uv-vis

Upload: naila-syahidah

Post on 09-Oct-2015

45 views

Category:

Documents


0 download

DESCRIPTION

Prinsip dasar spektrofotometri UV Visible

TRANSCRIPT

  • 5/19/2018 UV-VIS

    1/15

    1

    Spektroskopi Daerah Sinar Tampak dan Ultra Lembayung

    (UV-Visible Spectroscopy)

    Latar belakang:

    Salah satu perbedaan yang nyata diantara senyawa tertentu adalah warnanya. Sebut saja,

    kinon berwarna kuning, kloropil berwarna hijau, derivat 2,4-difenilhidrazon denganaldehid dan keton bergantung pada konjugasi ikatan rangkapnya mempunyai warna

    berkisar dari kuning ke merah gelap, semetara aspirin tidak berwarna. Dalam kontek inimata manusia berfungsi sebagai spektrometer menganalisa sinar yang dipantulkan darin

    permukaan padatan dan atau dilewatkan melalui cairan. Meskipun kita melihat sinarmatahari (atau sinar putih) sebagai warna yang seragam atau homogen dalam warna,

    namun sebenarnya tersusun oleh sinar dengan daerah panjang gelombang yang lebar

    yang merupaka bagian darispektrum sinar tampak dan inframerah. Seperti terlihat pada

    gambar disamping, komponenwarna dari sinar tampak dapat

    dipisahkan dengan melewatkannyamelalui prisma, yang bertindak

    membelokkan sinar dengan derajatpembelokan yang berbeda-beda

    bergantung dari panjanggelombangnya. Radiasi

    elektromagnetik seperti sinartampak biasanya di pandang sebagai fenomena gelombang, yang dikarakterkan dengan

    panjang gelombangnya atau frekuensinya. Panjang Gelombang (!) didefinisikan sebagaijarak antara puncak yang berdampingan, dan dapat dinyatakan dalam m, cm, atau cm.

    Frekuensi dinyatakan sebagai jumlah siklus gelombang yang berjalan melewati suatu titik

    tertentu pada setiap satuan waktu, dan biasanya dinyatakan dalam siklus perdetik, atau

    " Violet: 400 - 420 nm

    " Indigo: 420 - 440 nm

    " Blue: 440 - 490 nm

    "

    Green: 490 - 570 nm

    "

    Yellow: 570 - 585 nm

    " Orange: 585 - 620

    nm

    " Red: 620 - 780 nm

  • 5/19/2018 UV-VIS

    2/15

    2

    hertz (Hz). Panjang gelombang sinar tampak meliputi rentang kurang lebih dari 400 s/d

    800 nm, dimana ! terpanjang daerah visible berwarna merah dan ! terpendeknya

    berwarna ungu.

    Jika sinar putih melewati atau dipantulkan oleh zat berwarna, sebagian dari komponenpanjang gelombangnya diabsorbsi. Komponen

    yang tidak diabsorbsi diasumsikan sebagaikomplemen dari warna yang tidak diabsorbsi.

    Hubungan ini di demonstrasikan dengan piringanwarna (colorwheel) pada gambar sebelah. Disini

    warna komplementari adalah saling berlawanansecara diametris. Karenanya, jika sinar yang

    diserap adalah yang mempunyai !420 430 nmakan menghasilkan benda berwarna kuning, dan

    jika yang diserap sinar dengan !500-520 nm akanberwarna merah. Warna hijau adalah unik dimana

    akan dihasilkan oleh bahan yang menyerap mendekati 400 nm maupun disekitar 800 nm.Pada awalnya manusia mengenal pigmen warna dan menggunakannya untuk maksud-maksud dekorasi. Kebanyakan pigmen warna tersebut adalah mineral anorganik. Namun

    juga dikenal beberapa zat warna organik (organic dye) yang penting, termasukdiantaranya pigmen Crimson, asam kemesik, blue dye, indigo, dan pigmen safron kuning,

    crocetin. Karoten hidrokarbon dengan warna oranye gelap banyak dijumpai padatanaman, tetapi tidak mempunyai kestabilan yang baik untuk digunakan sebagai pewarna

    makanan. Feature umum dari semua senyawa-senyawa berwarna, ditampilkan dibawahini, kebanyakan memiliki sistem yang banyak mengandung phi elektron terkonjugasi .

  • 5/19/2018 UV-VIS

    3/15

    3

    Spektrum Elektromagnetik (The Electromagnetic Spectrum):

    Spektrum sinar tampak hanyalah sebagian kecil dari keseluruhan spektrum radiasi.

