑

n=1

y∗n ⊗ xn ∈ Y ∗ ⊗ X

}Jp

Y ∗⊗̂gp X −→ Np(Y ,X )∑n y∗n ⊗ xn 7→

∑n〈y∗n , ·〉xn

Saphar (1970’s): p ∈ [1,∞]X has the approximation property of order p (APp) if, for everyBanach space Y , Y ∗⊗̂gp X ' Np(Y ,X ).Reinov (1980’s): p ∈ (0,1]X hast approximation property of order p (APp) if, for everyBanach space Y , the restriction of J1 to Hp is injective, whereHp = {u =

∑n y∗n ⊗ xn :

∑n(‖y∗n ‖‖xn‖)p <∞} ⊂ Y ∗⊗̂πX .

AP1 = AP

J. M. Delgado The p-approximation property

Page 21: UV · Introduction Density of finite rank operators and the p-approximation property A trace characterization of the p-approximation property Open problems The approximation property

IntroductionDensity of finite rank operators and the p-approximation property

A trace characterization of the p-approximation propertyOpen problems

Approximation property of order p via tensor products

Chevet–Saphar’s tensor norm: p ∈ [1,∞)

gp(u) = inf

{‖(y∗n )‖p‖(xn)‖`w

p′ (X) : u =m∑

n=1

y∗n ⊗ xn ∈ Y ∗ ⊗ X

}Jp

Y ∗⊗̂gp X −→ Np(Y ,X )∑n y∗n ⊗ xn 7→

∑n〈y∗n , ·〉xn

Saphar (1970’s): p ∈ [1,∞]X has the approximation property of order p (APp) if, for everyBanach space Y , Y ∗⊗̂gp X ' Np(Y ,X ).Reinov (1980’s): p ∈ (0,1]X hast approximation property of order p (APp) if, for everyBanach space Y , the restriction of J1 to Hp is injective, whereHp = {u =

∑n y∗n ⊗ xn :

∑n(‖y∗n ‖‖xn‖)p <∞} ⊂ Y ∗⊗̂πX .

AP1 = AP

J. M. Delgado The p-approximation property

Page 22: UV · Introduction Density of finite rank operators and the p-approximation property A trace characterization of the p-approximation property Open problems The approximation property

IntroductionDensity of finite rank operators and the p-approximation property

A trace characterization of the p-approximation propertyOpen problems

Approximation property of order p via tensor products

Theorem [Grothendieck, 1955]

X a Banach space.The following statements are equivalent:

1 X has the AP (≡ IX can be approximated by finite rank operatorsuniformly on compact subsets K ⊂ X ).

2 For every Banach space Y , Y ∗⊗̂πX ' N1(Y , X ).

A set K ⊂ X is relatively compact if and only if there exists(xn) ∈ c0(X ) such that K ⊂ aco (xn) := {

∑n anxn : (an) ∈ B`1}.

Theorem [Bourgain and Reinov, 1984-85]

A Banach space X has the APp (p ∈ (0,1)) if and only if IX can beapproximated by finite rank operators uniformly on subsets K ⊂ X forwhich there exists (xn) ∈ `q(X ) such that K ⊂ {

∑n anxn : (an) ∈ B`1}

(p−1 − q−1 = 1).

J. M. Delgado The p-approximation property

Page 23: UV · Introduction Density of finite rank operators and the p-approximation property A trace characterization of the p-approximation property Open problems The approximation property

IntroductionDensity of finite rank operators and the p-approximation property

A trace characterization of the p-approximation propertyOpen problems

Approximation property of order p via tensor products

Theorem [Grothendieck, 1955]

X a Banach space.The following statements are equivalent:

1 X has the AP (≡ IX can be approximated by finite rank operatorsuniformly on compact subsets K ⊂ X ).

2 For every Banach space Y , Y ∗⊗̂πX ' N1(Y , X ).

A set K ⊂ X is relatively compact if and only if there exists(xn) ∈ c0(X ) such that K ⊂ aco (xn) := {

∑n anxn : (an) ∈ B`1}.

Theorem [Bourgain and Reinov, 1984-85]

A Banach space X has the APp (p ∈ (0,1)) if and only if IX can beapproximated by finite rank operators uniformly on subsets K ⊂ X forwhich there exists (xn) ∈ `q(X ) such that K ⊂ {

∑n anxn : (an) ∈ B`1}

(p−1 − q−1 = 1).

J. M. Delgado The p-approximation property

Page 24: UV · Introduction Density of finite rank operators and the p-approximation property A trace characterization of the p-approximation property Open problems The approximation property

IntroductionDensity of finite rank operators and the p-approximation property

A trace characterization of the p-approximation propertyOpen problems

Approximation property of order p via tensor products

Theorem [Grothendieck, 1955]

X a Banach space.The following statements are equivalent:

1 X has the AP (≡ IX can be approximated by finite rank operatorsuniformly on compact subsets K ⊂ X ).

2 For every Banach space Y , Y ∗⊗̂πX ' N1(Y , X ).

A set K ⊂ X is relatively compact if and only if there exists(xn) ∈ c0(X ) such that K ⊂ aco (xn) := {

∑n anxn : (an) ∈ B`1}.

Theorem [Bourgain and Reinov, 1984-85]

A Banach space X has the APp (p ∈ (0,1)) if and only if IX can beapproximated by finite rank operators uniformly on subsets K ⊂ X forwhich there exists (xn) ∈ `q(X ) such that K ⊂ {

∑n anxn : (an) ∈ B`1}

(p−1 − q−1 = 1).

J. M. Delgado The p-approximation property

Page 25: UV · Introduction Density of finite rank operators and the p-approximation property A trace characterization of the p-approximation property Open problems The approximation property

IntroductionDensity of finite rank operators and the p-approximation property

A trace characterization of the p-approximation propertyOpen problems

p-compact sets and the p-approximation property

Definition [Sinha and Karn, 2002]

Let p ≥ 1.K ⊂ X is relatively p-compact if there exists (xn) ∈ `p(X ) suchthat K ⊂ p-co (xn) :=

{∑n anxn : (an) ∈ B`p′

}.

A Banach space X has the p-approximation property (p-AP) ifthe identity map IX can be approximated by finite rank operatorsuniformly on every p-compact subset of X .

∞-AP=AP.All Banach spaces have the p-AP for all p ∈ [1,2].For every p > 2, there exist Banach spaces without the p-AP.A necessary condition in terms of the trace is obtained forBanach spaces having the p-AP.

J. M. Delgado The p-approximation property

Page 26: UV · Introduction Density of finite rank operators and the p-approximation property A trace characterization of the p-approximation property Open problems The approximation property

IntroductionDensity of finite rank operators and the p-approximation property

A trace characterization of the p-approximation propertyOpen problems

p-compact sets and the p-approximation property

Definition [Sinha and Karn, 2002]

Let p ≥ 1.K ⊂ X is relatively p-compact if there exists (xn) ∈ `p(X ) suchthat K ⊂ p-co (xn) :=

{∑n anxn : (an) ∈ B`p′

}.

A Banach space X has the p-approximation property (p-AP) ifthe identity map IX can be approximated by finite rank operatorsuniformly on every p-compact subset of X .

∞-AP=AP.All Banach spaces have the p-AP for all p ∈ [1,2].For every p > 2, there exist Banach spaces without the p-AP.A necessary condition in terms of the trace is obtained forBanach spaces having the p-AP.

J. M. Delgado The p-approximation property

Page 27: UV · Introduction Density of finite rank operators and the p-approximation property A trace characterization of the p-approximation property Open problems The approximation property

IntroductionDensity of finite rank operators and the p-approximation property

A trace characterization of the p-approximation propertyOpen problems

p-compact sets and the p-approximation property

Definition [Sinha and Karn, 2002]

Let p ≥ 1.K ⊂ X is relatively p-compact if there exists (xn) ∈ `p(X ) suchthat K ⊂ p-co (xn) :=

{∑n anxn : (an) ∈ B`p′

}.

A Banach space X has the p-approximation property (p-AP) ifthe identity map IX can be approximated by finite rank operatorsuniformly on every p-compact subset of X .

∞-AP=AP.

All Banach spaces have the p-AP for all p ∈ [1,2].For every p > 2, there exist Banach spaces without the p-AP.A necessary condition in terms of the trace is obtained forBanach spaces having the p-AP.

J. M. Delgado The p-approximation property

Page 28: UV · Introduction Density of finite rank operators and the p-approximation property A trace characterization of the p-approximation property Open problems The approximation property

IntroductionDensity of finite rank operators and the p-approximation property

A trace characterization of the p-approximation propertyOpen problems

p-compact sets and the p-approximation property

Definition [Sinha and Karn, 2002]

Let p ≥ 1.K ⊂ X is relatively p-compact if there exists (xn) ∈ `p(X ) suchthat K ⊂ p-co (xn) :=

{∑n anxn : (an) ∈ B`p′

}.

A Banach space X has the p-approximation property (p-AP) ifthe identity map IX can be approximated by finite rank operatorsuniformly on every p-compact subset of X .

∞-AP=AP.All Banach spaces have the p-AP for all p ∈ [1,2].For every p > 2, there exist Banach spaces without the p-AP.A necessary condition in terms of the trace is obtained forBanach spaces having the p-AP.

J. M. Delgado The p-approximation property

Page 29: UV · Introduction Density of finite rank operators and the p-approximation property A trace characterization of the p-approximation property Open problems The approximation property

IntroductionDensity of finite rank operators and the p-approximation property

A trace characterization of the p-approximation propertyOpen problems

Outline

1 Introduction

2 Density of finite rank operators and the p-approximation property

3 A trace characterization of the p-approximation property

4 Open problems

J. M. Delgado The p-approximation property

Page 30: UV · Introduction Density of finite rank operators and the p-approximation property A trace characterization of the p-approximation property Open problems The approximation property

IntroductionDensity of finite rank operators and the p-approximation property

A trace characterization of the p-approximation propertyOpen problems

The ideal Kp of p-compact operators

Let p ≥ 1 and 1/p + 1/p′ = 1.

Definition [Sinha and Karn, 2002]

K ⊂ X is relatively p-compact if there exists (xn) ∈ `p(X ) suchthat K ⊂ p-co (xn) :=

{∑n anxn : (an) ∈ B`p′

}.

T ∈ L(X ,Y ) is p-compact if T (BX ) is relatively p-compact.

Kp(X ,Y ) = {T ∈ L(X ,Y ) : T is p-compact}

– If 1 ≤ p ≤ q ≤ ∞, Kp(X ,Y ) ⊂ Kq(X ,Y ).– Kp is an operator ideal.

J. M. Delgado The p-approximation property

Page 31: UV · Introduction Density of finite rank operators and the p-approximation property A trace characterization of the p-approximation property Open problems The approximation property

IntroductionDensity of finite rank operators and the p-approximation property

A trace characterization of the p-approximation propertyOpen problems

The ideal Kp of p-compact operators

Let p ≥ 1 and 1/p + 1/p′ = 1.

Definition [Sinha and Karn, 2002]

K ⊂ X is relatively p-compact if there exists (xn) ∈ `p(X ) suchthat K ⊂ p-co (xn) :=

{∑n anxn : (an) ∈ B`p′

}.

T ∈ L(X ,Y ) is p-compact if T (BX ) is relatively p-compact.

Kp(X ,Y ) = {T ∈ L(X ,Y ) : T is p-compact}

– If 1 ≤ p ≤ q ≤ ∞, Kp(X ,Y ) ⊂ Kq(X ,Y ).– Kp is an operator ideal.

J. M. Delgado The p-approximation property

Page 32: UV · Introduction Density of finite rank operators and the p-approximation property A trace characterization of the p-approximation property Open problems The approximation property

IntroductionDensity of finite rank operators and the p-approximation property

A trace characterization of the p-approximation propertyOpen problems

p-approximation property and p-compact operators

– Πdp (Y ,X ) = {T ∈ L(Y ,X ) : T ∗ is p-summing}

T ∈ Πdp (Y ,X ) ⇔ T maps relatively compact sets in Y to

relatively p-compact sets in X .

Theorem [Oja, Piñeiro, Serrano and Delgado, 2009]

X a Banach space, p ∈ [1,+∞]. The following statements areequivalent:

1 X has the p-AP.2 For every Banach Y , F(Y ,X ) is ‖ · ‖-dense in Kp(Y ,X ).3 For every Banach Y , F(Y ,X ) is τc-dense in Kp(Y ,X ).

4 For every Banach Y , F(Y ,X ) is τc-dense in Πdp (Y ,X ).

J. M. Delgado The p-approximation property

Page 33: UV · Introduction Density of finite rank operators and the p-approximation property A trace characterization of the p-approximation property Open problems The approximation property

IntroductionDensity of finite rank operators and the p-approximation property

A trace characterization of the p-approximation propertyOpen problems

p-approximation property and p-compact operators

– Πdp (Y ,X ) = {T ∈ L(Y ,X ) : T ∗ is p-summing}

T ∈ Πdp (Y ,X ) ⇔ T maps relatively compact sets in Y to

relatively p-compact sets in X .

Theorem [Oja, Piñeiro, Serrano and Delgado, 2009]

X a Banach space, p ∈ [1,+∞]. The following statements areequivalent:

1 X has the p-AP.2 For every Banach Y , F(Y ,X ) is ‖ · ‖-dense in Kp(Y ,X ).3 For every Banach Y , F(Y ,X ) is τc-dense in Kp(Y ,X ).

4 For every Banach Y , F(Y ,X ) is τc-dense in Πdp (Y ,X ).

J. M. Delgado The p-approximation property

Page 34: UV · Introduction Density of finite rank operators and the p-approximation property A trace characterization of the p-approximation property Open problems The approximation property

IntroductionDensity of finite rank operators and the p-approximation property

A trace characterization of the p-approximation propertyOpen problems

p-approximation property and p-compact operators

– Πdp (Y ,X ) = {T ∈ L(Y ,X ) : T ∗ is p-summing}

T ∈ Πdp (Y ,X ) ⇔ T maps relatively compact sets in Y to

relatively p-compact sets in X .

Theorem [Oja, Piñeiro, Serrano and Delgado, 2009]

X a Banach space, p ∈ [1,+∞]. The following statements areequivalent:

1 X has the p-AP.2 For every Banach Y , F(Y ,X ) is ‖ · ‖-dense in Kp(Y ,X ).3 For every Banach Y , F(Y ,X ) is τc-dense in Kp(Y ,X ).4 For every Banach Y , F(Y ,X ) is τc-dense in Πd

p (Y ,X ).

J. M. Delgado The p-approximation property

Page 35: UV · Introduction Density of finite rank operators and the p-approximation property A trace characterization of the p-approximation property Open problems The approximation property

IntroductionDensity of finite rank operators and the p-approximation property

A trace characterization of the p-approximation propertyOpen problems

p-approximation property and p-compact operators

1 X has the p-AP.3 For every Banach Y , F(Y ,X ) is τc-dense in Kp(Y ,X ).

3⇒1

ε > 0K = p-co(xn), (xn) ∈ `p(X )

⇒ ∃(αn) ↘ 0 : (zn) := (α−1n xn) ∈ `p(X )

`p′φx−→ X

Dα↓ ↑φ̂z

`p′Q−→ Y := `p′/Ker φz

φx(en) = xn

φz(en) = zn

Dα(βn) = (αnβn)

φ̂z[(βn)] = φz(βn)

H := Q ◦ Dα(B`p′ )

compact in Y

S =∑N

k=1 ψk ⊗ uk ∈ F(Y ,X ) : suph∈H ‖Sh − φ̂zh‖ < ε

φ̂z injective ⇒ ∃u∗k ∈ X ∗ : suph∈H

∣∣∣〈φ̂∗zu∗k − ψk ,h〉∣∣∣ < ε, k = 1, . . . ,N

J. M. Delgado The p-approximation property

Page 36: UV · Introduction Density of finite rank operators and the p-approximation property A trace characterization of the p-approximation property Open problems The approximation property

IntroductionDensity of finite rank operators and the p-approximation property

A trace characterization of the p-approximation propertyOpen problems

p-approximation property and p-compact operators

1 X has the p-AP.3 For every Banach Y , F(Y ,X ) is τc-dense in Kp(Y ,X ).

3⇒1ε > 0K = p-co(xn), (xn) ∈ `p(X )

⇒ ∃(αn) ↘ 0 : (zn) := (α−1n xn) ∈ `p(X )

`p′φx−→ X

Dα↓ ↑φ̂z

`p′Q−→ Y := `p′/Ker φz

φx(en) = xn

φz(en) = zn

Dα(βn) = (αnβn)

φ̂z[(βn)] = φz(βn)

H := Q ◦ Dα(B`p′ )

compact in Y

S =∑N

k=1 ψk ⊗ uk ∈ F(Y ,X ) : suph∈H ‖Sh − φ̂zh‖ < ε

φ̂z injective ⇒ ∃u∗k ∈ X ∗ : suph∈H

∣∣∣〈φ̂∗zu∗k − ψk ,h〉∣∣∣ < ε, k = 1, . . . ,N

R =∑N

k=1 u∗k ⊗ uk

R ∈ F(X ,X ) satisfying supx∈K ‖Rx − x‖ < ε

J. M. Delgado The p-approximation property

Page 37: UV · Introduction Density of finite rank operators and the p-approximation property A trace characterization of the p-approximation property Open problems The approximation property

IntroductionDensity of finite rank operators and the p-approximation property

A trace characterization of the p-approximation propertyOpen problems

p-approximation property and p-compact operators

1 X has the p-AP.3 For every Banach Y , F(Y ,X ) is τc-dense in Kp(Y ,X ).

3⇒1ε > 0K = p-co(xn), (xn) ∈ `p(X )