    Kebanyakan radiasi disekiling kita tidak dapat dilihat tetapi dapat dideteksi instrumentasikhusus. Spektrum elektromaknetik berkisar dari yang mempunyai panjang gelombang

    sangat pendek (termasuk sinar # dan sinar X) hingga yang mempunyai panjanggelombang yang sangat panjang ( ternmasuk microwaves and broadcast radio waves).

    Chart dibawah ini memperlihatkan beberapa daerah spektrum yang penting.

    Spektra Serapan UV-Visible (UV-Visible Absorption Spectra):

    Untuk memahami mengapa beberapa senyawa berwarna sedang yang lainnya tidak, danuntuk menentukan hubungan konjugasi dengan warna, kita harus melakukan pengukuranyang cermat dari serapan sinar pada berbagai panjang gelombang didalam daerah

    spektrum sinat tampak. Kebanyakan spektrometer yang ada dipasaran dapat digunakanuntuk melakukan pengukuran tersebut baik didaerah Uv maupun Visible. Deskripsi dari

    kerja spektrometer tersebut dapat dilihat pada halaman-halaman berikut uraian ini.

  • 5/19/2018 UV-VIS

    4/15

    4

    Daerah visible dari spektrum memiliki energi dari 36 s/d 72 kcal/mole. Radiasi UV yangmemiliki panjang gelombang lebih rendah dari 200 nm sulit dilakukan dengan cara biasa.

    Energi yang disebutkan tadi cukup untuk mempromosikan atau mengeksitasi elektronsuatu molekul ketingkat energi yang lebih tinggi. Sehingga sebagai konsekuensinya,

    spektroskopi sbsorbsi didaerah ini sering disebut sebagai spektroskopi elektronik.

    Diagram yang menggambarkan berbagai jenis eksitasi elektronik yang mungkin terjadipada molekul organik dapat dilihat pada gambar kanan ini. Dari ke enam transisi yangdigambarkan, hanya dua energi transisi terendah yang dapat dilakukan oleh sinar dengan

    energi pada daerah 200 s/d 800 nm. Sebagai aturannya, promosi elektron akan berasaldari highest occupied molecular orbital (HOMO) ke lowest unoccupied molecular

    orbital (LUMO).Spesi yang dihasilkannya disebut keadaan tereksitasi. Jika suatu contohmolekul dikenai sinar dengan energi yang sesuai dengan kemungkinan transisi elektronik

    didalam molekul, maka sebagian dari sinar diserap dan energi sinar tersebut digunakanoleh elektron untuk promosi ketingkat energi orbital yang lebih tinggi. Spektrometer

    optis akan mencatat panjang gelombang dimana serapan terjadi, bersamaan dengantingkat serapan pada setiap panjang gelombang. Hasil spektrumnya diperlihatkan pada

    grafik antara A terhadap panjang gelombang.

  • 5/19/2018 UV-VIS

    5/15

    5

    Diagram komponen spektrometer, umumnya, seperti yang terlihat pada gambar dibawah

    ini:

    Fungsi dari instrumentasi ini relatif sederhana. Berkas sinar dari dari sumber radiasi UVdan/ atau Visible dipisahkan menjadi komponen panjang gelombangnya dengan prisma

    ataupun diffraction grating. Setiap berkas sinar monokromatis kemudian akan dipilahmenjadi dua bagian dengan intensitas yang sebanding oleh peralatan half mirror. Satu

    berkas sinar, berkas sampel, dilewatkan melalui wadah yang transparan (kuvet) yangberisi larutan senyawa yang dipelajari dalam pelarut yang transparan. Berkas sinar

    lainnya, pembanding, dilewatkan melalui kuvet yang identik dengan kuvet sampel tetapihanya menganding pelarutnya saja. Intensitas berkas sinar ini kemudian diukur dengan

    detektor dan keduanya dibandingkan. Intensitas dari berkas pembanding, dimanatentunya tidak mengalami proses serapan (kalaupun ada cukup kecil) ditentukan sebagai

    berkas dengan intensitas I0 . Intensitas dari berkas sampel ditentukan sebagai I. Dalam

    periode waktu yang singkat, spektrometer menscan secara otomatis seluruh komponenpanjang gelombang dalam daerah tertentu. Scan daerah UV umumnya dilakukan dari 200s/d 400 nm, dan scan daerah Visible dilakukan dari 400 s/d 800 nm.