⇒ ∃(αn) ↘ 0 : (zn) := (α−1n xn) ∈ `p(X )

`p′φx−→ X

Dα↓ ↑φ̂z

`p′Q−→ Y := `p′/Ker φz

φx(en) = xn

φz(en) = zn

Dα(βn) = (αnβn)

φ̂z[(βn)] = φz(βn)

H := Q ◦ Dα(B`p′ )

compact in Y

S =∑N

k=1 ψk ⊗ uk ∈ F(Y ,X ) : suph∈H ‖Sh − φ̂zh‖ < ε

φ̂z injective ⇒ ∃u∗k ∈ X ∗ : suph∈H

∣∣∣〈φ̂∗zu∗k − ψk ,h〉∣∣∣ < ε, k = 1, . . . ,N

R =∑N

k=1 u∗k ⊗ uk

R ∈ F(X ,X ) satisfying supx∈K ‖Rx − x‖ < ε

J. M. Delgado The p-approximation property

Page 38: UV · Introduction Density of finite rank operators and the p-approximation property A trace characterization of the p-approximation property Open problems The approximation property

IntroductionDensity of finite rank operators and the p-approximation property

A trace characterization of the p-approximation propertyOpen problems

p-approximation property and p-compact operators

1 X has the p-AP.3 For every Banach Y , F(Y ,X ) is τc-dense in Kp(Y ,X ).

3⇒1ε > 0K = p-co(xn), (xn) ∈ `p(X ) ⇒ ∃(αn) ↘ 0 : (zn) := (α−1

n xn) ∈ `p(X )

`p′φx−→ X

Dα↓ ↑φ̂z

`p′Q−→ Y := `p′/Ker φz

φx(en) = xn

φz(en) = zn

Dα(βn) = (αnβn)

φ̂z[(βn)] = φz(βn)

H := Q ◦ Dα(B`p′ )

compact in Y

S =∑N

k=1 ψk ⊗ uk ∈ F(Y ,X ) : suph∈H ‖Sh − φ̂zh‖ < ε

φ̂z injective ⇒ ∃u∗k ∈ X ∗ : suph∈H

∣∣∣〈φ̂∗zu∗k − ψk ,h〉∣∣∣ < ε, k = 1, . . . ,N

R =∑N

k=1 u∗k ⊗ uk

R ∈ F(X ,X ) satisfying supx∈K ‖Rx − x‖ < ε

J. M. Delgado The p-approximation property

Page 39: UV · Introduction Density of finite rank operators and the p-approximation property A trace characterization of the p-approximation property Open problems The approximation property

IntroductionDensity of finite rank operators and the p-approximation property

A trace characterization of the p-approximation propertyOpen problems

p-approximation property and p-compact operators

1 X has the p-AP.3 For every Banach Y , F(Y ,X ) is τc-dense in Kp(Y ,X ).

3⇒1ε > 0K = p-co(xn), (xn) ∈ `p(X ) ⇒ ∃(αn) ↘ 0 : (zn) := (α−1

n xn) ∈ `p(X )

`p′φx−→ X

Dα↓ φz↗

↑φ̂z

`p′

Q−→ Y := `p′/Ker φz

φx(en) = xn

φz(en) = zn

Dα(βn) = (αnβn)

φ̂z[(βn)] = φz(βn)

H := Q ◦ Dα(B`p′ )

compact in Y

S =∑N

k=1 ψk ⊗ uk ∈ F(Y ,X ) : suph∈H ‖Sh − φ̂zh‖ < ε

φ̂z injective ⇒ ∃u∗k ∈ X ∗ : suph∈H

∣∣∣〈φ̂∗zu∗k − ψk ,h〉∣∣∣ < ε, k = 1, . . . ,N

R =∑N

k=1 u∗k ⊗ uk

R ∈ F(X ,X ) satisfying supx∈K ‖Rx − x‖ < ε

J. M. Delgado The p-approximation property

Page 40: UV · Introduction Density of finite rank operators and the p-approximation property A trace characterization of the p-approximation property Open problems The approximation property

IntroductionDensity of finite rank operators and the p-approximation property

A trace characterization of the p-approximation propertyOpen problems

p-approximation property and p-compact operators

1 X has the p-AP.3 For every Banach Y , F(Y ,X ) is τc-dense in Kp(Y ,X ).

3⇒1ε > 0K = p-co(xn), (xn) ∈ `p(X ) ⇒ ∃(αn) ↘ 0 : (zn) := (α−1

n xn) ∈ `p(X )

`p′φx−→ X

Dα↓ φz↗ ↑φ̂z

`p′Q−→ Y := `p′/Ker φz

φx(en) = xn

φz(en) = zn

Dα(βn) = (αnβn)

φ̂z[(βn)] = φz(βn)

H := Q ◦ Dα(B`p′ )

compact in Y

S =∑N

k=1 ψk ⊗ uk ∈ F(Y ,X ) : suph∈H ‖Sh − φ̂zh‖ < ε

φ̂z injective ⇒ ∃u∗k ∈ X ∗ : suph∈H

∣∣∣〈φ̂∗zu∗k − ψk ,h〉∣∣∣ < ε, k = 1, . . . ,N

R =∑N

k=1 u∗k ⊗ uk

R ∈ F(X ,X ) satisfying supx∈K ‖Rx − x‖ < ε

J. M. Delgado The p-approximation property

Page 41: UV · Introduction Density of finite rank operators and the p-approximation property A trace characterization of the p-approximation property Open problems The approximation property

IntroductionDensity of finite rank operators and the p-approximation property

A trace characterization of the p-approximation propertyOpen problems

p-approximation property and p-compact operators

1 X has the p-AP.3 For every Banach Y , F(Y ,X ) is τc-dense in Kp(Y ,X ).

3⇒1ε > 0K = p-co(xn), (xn) ∈ `p(X ) ⇒ ∃(αn) ↘ 0 : (zn) := (α−1

n xn) ∈ `p(X )

`p′φx−→ X

Dα↓ φz↗ ↑φ̂z

`p′Q−→ Y := `p′/Ker φz

φx(en) = xn

φz(en) = zn

Dα(βn) = (αnβn)

φ̂z[(βn)] = φz(βn)

H := Q ◦ Dα(B`p′ )

compact in Y

S =∑N

k=1 ψk ⊗ uk ∈ F(Y ,X ) : suph∈H ‖Sh − φ̂zh‖ < ε

φ̂z injective ⇒ ∃u∗k ∈ X ∗ : suph∈H

∣∣∣〈φ̂∗zu∗k − ψk ,h〉∣∣∣ < ε, k = 1, . . . ,N

R =∑N

k=1 u∗k ⊗ uk

R ∈ F(X ,X ) satisfying supx∈K ‖Rx − x‖ < ε

J. M. Delgado The p-approximation property

Page 42: UV · Introduction Density of finite rank operators and the p-approximation property A trace characterization of the p-approximation property Open problems The approximation property

IntroductionDensity of finite rank operators and the p-approximation property

A trace characterization of the p-approximation propertyOpen problems

p-approximation property and p-compact operators

1 X has the p-AP.3 For every Banach Y , F(Y ,X ) is τc-dense in Kp(Y ,X ).

3⇒1ε > 0K = p-co(xn), (xn) ∈ `p(X ) ⇒ ∃(αn) ↘ 0 : (zn) := (α−1

n xn) ∈ `p(X )

`p′φx−→ X

Dα↓ φz↗ ↑φ̂z

`p′Q−→ Y := `p′/Ker φz

φx(en) = xn

φz(en) = zn

Dα(βn) = (αnβn)

φ̂z[(βn)] = φz(βn)

H := Q ◦ Dα(B`p′ )

compact in Y

S =∑N

k=1 ψk ⊗ uk ∈ F(Y ,X ) : suph∈H ‖Sh − φ̂zh‖ < ε

φ̂z injective ⇒ ∃u∗k ∈ X ∗ : suph∈H

∣∣∣〈φ̂∗zu∗k − ψk ,h〉∣∣∣ < ε, k = 1, . . . ,N

R =∑N

k=1 u∗k ⊗ uk

R ∈ F(X ,X ) satisfying supx∈K ‖Rx − x‖ < ε

J. M. Delgado The p-approximation property

Page 43: UV · Introduction Density of finite rank operators and the p-approximation property A trace characterization of the p-approximation property Open problems The approximation property

IntroductionDensity of finite rank operators and the p-approximation property

A trace characterization of the p-approximation propertyOpen problems

p-approximation property and p-compact operators

1 X has the p-AP.3 For every Banach Y , F(Y ,X ) is τc-dense in Kp(Y ,X ).

3⇒1ε > 0K = p-co(xn), (xn) ∈ `p(X ) ⇒ ∃(αn) ↘ 0 : (zn) := (α−1

n xn) ∈ `p(X )

`p′φx−→ X

Dα↓ φz↗ ↑φ̂z

`p′Q−→ Y := `p′/Ker φz

φx(en) = xn

φz(en) = zn

Dα(βn) = (αnβn)

φ̂z[(βn)] = φz(βn)

H := Q ◦ Dα(B`p′ )

compact in Y

S =∑N

k=1 ψk ⊗ uk ∈ F(Y ,X ) : suph∈H ‖Sh − φ̂zh‖ < ε

φ̂z injective ⇒ ∃u∗k ∈ X ∗ : suph∈H

∣∣∣〈φ̂∗zu∗k − ψk ,h〉∣∣∣ < ε, k = 1, . . . ,N

R =∑N

k=1 u∗k ⊗ uk

R ∈ F(X ,X ) satisfying supx∈K ‖Rx − x‖ < ε

J. M. Delgado The p-approximation property

Page 44: UV · Introduction Density of finite rank operators and the p-approximation property A trace characterization of the p-approximation property Open problems The approximation property

IntroductionDensity of finite rank operators and the p-approximation property

A trace characterization of the p-approximation propertyOpen problems

p-approximation property and p-compact operators

1 X has the p-AP.3 For every Banach Y , F(Y ,X ) is τc-dense in Kp(Y ,X ).

3⇒1ε > 0K = p-co(xn), (xn) ∈ `p(X ) ⇒ ∃(αn) ↘ 0 : (zn) := (α−1

n xn) ∈ `p(X )

`p′φx−→ X

Dα↓ φz↗ ↑φ̂z

`p′Q−→ Y := `p′/Ker φz

φx(en) = xn

φz(en) = zn

Dα(βn) = (αnβn)

φ̂z[(βn)] = φz(βn)

H := Q ◦ Dα(B`p′ )

compact in Y

S =∑N

k=1 ψk ⊗ uk ∈ F(Y ,X ) : suph∈H ‖Sh − φ̂zh‖ < ε

φ̂z injective ⇒ ∃u∗k ∈ X ∗ : suph∈H

∣∣∣〈φ̂∗zu∗k − ψk ,h〉∣∣∣ < ε, k = 1, . . . ,N

R =∑N

k=1 u∗k ⊗ uk

R ∈ F(X ,X ) satisfying supx∈K ‖Rx − x‖ < ε

J. M. Delgado The p-approximation property

Page 45: UV · Introduction Density of finite rank operators and the p-approximation property A trace characterization of the p-approximation property Open problems The approximation property

IntroductionDensity of finite rank operators and the p-approximation property

A trace characterization of the p-approximation propertyOpen problems

p-approximation property for dual Banach spaces

Theorem [Grothendieck, 1955]

X a Banach space. The following statements are equivalent:

1 X ∗ has the AP, i.e., for every Banach Y , F(Y ,X ∗)‖·‖

= K(Y ,X ∗).

2 For every Banach Y , F(X ,Y )‖·‖

= K(X ,Y ).

T ∈ QNp(X ,Y )(T quasi p-nuclear)

⇔There exists (x∗n ) ∈ `p(X ∗) such that‖Tx‖ ≤ (

∑n |〈x∗n , x〉|p)

1/p, ∀x ∈ X .

T ∈ Kp(X ,Y ) ⇔ T ∗ ∈ QNp(Y ∗,X ∗).T ∈ QNp(X ,Y ) ⇔ T ∗ ∈ Kp(Y ∗,X ∗).

Theorem [Oja, Piñeiro, Serrano and Delgado, 2009]

X a Banach space. The following statements are equivalent:1 X ∗ has the p-AP.2 For every Banach Y , F(X ,Y ) is ‖ · ‖-dense in QNp(X ,Y ).

J. M. Delgado The p-approximation property

Page 46: UV · Introduction Density of finite rank operators and the p-approximation property A trace characterization of the p-approximation property Open problems The approximation property

IntroductionDensity of finite rank operators and the p-approximation property

A trace characterization of the p-approximation propertyOpen problems

p-approximation property for dual Banach spaces

Theorem [Grothendieck, 1955]

X a Banach space. The following statements are equivalent:

1 X ∗ has the AP, i.e., for every Banach Y , F(Y ,X ∗)‖·‖

= K(Y ,X ∗).

2 For every Banach Y , F(X ,Y )‖·‖

= K(X ,Y ).

T ∈ QNp(X ,Y )(T quasi p-nuclear)

⇔There exists (x∗n ) ∈ `p(X ∗) such that‖Tx‖ ≤ (

∑n |〈x∗n , x〉|p)

1/p, ∀x ∈ X .

T ∈ Kp(X ,Y ) ⇔ T ∗ ∈ QNp(Y ∗,X ∗).T ∈ QNp(X ,Y ) ⇔ T ∗ ∈ Kp(Y ∗,X ∗).

Theorem [Oja, Piñeiro, Serrano and Delgado, 2009]

X a Banach space. The following statements are equivalent:1 X ∗ has the p-AP.2 For every Banach Y , F(X ,Y ) is ‖ · ‖-dense in QNp(X ,Y ).

J. M. Delgado The p-approximation property

Page 47: UV · Introduction Density of finite rank operators and the p-approximation property A trace characterization of the p-approximation property Open problems The approximation property

IntroductionDensity of finite rank operators and the p-approximation property

A trace characterization of the p-approximation propertyOpen problems

p-approximation property for dual Banach spaces

Theorem [Grothendieck, 1955]

X a Banach space. The following statements are equivalent:

1 X ∗ has the AP, i.e., for every Banach Y , F(Y ,X ∗)‖·‖

= K(Y ,X ∗).

2 For every Banach Y , F(X ,Y )‖·‖

= K(X ,Y ).

T ∈ QNp(X ,Y )(T quasi p-nuclear)

⇔There exists (x∗n ) ∈ `p(X ∗) such that‖Tx‖ ≤ (

∑n |〈x∗n , x〉|p)

1/p, ∀x ∈ X .

T ∈ Kp(X ,Y ) ⇔ T ∗ ∈ QNp(Y ∗,X ∗).T ∈ QNp(X ,Y ) ⇔ T ∗ ∈ Kp(Y ∗,X ∗).

Theorem [Oja, Piñeiro, Serrano and Delgado, 2009]

X a Banach space. The following statements are equivalent:1 X ∗ has the p-AP.2 For every Banach Y , F(X ,Y ) is ‖ · ‖-dense in QNp(X ,Y ).

J. M. Delgado The p-approximation property

Page 48: UV · Introduction Density of finite rank operators and the p-approximation property A trace characterization of the p-approximation property Open problems The approximation property

IntroductionDensity of finite rank operators and the p-approximation property

A trace characterization of the p-approximation propertyOpen problems

p-approximation property for dual Banach spaces

Theorem [Grothendieck, 1955]

X a Banach space. The following statements are equivalent:

1 X ∗ has the AP, i.e., for every Banach Y , F(Y ,X ∗)‖·‖

= K(Y ,X ∗).

2 For every Banach Y , F(X ,Y )‖·‖

= K(X ,Y ).

T ∈ QNp(X ,Y )(T quasi p-nuclear)

⇔There exists (x∗n ) ∈ `p(X ∗) such that‖Tx‖ ≤ (

∑n |〈x∗n , x〉|p)

1/p, ∀x ∈ X .

T ∈ Kp(X ,Y ) ⇔ T ∗ ∈ QNp(Y ∗,X ∗).T ∈ QNp(X ,Y ) ⇔ T ∗ ∈ Kp(Y ∗,X ∗).

Theorem [Oja, Piñeiro, Serrano and Delgado, 2009]

X a Banach space. The following statements are equivalent:1 X ∗ has the p-AP.2 For every Banach Y , F(X ,Y ) is ‖ · ‖-dense in QNp(X ,Y ).

J. M. Delgado The p-approximation property

Page 49: UV · Introduction Density of finite rank operators and the p-approximation property A trace characterization of the p-approximation property Open problems The approximation property

IntroductionDensity of finite rank operators and the p-approximation property

A trace characterization of the p-approximation propertyOpen problems

Relation to Saphar’s approximation property APp

Theorem [Oja, Piñeiro, Serrano and Delgado, 2009]

X a Banach space. The following statements are equivalent:1 X ∗ has the p-AP.2 For every Banach Y , F(X ,Y ) is ‖ · ‖-dense in QNp(X ,Y ).

Saphar (1970-72):For every p 6= 2, there exist Banach spaces without APp.

X ∗∗ has the APp′ ⇒For every Banach Y ,

F(X ,Y ) is πp-dense in QNp(X ,Y ).

Bourgain and Reinov (1985):H∗∗∞ ,H∗∗∗∗

∞ , . . . have the APp, p ∈ (1,∞)

Corollary

X ∗∗ has the APp′ ⇒ X ∗ has the p-AP, p ∈ (1,∞)

H∗∞,H∗∗∗

∞ , . . . have the p-AP, p ∈ [1,∞)

J. M. Delgado The p-approximation property

Page 50: UV · Introduction Density of finite rank operators and the p-approximation property A trace characterization of the p-approximation property Open problems The approximation property

IntroductionDensity of finite rank operators and the p-approximation property

A trace characterization of the p-approximation propertyOpen problems

Relation to Saphar’s approximation property APp

Theorem [Oja, Piñeiro, Serrano and Delgado, 2009]

X a Banach space. The following statements are equivalent:1 X ∗ has the p-AP.2 For every Banach Y , F(X ,Y ) is ‖ · ‖-dense in QNp(X ,Y ).