    Jika senyawa sampel tidak mengabsorbsi pada suatu panjang gelombang maka I = I0 .Namun, jika senyawa sampel mengabsorb sinar maka I menjadi lebih kecil dari I0danperbedaan ini dapat di plotkan terhadap panjang gelombang. Adanya sbsorbsi tersebut

    dapat dipresentasikan sebagai transmitan [T=I/I0, atau lebih umum persen transmitan, %T

  • 5/19/2018 UV-VIS

    6/15

    6

    =I/I0x 100%] atau absorban [A=log I0/I, ], seperti pada gambar disamping. Jika tidak adaabsorbsi maka T = 1,0 (%T=100) dan A = 0. Kebanyakan spektrometer menggambarkan

    absorban pada aksis tegak, dan biasanya mempunyai skala dari A=0 (T=100%) sampaiA=2 (T=1%) [pada spektrometer yang dilengkapi dengan PC absorban dapat didiplsa

    sampai A=3 (T=0,1%)]. Panjang gelombang dari abosrban maksimum adalh nilai

    karakteristik suatu serapan oleh senyawa, dinyatakan sebagai !max.

    Senyawa yang berbeda dapat memberikan nilai !maxdan besarnya aborbanyang sangat

    berbeda . Senyawa yang mempunyai absorbsi yang inten (tinggi) harus diukur denganlarutannya yang encer, agar terdapat intensitas sinar cukup yang sampai ke detektor, dan

    ini memerlukan pelarut yang benar-benar transparan (tidak mengabosrbsi sinar). Pelarutyang umumnya digunakan adalah air, etanol, heksan, dan sikloheksan. Pelarut yang

    mempunyai ikatan rangkap atau ikatan tunggal, ataom berat (seperti, S, Br & I) umumnyatidak dihindari pnggunaannya.Karena absorban dari sernyawa sampel akan proporsional dengan konsentrasi molarnya

    didalam kuvet sampel maka jika akan membandingkan spektr dari senyawa yang berbeda

    digunakan absorbsi yang dikoreksi yang dikenal dengan absorptivitas molar dan

    didefinisikan sebagai:

    Absorptifitas Molar , $=A/ c l(dimanaA= absorban, c= konsentrasi sample dalam moles/liter

    & l= panjang jarak tempuh sinar didalam kuvet dalam cm.)

    Spektrum pada gambar samping adalah darilarutan 0,249 mg aldehid tak jenuh didalam

    95% etanol (1.42 x 10-5 M) ditempatkan

    didalam kuvet 1 cm. Dengan menggunakan

    rumus diatas maka , $= 36,600 untuk puncak

    395 nm, dan 14,000 untuk puncak 255 nm.Perhatikan panjang gelombang serapan meliputi

    sampai daerah panjang gelombang sinar

    tampak, karenanya tidak mengherankan jikasenyawa tersebut berwarna oranye.

    Absorptifitas molar dapat sangat besar( untuk

    zat yang mengabsorbsi kuat ( $ >10,000) dan

    dapat sangat kecil untuk zat yang mengabsorpsilemah ($= 10 to 100).

  • 5/19/2018 UV-VIS

    7/15

    7

    Intensitas Absorbsi (Absorption Intensity):

    Absorptifitas molar dapat sangat besar( untuk zat yang mengabsorbsi kuat ( $>10,000)dan dapat sangat kecil untuk zat yang mengabsorpsi lemah ($ = 10 to 100). Besar

    kecilnya nilai $ menggambarkan baik ukuran (jumlah) kromofor dan probabilitas darisinar pada panjang gelombang tertentu diabsorbsi jika mengenai kromofor. Persamaan

    umum yang menyatakan hubungan tersebut dapat ditulis sebagai berikut:

    $= 0.87&1020' &a

    (where 'is the transition probability (0 to 1) & ais thechromophore area in cm

    2)

    Faktor-faktor yang mempengaruhi probabilitas transisi sangat komplek, dan biasanyadiatur oleh apa yang disebut dengan aturan seleksi (rujuk ke kuliah anorganik, kimia

    fisik dan atau spektroskopi molekul). Pembahasan mendetil mengenai aturan seleksi

    diluar dari lingkup kuliah ini, namun satu faktor yang jelas adalah berperan pada $ adalah

    karena adanya overlap dari orbital yang terlibat pada eksitasi elektronik. Hal inidiilustrasikan dengan baik sekali oleh dua transisi elektronik yang biasa terjadi pada

    gugus karbonil yang terisolasi. Transis n() ** terjadi pada energi yang lebih rendah

    (!max=290 nm) daripada transis * () ** (!max=180 nm), tetapi $ dari transisi yang

    pertama (n() ** ) adalah beribukali lebih kecil dari transisi yang terakhir (* () *+.