Saphar (1970-72):For every p 6= 2, there exist Banach spaces without APp.

X ∗∗ has the APp′ ⇒For every Banach Y ,

F(X ,Y ) is πp-dense in QNp(X ,Y ).

Bourgain and Reinov (1985):H∗∗∞ ,H∗∗∗∗

∞ , . . . have the APp, p ∈ (1,∞)

Corollary

X ∗∗ has the APp′ ⇒ X ∗ has the p-AP, p ∈ (1,∞)

H∗∞,H∗∗∗

∞ , . . . have the p-AP, p ∈ [1,∞)

J. M. Delgado The p-approximation property

Page 51: UV · Introduction Density of finite rank operators and the p-approximation property A trace characterization of the p-approximation property Open problems The approximation property

IntroductionDensity of finite rank operators and the p-approximation property

A trace characterization of the p-approximation propertyOpen problems

Relation to Saphar’s approximation property APp

Theorem [Oja, Piñeiro, Serrano and Delgado, 2009]

X a Banach space. The following statements are equivalent:1 X ∗ has the p-AP.2 For every Banach Y , F(X ,Y ) is ‖ · ‖-dense in QNp(X ,Y ).

Saphar (1970-72):For every p 6= 2, there exist Banach spaces without APp.

X ∗∗ has the APp′ ⇒For every Banach Y ,

F(X ,Y ) is πp-dense in QNp(X ,Y ).

Bourgain and Reinov (1985):H∗∗∞ ,H∗∗∗∗

∞ , . . . have the APp, p ∈ (1,∞)

Corollary

X ∗∗ has the APp′ ⇒ X ∗ has the p-AP, p ∈ (1,∞)

H∗∞,H∗∗∗

∞ , . . . have the p-AP, p ∈ [1,∞)

J. M. Delgado The p-approximation property

Page 52: UV · Introduction Density of finite rank operators and the p-approximation property A trace characterization of the p-approximation property Open problems The approximation property

IntroductionDensity of finite rank operators and the p-approximation property

A trace characterization of the p-approximation propertyOpen problems

Relation to Saphar’s approximation property APp

Theorem [Oja, Piñeiro, Serrano and Delgado, 2009]

X a Banach space. The following statements are equivalent:1 X ∗ has the p-AP.2 For every Banach Y , F(X ,Y ) is ‖ · ‖-dense in QNp(X ,Y ).

Saphar (1970-72):For every p 6= 2, there exist Banach spaces without APp.

X ∗∗ has the APp′ ⇒For every Banach Y ,

F(X ,Y ) is πp-dense in QNp(X ,Y ).

Bourgain and Reinov (1985):H∗∗∞ ,H∗∗∗∗

∞ , . . . have the APp, p ∈ (1,∞)

Corollary

X ∗∗ has the APp′ ⇒ X ∗ has the p-AP, p ∈ (1,∞)

H∗∞,H∗∗∗

∞ , . . . have the p-AP, p ∈ [1,∞)

J. M. Delgado The p-approximation property

Page 53: UV · Introduction Density of finite rank operators and the p-approximation property A trace characterization of the p-approximation property Open problems The approximation property

IntroductionDensity of finite rank operators and the p-approximation property

A trace characterization of the p-approximation propertyOpen problems

Relation to Saphar’s approximation property APp

Theorem [Oja, Piñeiro, Serrano and Delgado, 2009]

X a Banach space. The following statements are equivalent:1 X ∗ has the p-AP.2 For every Banach Y , F(X ,Y ) is ‖ · ‖-dense in QNp(X ,Y ).

Saphar (1970-72):For every p 6= 2, there exist Banach spaces without APp.

X ∗∗ has the APp′ ⇒For every Banach Y ,

F(X ,Y ) is πp-dense in QNp(X ,Y ).Bourgain and Reinov (1985):

H∗∗∞ ,H∗∗∗∗

∞ , . . . have the APp, p ∈ (1,∞)

Corollary

X ∗∗ has the APp′ ⇒ X ∗ has the p-AP, p ∈ (1,∞)

H∗∞,H∗∗∗

∞ , . . . have the p-AP, p ∈ [1,∞)

J. M. Delgado The p-approximation property

Page 54: UV · Introduction Density of finite rank operators and the p-approximation property A trace characterization of the p-approximation property Open problems The approximation property

IntroductionDensity of finite rank operators and the p-approximation property

A trace characterization of the p-approximation propertyOpen problems

Relation to Saphar’s approximation property APp

Theorem [Oja, Piñeiro, Serrano and Delgado, 2009]

X a Banach space. The following statements are equivalent:1 X ∗ has the p-AP.2 For every Banach Y , F(X ,Y ) is ‖ · ‖-dense in QNp(X ,Y ).

Saphar (1970-72):For every p 6= 2, there exist Banach spaces without APp.

X ∗∗ has the APp′ ⇒For every Banach Y ,

F(X ,Y ) is πp-dense in QNp(X ,Y ).Bourgain and Reinov (1985):

H∗∗∞ ,H∗∗∗∗

∞ , . . . have the APp, p ∈ (1,∞)

Corollary

X ∗∗ has the APp′ ⇒ X ∗ has the p-AP, p ∈ (1,∞)

H∗∞,H∗∗∗

∞ , . . . have the p-AP, p ∈ [1,∞)

J. M. Delgado The p-approximation property

Page 55: UV · Introduction Density of finite rank operators and the p-approximation property A trace characterization of the p-approximation property Open problems The approximation property

IntroductionDensity of finite rank operators and the p-approximation property

A trace characterization of the p-approximation propertyOpen problems

Outline

1 Introduction

2 Density of finite rank operators and the p-approximation property

3 A trace characterization of the p-approximation property

4 Open problems

J. M. Delgado The p-approximation property

Page 56: UV · Introduction Density of finite rank operators and the p-approximation property A trace characterization of the p-approximation property Open problems The approximation property

IntroductionDensity of finite rank operators and the p-approximation property

A trace characterization of the p-approximation propertyOpen problems

The trace functional

– N1(X ,Y ) is a quotient of X ∗⊗̂πY ⇒ N1(X ,Y )∗ ↪→ L(Y ,X ∗∗).

– T =m∑

n=1

x∗n ⊗ x∗∗n ∈ F(X ,X ∗∗)

{trace(T ) :=

∑mn=1〈x∗∗n , x∗n 〉

|trace(T )| ≤∑m

n=1 ‖x∗∗n ‖‖x∗n ‖– Finite-nuclear norm of T ∈ F(X ,X ∗∗):

ν0(T ) := inf{∑m

n=1 ‖x∗∗n ‖‖x∗n ‖ : T =∑m

n=1 x∗n ⊗ x∗∗n }

Theorem [Grothendieck, 1955]

X a Banach space. The following statements are equivalent:1 X has the AP.2 If (xn) ⊂ X and (x∗n ) ⊂ X ∗ are such that

∑n ‖x∗n ‖‖xn‖ <∞ and∑

n〈x∗n , x〉xn = 0 for all x ∈ X , then∑

n〈x∗n , xn〉 = 0.

J. M. Delgado The p-approximation property

Page 57: UV · Introduction Density of finite rank operators and the p-approximation property A trace characterization of the p-approximation property Open problems The approximation property

IntroductionDensity of finite rank operators and the p-approximation property

A trace characterization of the p-approximation propertyOpen problems

The trace functional

– N1(X ,Y ) is a quotient of X ∗⊗̂πY ⇒ N1(X ,Y )∗ ↪→ L(Y ,X ∗∗).

– T =m∑

n=1

x∗n ⊗ x∗∗n ∈ F(X ,X ∗∗)

{trace(T ) :=

∑mn=1〈x∗∗n , x∗n 〉

|trace(T )| ≤∑m

n=1 ‖x∗∗n ‖‖x∗n ‖

– Finite-nuclear norm of T ∈ F(X ,X ∗∗):ν0(T ) := inf{

∑mn=1 ‖x∗∗n ‖‖x∗n ‖ : T =

∑mn=1 x∗n ⊗ x∗∗n }

Theorem [Grothendieck, 1955]

X a Banach space. The following statements are equivalent:1 X has the AP.2 If (xn) ⊂ X and (x∗n ) ⊂ X ∗ are such that

∑n ‖x∗n ‖‖xn‖ <∞ and∑

n〈x∗n , x〉xn = 0 for all x ∈ X , then∑

n〈x∗n , xn〉 = 0.

J. M. Delgado The p-approximation property

Page 58: UV · Introduction Density of finite rank operators and the p-approximation property A trace characterization of the p-approximation property Open problems The approximation property

IntroductionDensity of finite rank operators and the p-approximation property

A trace characterization of the p-approximation propertyOpen problems

The trace functional

– N1(X ,Y ) is a quotient of X ∗⊗̂πY ⇒ N1(X ,Y )∗ ↪→ L(Y ,X ∗∗).

– T =m∑

n=1

x∗n ⊗ x∗∗n ∈ F(X ,X ∗∗)

{trace(T ) :=

∑mn=1〈x∗∗n , x∗n 〉

|trace(T )| ≤∑m

n=1 ‖x∗∗n ‖‖x∗n ‖– Finite-nuclear norm of T ∈ F(X ,X ∗∗):

ν0(T ) := inf{∑m

n=1 ‖x∗∗n ‖‖x∗n ‖ : T =∑m

n=1 x∗n ⊗ x∗∗n }

Theorem [Grothendieck, 1955]

X a Banach space. The following statements are equivalent:1 X has the AP.2 If (xn) ⊂ X and (x∗n ) ⊂ X ∗ are such that

∑n ‖x∗n ‖‖xn‖ <∞ and∑

n〈x∗n , x〉xn = 0 for all x ∈ X , then∑

n〈x∗n , xn〉 = 0.

J. M. Delgado The p-approximation property

Page 59: UV · Introduction Density of finite rank operators and the p-approximation property A trace characterization of the p-approximation property Open problems The approximation property

IntroductionDensity of finite rank operators and the p-approximation property

A trace characterization of the p-approximation propertyOpen problems

The trace functional

– N1(X ,Y ) is a quotient of X ∗⊗̂πY ⇒ N1(X ,Y )∗ ↪→ L(Y ,X ∗∗).

– T =m∑

n=1

x∗n ⊗ x∗∗n ∈ F(X ,X ∗∗)

{trace(T ) :=

∑mn=1〈x∗∗n , x∗n 〉

|trace(T )| ≤∑m

n=1 ‖x∗∗n ‖‖x∗n ‖– Finite-nuclear norm of T ∈ F(X ,X ∗∗):

ν0(T ) := inf{∑m

n=1 ‖x∗∗n ‖‖x∗n ‖ : T =∑m

n=1 x∗n ⊗ x∗∗n }

Theorem [Grothendieck, 1955]

X a Banach space. The following statements are equivalent:1 X has the AP.2 If (xn) ⊂ X and (x∗n ) ⊂ X ∗ are such that

∑n ‖x∗n ‖‖xn‖ <∞ and∑

n〈x∗n , x〉xn = 0 for all x ∈ X , then∑

n〈x∗n , xn〉 = 0.

The linear map T ∈ F(X ,X ∗∗) 7→ trace(T ) ∈ R is continuous.

J. M. Delgado The p-approximation property

Page 60: UV · Introduction Density of finite rank operators and the p-approximation property A trace characterization of the p-approximation property Open problems The approximation property

IntroductionDensity of finite rank operators and the p-approximation property

A trace characterization of the p-approximation propertyOpen problems

The trace functional

– N1(X ,Y ) is a quotient of X ∗⊗̂πY ⇒ N1(X ,Y )∗ ↪→ L(Y ,X ∗∗).

– T =m∑

n=1

x∗n ⊗ x∗∗n ∈ F(X ,X ∗∗)

{trace(T ) :=

∑mn=1〈x∗∗n , x∗n 〉

|trace(T )| ≤∑m

n=1 ‖x∗∗n ‖‖x∗n ‖– Finite-nuclear norm of T ∈ F(X ,X ∗∗):

ν0(T ) := inf{∑m

n=1 ‖x∗∗n ‖‖x∗n ‖ : T =∑m

n=1 x∗n ⊗ x∗∗n }Theorem [Grothendieck, 1955]

X a Banach space. The following statements are equivalent:1 X has the AP.2 If (xn) ⊂ X and (x∗n ) ⊂ X ∗ are such that

∑n ‖x∗n ‖‖xn‖ <∞ and∑

n〈x∗n , x〉xn = 0 for all x ∈ X , then∑

n〈x∗n , xn〉 = 0.

The linear map T ∈ F(X ,X ∗∗) 7→ trace(T ) ∈ R is continuous.

J. M. Delgado The p-approximation property

Page 61: UV · Introduction Density of finite rank operators and the p-approximation property A trace characterization of the p-approximation property Open problems The approximation property

IntroductionDensity of finite rank operators and the p-approximation property

A trace characterization of the p-approximation propertyOpen problems

The trace functional

– N1(X ,Y ) is a quotient of X ∗⊗̂πY ⇒ N1(X ,Y )∗ ↪→ L(Y ,X ∗∗).

– T =m∑

n=1

x∗n ⊗ x∗∗n ∈ F(X ,X ∗∗)

{trace(T ) :=

∑mn=1〈x∗∗n , x∗n 〉

|trace(T )| ≤∑m

n=1 ‖x∗∗n ‖‖x∗n ‖– Finite-nuclear norm of T ∈ F(X ,X ∗∗):

ν0(T ) := inf{∑m

n=1 ‖x∗∗n ‖‖x∗n ‖ : T =∑m

n=1 x∗n ⊗ x∗∗n }Theorem [Grothendieck, 1955]

X a Banach space. The following statements are equivalent:1 X has the AP.2 If (xn) ⊂ X and (x∗n ) ⊂ X ∗ are such that

∑n ‖x∗n ‖‖xn‖ <∞ and∑

n〈x∗n , x〉xn = 0 for all x ∈ X , then∑

n〈x∗n , xn〉 = 0.

The linear map T ∈ N1(X ,X ∗∗) 7→ trace(T ) ∈ R is continuous ifand only if X ∗ has the AP.

J. M. Delgado The p-approximation property

Page 62: UV · Introduction Density of finite rank operators and the p-approximation property A trace characterization of the p-approximation property Open problems The approximation property

IntroductionDensity of finite rank operators and the p-approximation property

A trace characterization of the p-approximation propertyOpen problems

The trace functional

– N1(X ,Y ) is a quotient of X ∗⊗̂πY ⇒ N1(X ,Y )∗ ↪→ L(Y ,X ∗∗).

– T =m∑

n=1

x∗n ⊗ x∗∗n ∈ F(X ,X ∗∗)

{trace(T ) :=

∑mn=1〈x∗∗n , x∗n 〉

|trace(T )| ≤∑m

n=1 ‖x∗∗n ‖‖x∗n ‖– Finite-nuclear norm of T ∈ F(X ,X ∗∗):

ν0(T ) := inf{∑m

n=1 ‖x∗∗n ‖‖x∗n ‖ : T =∑m

n=1 x∗n ⊗ x∗∗n }Theorem [Grothendieck, 1955]

X a Banach space. The following statements are equivalent:1 X has the AP.2 If (xn) ⊂ X and (x∗n ) ⊂ X ∗ are such that

∑n ‖x∗n ‖‖xn‖ <∞ and∑

n〈x∗n , x〉xn = 0 for all x ∈ X , then∑

n〈x∗n , xn〉 = 0.

The linear map T ∈ N1(X ,X ∗∗) 7→ trace(T ) ∈ R is continuous ifand only if X ∗ has the AP.If X ∗ has the AP, then N1(X ,Y )∗ ' L(Y ,X ∗∗).

J. M. Delgado The p-approximation property

Page 63: UV · Introduction Density of finite rank operators and the p-approximation property A trace characterization of the p-approximation property Open problems The approximation property

IntroductionDensity of finite rank operators and the p-approximation property

A trace characterization of the p-approximation propertyOpen problems

A trace characterization of the p-AP

Proposition [Sinha and Karn, 2002]

If X has the p-AP then the following holds:For every (xn) ∈ `p(X ) and every (x∗n ) ∈ `1(X ∗) such that∑

n〈x∗n , x〉xn = 0 for all x ∈ X , we have∑

n〈x∗n , xn〉 = 0.

Proposition [Oja, Piñeiro, Serrano and Delgado, 2009]

The following statements are equivalent:1 X has the p-AP.2 For every relatively p-compact sequence (xn) ⊂ X and every

(x∗n ) ∈ `1(X ∗) such that∑

n〈x∗n , x〉xn = 0 for all x ∈ X , we have∑n〈x∗n , xn〉 = 0.

Corollary

X ∗∗ has the p-AP ⇒ X has the p-AP

J. M. Delgado The p-approximation property

Page 64: UV · Introduction Density of finite rank operators and the p-approximation property A trace characterization of the p-approximation property Open problems The approximation property

IntroductionDensity of finite rank operators and the p-approximation property

A trace characterization of the p-approximation propertyOpen problems

A trace characterization of the p-AP

Proposition [Sinha and Karn, 2002]

If X has the p-AP then the following holds:For every (xn) ∈ `p(X ) and every (x∗n ) ∈ `1(X ∗) such that∑

n〈x∗n , x〉xn = 0 for all x ∈ X , we have∑

n〈x∗n , xn〉 = 0.