    Distribusi spatial dari orbital-orbital ini mengindikasikan kenapa bisa terjadi seperti itu.

    Sebagai diilustrasikan didalam diagram berikut, n orbital tidak overlap samasekali

    dengan orbital ** , sehingga probabilitas dari eksitasi ini kecil. Sementara itu, transisi

    * () **melibatkan orbital yang sangat overlap dan probabilitas eksitasinya 1,0.

  • 5/19/2018 UV-VIS

    8/15

    8

    Contoh spektrum absorbsi isopren.

    Spektrum isopren tersebut diukur dari larutan isoprene didalam heksan (C = 4 x 10 -5moles per

    liter) dengan kuvet 1 cm. Perhitungan sederhana akan memberikan harga $sebesar 20000 pada

    panjang gelombang maksimumnya.

    Daftar sejumlahkromofor dankarakter absorbsinya.

    Elektron oksigen non-bonding didalam

    alkohol dan eter tidakmemberikan serapan

    diatas 160 nm.Konsekuensinya

    alkohol dan etermurni dapat

    digunakan sebagaipelarut untuk analisis

    didaerah ini. Keberadaan kronofor didalam molekul dapat dikenali dengan baik denganspektrometer UV-Vis, namun karena kebanyakan spektrometer tidak dapat mengukur

    didaerah panjang gelombang lebih kecil dari 200 nm menyebabkan pendeteksian

    kromofore terisolasi menjadi sulit. Untungnya, keberadaan konjugasi menyebabkanabsorbsi maksimum bergeser kearah panjang gelombang yang lebih besar, seperti yangditunjukkan pada senyawa isoprene diatas, oleh karena itu konjugasi menjadi featur

    struktur yang baik didentifikasi dengan teknik ini.

    The Importance of Conjugation

    Fakta bahwa spektrum absorbsi 1-pentena yang mempunyai !max = 178 nm, sementara

    isoprena yang mempunyai !max = 222 nm jelas menunjukkan pentingnya konjugasi

    kromofor pada karakter serapan spektrum UV-Vis. Bukti lebih jauh dari efek ini dapatdilihat pada contoh berikut. Spektrum gambar kiri mengilustrasikan bahwa konjugasi dari

    ikatan rangkap dua dan rangkap tiga juga mengakibatkan pergeseran serapan kearahpanjang gelombang yang lebih besar. Dari spektrum poliena jelas bahwa setiap

    pertambahan ikatan rangkap pada konjugasi sistem elektron phi serapan maksimumbergeser sekitar 30 nm lebih besar. Juga absorbtifitas molar akan bertambah kira-kira dua

    kali lipatnya untuk setiap bertambahnya satu konjugasi ikatan rangkap.

    Chromophore Example Excitation !max, nm $ Solvent

    C=C Ethene * () ** 171 15,000 hexane

    C,C 1-Hexyne * () ** 180 10,000 hexane

    C=O Ethanal n() **

    * () **290180

    1510,000

    hexanehexane

    N=O Nitromethanen() **

    * () **

    275

    200

    17

    5,000

    ethanol

    ethanol

    C-X X=Br

    X=I

    Methyl bromide

    Methyl Iodiden() -*

    n() -*

    205

    255

    200

    360

    hexane

    hexane

  • 5/19/2018 UV-VIS

    9/15

    9

    Terminologi untuk pergeseran panjang gelombang dan berkurang atau meningkatnya absorbtifitasmolar diberikan pada tabel berikut:

    Keberadaan konjugasi umumnya menyebabkan pergeseran bathochromic dan pergeseranhypherchromic dalam absorbsinya. Kemunculan dari beberapa puncak bahu (puncak-puncak kecil

    lainnya selain puncak utama) biasa dijumpai pada senyawa yang banyak mempunyai sistenm

    konjugasi, dan sering sangat bergantung pada jenis

    pelarut. Struktur halus ini menggambarkan tidakhanya perbedaan konformasi sistem seperti itu,

    tetapi juga transisi elektronik diantara kemungkinan-

    kemungkinan tingkat energi vibrasi dan rotasi yangberbeda pada setiap jenis transisi elektronik. Vibrasi

    struktur halus tipe ini paling mudah diamati pada

    spektra fasa uap senyawa yang diperiksa, dan

    bentuknya akan melebar dan sebagian menyatu jikaberada pada larutan dan kejadian ini akan lebih

    ekstrem lagi jika pelarutnya diganti dari yang

    nonpolar (heksan) hingga ke yang polar (metanol).