Proposition [Oja, Piñeiro, Serrano and Delgado, 2009]

The following statements are equivalent:1 X has the p-AP.2 For every relatively p-compact sequence (xn) ⊂ X and every

(x∗n ) ∈ `1(X ∗) such that∑

n〈x∗n , x〉xn = 0 for all x ∈ X , we have∑n〈x∗n , xn〉 = 0.

Corollary

X ∗∗ has the p-AP ⇒ X has the p-AP

J. M. Delgado The p-approximation property

Page 65: UV · Introduction Density of finite rank operators and the p-approximation property A trace characterization of the p-approximation property Open problems The approximation property

IntroductionDensity of finite rank operators and the p-approximation property

A trace characterization of the p-approximation propertyOpen problems

A trace characterization of the p-AP

Proposition [Sinha and Karn, 2002]

If X has the p-AP then the following holds:For every (xn) ∈ `p(X ) and every (x∗n ) ∈ `1(X ∗) such that∑

n〈x∗n , x〉xn = 0 for all x ∈ X , we have∑

n〈x∗n , xn〉 = 0.

Proposition [Oja, Piñeiro, Serrano and Delgado, 2009]

The following statements are equivalent:1 X has the p-AP.2 For every relatively p-compact sequence (xn) ⊂ X and every

(x∗n ) ∈ `1(X ∗) such that∑

n〈x∗n , x〉xn = 0 for all x ∈ X , we have∑n〈x∗n , xn〉 = 0.

Corollary

X ∗∗ has the p-AP ⇒ X has the p-AP

J. M. Delgado The p-approximation property

Page 66: UV · Introduction Density of finite rank operators and the p-approximation property A trace characterization of the p-approximation property Open problems The approximation property

IntroductionDensity of finite rank operators and the p-approximation property

A trace characterization of the p-approximation propertyOpen problems

About the subspace structure of N1(X , Y )∗

N(p)(X ,X ∗∗) :=

{T =

∑n x∗n ⊗ x∗∗n :

(x∗∗n ) ⊂ X ∗∗ relatively p-compact(x∗n ) ∈ `1(X ∗)

}

N(p)(X ,X ∗∗) ⊂ N1(X ,X ∗∗)

If X ∗∗ has the p-AP, the map T ∈ N(p)(X ,X ∗∗) 7→ trace(T ) ∈ R iswell-defined, linear and continuous.

〈S,u〉 =

trace(S ◦ u),

∀u ∈ N1(X ,Y )

Πp(Y ,X ∗∗),Πdp (Y ,X ∗∗) ↪→ N1(X ,Y )∗ (p ∈ [1,2]).

J. M. Delgado The p-approximation property

Page 67: UV · Introduction Density of finite rank operators and the p-approximation property A trace characterization of the p-approximation property Open problems The approximation property

IntroductionDensity of finite rank operators and the p-approximation property

A trace characterization of the p-approximation propertyOpen problems

About the subspace structure of N1(X , Y )∗

N(p)(X ,X ∗∗) :=

{T =

∑n x∗n ⊗ x∗∗n :

(x∗∗n ) ⊂ X ∗∗ relatively p-compact(x∗n ) ∈ `1(X ∗)

}N(p)(X ,X ∗∗) ⊂ N1(X ,X ∗∗)

If X ∗∗ has the p-AP, the map T ∈ N(p)(X ,X ∗∗) 7→ trace(T ) ∈ R iswell-defined, linear and continuous.

〈S,u〉 =

trace(S ◦ u),

∀u ∈ N1(X ,Y )

Πp(Y ,X ∗∗),Πdp (Y ,X ∗∗) ↪→ N1(X ,Y )∗ (p ∈ [1,2]).

J. M. Delgado The p-approximation property

Page 68: UV · Introduction Density of finite rank operators and the p-approximation property A trace characterization of the p-approximation property Open problems The approximation property

IntroductionDensity of finite rank operators and the p-approximation property

A trace characterization of the p-approximation propertyOpen problems

About the subspace structure of N1(X , Y )∗

N(p)(X ,X ∗∗) :=

{T =

∑n x∗n ⊗ x∗∗n :

(x∗∗n ) ⊂ X ∗∗ relatively p-compact(x∗n ) ∈ `1(X ∗)

}N(p)(X ,X ∗∗) ⊂ N1(X ,X ∗∗)

If X ∗∗ has the p-AP, the map T ∈ N(p)(X ,X ∗∗) 7→ trace(T ) ∈ R iswell-defined, linear and continuous.

Corollary

p ∈ [1,∞).If X ∗∗ has the p-AP, then Πd

p (Y ,X ∗∗) ⊂ N1(X ,Y )∗.If Y ∗ has the p-AP, then Πp(Y ,X ∗∗) ⊂ N1(X ,Y )∗.

〈S,u〉 =

trace(S ◦ u),

∀u ∈ N1(X ,Y )

Πp(Y ,X ∗∗),Πdp (Y ,X ∗∗) ↪→ N1(X ,Y )∗ (p ∈ [1,2]).

J. M. Delgado The p-approximation property

Page 69: UV · Introduction Density of finite rank operators and the p-approximation property A trace characterization of the p-approximation property Open problems The approximation property

IntroductionDensity of finite rank operators and the p-approximation property

A trace characterization of the p-approximation propertyOpen problems

About the subspace structure of N1(X , Y )∗

N(p)(X ,X ∗∗) :=

{T =

∑n x∗n ⊗ x∗∗n :

(x∗∗n ) ⊂ X ∗∗ relatively p-compact(x∗n ) ∈ `1(X ∗)

}N(p)(X ,X ∗∗) ⊂ N1(X ,X ∗∗)

If X ∗∗ has the p-AP, the map T ∈ N(p)(X ,X ∗∗) 7→ trace(T ) ∈ R iswell-defined, linear and continuous.

Corollary

p ∈ [1,∞).If X ∗∗ has the p-AP, then Πd

p (Y ,X ∗∗) ⊂ N1(X ,Y )∗.If Y ∗ has the p-AP, then Πp(Y ,X ∗∗) ⊂ N1(X ,Y )∗.

〈S,u〉 =

trace(S ◦ u),

∀u ∈ N1(X ,Y )

Πp(Y ,X ∗∗),Πdp (Y ,X ∗∗) ↪→ N1(X ,Y )∗ (p ∈ [1,2]).

J. M. Delgado The p-approximation property

Page 70: UV · Introduction Density of finite rank operators and the p-approximation property A trace characterization of the p-approximation property Open problems The approximation property

IntroductionDensity of finite rank operators and the p-approximation property

A trace characterization of the p-approximation propertyOpen problems

About the subspace structure of N1(X , Y )∗

N(p)(X ,X ∗∗) :=

{T =

∑n x∗n ⊗ x∗∗n :

(x∗∗n ) ⊂ X ∗∗ relatively p-compact(x∗n ) ∈ `1(X ∗)

}N(p)(X ,X ∗∗) ⊂ N1(X ,X ∗∗)

If X ∗∗ has the p-AP, the map T ∈ N(p)(X ,X ∗∗) 7→ trace(T ) ∈ R iswell-defined, linear and continuous.

Corollary

p ∈ [1,∞).If X ∗∗ has the p-AP, then Πd

p (Y ,X ∗∗) ⊂ N1(X ,Y )∗.If Y ∗ has the p-AP, then Πp(Y ,X ∗∗) ⊂ N1(X ,Y )∗.

S ∈ Πdp (Y ,X ∗∗)

〈S,u〉 =

trace(S ◦ u),

∀u ∈ N1(X ,Y )

Πp(Y ,X ∗∗),Πdp (Y ,X ∗∗) ↪→ N1(X ,Y )∗ (p ∈ [1,2]).

J. M. Delgado The p-approximation property

Page 71: UV · Introduction Density of finite rank operators and the p-approximation property A trace characterization of the p-approximation property Open problems The approximation property

IntroductionDensity of finite rank operators and the p-approximation property

A trace characterization of the p-approximation propertyOpen problems

About the subspace structure of N1(X , Y )∗

N(p)(X ,X ∗∗) :=

{T =

∑n x∗n ⊗ x∗∗n :

(x∗∗n ) ⊂ X ∗∗ relatively p-compact(x∗n ) ∈ `1(X ∗)

}N(p)(X ,X ∗∗) ⊂ N1(X ,X ∗∗)

If X ∗∗ has the p-AP, the map T ∈ N(p)(X ,X ∗∗) 7→ trace(T ) ∈ R iswell-defined, linear and continuous.

Corollary

p ∈ [1,∞).If X ∗∗ has the p-AP, then Πd

p (Y ,X ∗∗) ⊂ N1(X ,Y )∗.If Y ∗ has the p-AP, then Πp(Y ,X ∗∗) ⊂ N1(X ,Y )∗.

S ∈ Πdp (Y ,X ∗∗)

u =∑

n x∗n ⊗ yn(x∗n ) ∈ `1(X ∗), ‖yn‖ → 0

〈S,u〉 =

trace(S ◦ u),

∀u ∈ N1(X ,Y )

Πp(Y ,X ∗∗),Πdp (Y ,X ∗∗) ↪→ N1(X ,Y )∗ (p ∈ [1,2]).

J. M. Delgado The p-approximation property

Page 72: UV · Introduction Density of finite rank operators and the p-approximation property A trace characterization of the p-approximation property Open problems The approximation property

IntroductionDensity of finite rank operators and the p-approximation property

A trace characterization of the p-approximation propertyOpen problems

About the subspace structure of N1(X , Y )∗

N(p)(X ,X ∗∗) :=

{T =

∑n x∗n ⊗ x∗∗n :

(x∗∗n ) ⊂ X ∗∗ relatively p-compact(x∗n ) ∈ `1(X ∗)

}N(p)(X ,X ∗∗) ⊂ N1(X ,X ∗∗)

If X ∗∗ has the p-AP, the map T ∈ N(p)(X ,X ∗∗) 7→ trace(T ) ∈ R iswell-defined, linear and continuous.

Corollary

p ∈ [1,∞).If X ∗∗ has the p-AP, then Πd

p (Y ,X ∗∗) ⊂ N1(X ,Y )∗.If Y ∗ has the p-AP, then Πp(Y ,X ∗∗) ⊂ N1(X ,Y )∗.

S ∈ Πdp (Y ,X ∗∗)

u =∑

n x∗n ⊗ yn(x∗n ) ∈ `1(X ∗), ‖yn‖ → 0

⇒ S ◦ u =∑

n x∗n ⊗ Syn ∈ N(p)(X ,X ∗∗)

〈S,u〉 =

trace(S ◦ u),

∀u ∈ N1(X ,Y )

Πp(Y ,X ∗∗),Πdp (Y ,X ∗∗) ↪→ N1(X ,Y )∗ (p ∈ [1,2]).

J. M. Delgado The p-approximation property

Page 73: UV · Introduction Density of finite rank operators and the p-approximation property A trace characterization of the p-approximation property Open problems The approximation property

IntroductionDensity of finite rank operators and the p-approximation property

A trace characterization of the p-approximation propertyOpen problems

About the subspace structure of N1(X , Y )∗

N(p)(X ,X ∗∗) :=

{T =

∑n x∗n ⊗ x∗∗n :

(x∗∗n ) ⊂ X ∗∗ relatively p-compact(x∗n ) ∈ `1(X ∗)

}N(p)(X ,X ∗∗) ⊂ N1(X ,X ∗∗)

If X ∗∗ has the p-AP, the map T ∈ N(p)(X ,X ∗∗) 7→ trace(T ) ∈ R iswell-defined, linear and continuous.

Corollary

p ∈ [1,∞).If X ∗∗ has the p-AP, then Πd

p (Y ,X ∗∗) ⊂ N1(X ,Y )∗.If Y ∗ has the p-AP, then Πp(Y ,X ∗∗) ⊂ N1(X ,Y )∗.

S ∈ Πdp (Y ,X ∗∗)

u =∑

n x∗n ⊗ yn(x∗n ) ∈ `1(X ∗), ‖yn‖ → 0

⇒ S ◦ u =∑

n x∗n ⊗ Syn ∈ N(p)(X ,X ∗∗)

〈S,u〉 = trace(S ◦ u), ∀u ∈ N1(X ,Y )

Πp(Y ,X ∗∗),Πdp (Y ,X ∗∗) ↪→ N1(X ,Y )∗ (p ∈ [1,2]).

J. M. Delgado The p-approximation property

Page 74: UV · Introduction Density of finite rank operators and the p-approximation property A trace characterization of the p-approximation property Open problems The approximation property

IntroductionDensity of finite rank operators and the p-approximation property

A trace characterization of the p-approximation propertyOpen problems

About the subspace structure of N1(X , Y )∗

N(p)(X ,X ∗∗) :=

{T =

∑n x∗n ⊗ x∗∗n :

(x∗∗n ) ⊂ X ∗∗ relatively p-compact(x∗n ) ∈ `1(X ∗)

}N(p)(X ,X ∗∗) ⊂ N1(X ,X ∗∗)

If X ∗∗ has the p-AP, the map T ∈ N(p)(X ,X ∗∗) 7→ trace(T ) ∈ R iswell-defined, linear and continuous.

Corollary

p ∈ [1,∞).If X ∗∗ has the p-AP, then Πd

p (Y ,X ∗∗) ⊂ N1(X ,Y )∗.If Y ∗ has the p-AP, then Πp(Y ,X ∗∗) ⊂ N1(X ,Y )∗.

S ∈ Πdp (Y ,X ∗∗)

u =∑

n x∗n ⊗ yn(x∗n ) ∈ `1(X ∗), ‖yn‖ → 0

⇒ S ◦ u =∑

n x∗n ⊗ Syn ∈ N(p)(X ,X ∗∗)

〈S,u〉 = trace(S ◦ u), ∀u ∈ N1(X ,Y )

Πp(Y ,X ∗∗),Πdp (Y ,X ∗∗) ↪→ N1(X ,Y )∗ (p ∈ [1,2]).

J. M. Delgado The p-approximation property

Page 75: UV · Introduction Density of finite rank operators and the p-approximation property A trace characterization of the p-approximation property Open problems The approximation property

IntroductionDensity of finite rank operators and the p-approximation property

A trace characterization of the p-approximation propertyOpen problems

Outline

1 Introduction

2 Density of finite rank operators and the p-approximation property

3 A trace characterization of the p-approximation property

4 Open problems

J. M. Delgado The p-approximation property

Page 76: UV · Introduction Density of finite rank operators and the p-approximation property A trace characterization of the p-approximation property Open problems The approximation property

IntroductionDensity of finite rank operators and the p-approximation property

A trace characterization of the p-approximation propertyOpen problems

The Banach ideal Kp

– T ∈ Kp(X ,Y ) when T (BX ) is relatively p-compact, i.e., if thereexists (yn)n ∈ `p(Y ) such that

T (BX ) ⊂ p-co (yn)n :=

{∑n

anyn : (an)n ∈ B`p′

}(1)

– T ∈ Kp(X ,Y ):

κp(T ) = inf

(∑

n

‖(yn)n‖p

)1/p

: (yn)n verifica (1)

– [Kp, κp] is a Banach operator ideal.

J. M. Delgado The p-approximation property

Page 77: UV · Introduction Density of finite rank operators and the p-approximation property A trace characterization of the p-approximation property Open problems The approximation property

IntroductionDensity of finite rank operators and the p-approximation property

A trace characterization of the p-approximation propertyOpen problems

The Banach ideal Kp

– T ∈ Kp(X ,Y ) when T (BX ) is relatively p-compact, i.e., if thereexists (yn)n ∈ `p(Y ) such that

T (BX ) ⊂ p-co (yn)n :=

{∑n

anyn : (an)n ∈ B`p′

}(1)

– T ∈ Kp(X ,Y ):

κp(T ) = inf

(∑

n

‖(yn)n‖p

)1/p

: (yn)n verifica (1)

– [Kp, κp] is a Banach operator ideal.

J. M. Delgado The p-approximation property

Page 78: UV · Introduction Density of finite rank operators and the p-approximation property A trace characterization of the p-approximation property Open problems The approximation property

IntroductionDensity of finite rank operators and the p-approximation property

A trace characterization of the p-approximation propertyOpen problems

The Banach ideal Kp

– T ∈ Kp(X ,Y ) when T (BX ) is relatively p-compact, i.e., if thereexists (yn)n ∈ `p(Y ) such that

T (BX ) ⊂ p-co (yn)n :=

{∑n

anyn : (an)n ∈ B`p′

}(1)

– T ∈ Kp(X ,Y ):

κp(T ) = inf

(∑

n

‖(yn)n‖p

)1/p

: (yn)n verifica (1)

– [Kp, κp] is a Banach operator ideal.

J. M. Delgado The p-approximation property

Page 79: UV · Introduction Density of finite rank operators and the p-approximation property A trace characterization of the p-approximation property Open problems The approximation property

IntroductionDensity of finite rank operators and the p-approximation property

A trace characterization of the p-approximation propertyOpen problems

Open problems

F(Y ,X )κp

= Kp(Y ,X ), for all Y ⇐⇒ ? ?

A general definition including most of the mentionedapproximation properties of order p.

J. M. Delgado The p-approximation property

Page 80: UV · Introduction Density of finite rank operators and the p-approximation property A trace characterization of the p-approximation property Open problems The approximation property

IntroductionDensity of finite rank operators and the p-approximation property

A trace characterization of the p-approximation propertyOpen problems

Open problems

F(Y ,X )κp

= Kp(Y ,X ), for all Y ⇐⇒ ? ?

A general definition including most of the mentionedapproximation properties of order p.

J. M. Delgado The p-approximation property