    Terminology for Absorption Shifts

    Nature of Shift Descriptive Term

    To Longer Wavelength Bathochromic

    To Shorter Wavelength Hypsoochromic

    To Greater Absorbance Hyperchromic

    To Lower Absorbance Hypochromic

  • 5/19/2018 UV-VIS

    10/15

    10

    Untuk memahami mengapa konjugasi dapat menyebabkan pergeseran bathochromic pada puncakserapannya dari suatu kromofor, kita dapat melihatnya dari tingkat energi relatif dari orbaital-

    orbital phi. Jika dua ikatan rangkap berkonjugasi, keempat orbital phi bergabung membentukempat orbital molekul phi (dua bonding dan dua antibonding). Dengan cara yang sama, ketiga

    ikatan rangkap dari konjugasi triena membentuk enam orbital molekul phi, tiga bonding dan tigaantibonding. Tingkat energi yang paling disukai untuk eksitasi * () ** berlangsung dari orbitalphi tingkat energi bonding tertinggi (HOMO) ke orbital antibonding terendah (LUMO). Diagram-

    diagram dibawah ini memberikan ilustrasi eksitasi ikatan rangkap terisolasi, dan pada ikatanrangkap terkonjugasi pada diena dan triena. Bertmabhanya konjugasi menyebabkan jarak antara

    orbital HOMO dan LUMO saling mendekat. Karenanya energi (.E )yang diperlukan untuk

    transisi elektronik ini menjadi lebih kecil atau panjang gelombang (! = h & c/.E) sinar yangdiperlukan untuk transisi tersebut bergeser kearah yang lebih besar.

    Examples of * () **ExcitationClick on the Diagram to Advance

    Examples of * () **ExcitationClick on the Diagram to Advance

  • 5/19/2018 UV-VIS

    11/15

    11

    Examples of * () **ExcitationClick on the Diagram to Advance

    Banyak jenis sistem konjugasi orbital phi lainnya bertindak sebagai kromofor danmenyerap pada daerah 200 s/d 800 nm. Ternmasuk didalamnya aldehid dan keton tidak

    jenuh dan senyawa-senyawa lingkar aromatis. Beberapa contohnya diperlihatkan berikut

    ini, misalnya spektrum dari keton tak jenuh, plot log $vs panjang gelombang. Serapan

    oleh * () ** tejadi pada 242 nm dengan $ yang cukup besar /$= 18000) dan serapan

    oleh n () **terjadi pada sekitar 300 nm dengan $ yang kecil ($= 100).

  • 5/19/2018 UV-VIS

    12/15

    12

    Bensen memberikan serapan yang kuat pada panjang gelombang sekitar 180 nm ($>

    65,000), lemah pada 200 nm ($= 8,000) dan kelompok serapan lagi pada at 254 nm ($=

    240). Hanya kelompok serapan terakhir yang digambarkan (karena kebanyakanspektrometer tidak mampu mengukur pada panjang gelombang lebih kecil dari 200 nm).

    Bertambahnya konjugasi pada naftalen, antracen dan tetracen menyebabkan pergeseranbathochromic, sperti yang diperlihatkan pada gambar dibawah. Tidak semua serapanbergeser dengan nilai yang sama, untuk antracen dan tetracen serapan lemah tertutup oleh

    serapan (puncak) kuat yang bergeser kearah kanan (redshift). Dari spektra, dan jugakenyataannya, naftalen dan antracec tidak berwarna, tetapi tetracen akan berwarna

    orange.

    Spektrum dari diena bisiklik ini

    menunjukkan beberapa vibrasi strukturhalus, tetapi secara umum mirip dengan

    spektrum isopren sebelumnya. Evaluasilebih detil mengungkapkan bahwa serapan

    maksimum dari diena yang lebih banyaktersubstitusi telah menyebabkan pergeseran

    kearah panjang gelombang yang lebih besarsebanyak kira-kira 15 nm. Efek substitusi

    seperti ini umum terjadi pada diena trienadan lebih-lebih pada kromofor enon.

  • 5/19/2018 UV-VIS

    13/15

    13

    Empirical Rules for Absorption Wavelengths of Conjugated Systems

    Woodward-Fieser Rules for Calculating the !maxof Conjugated Dienes and Polyenes

    Core Chromophore Substituent and Influence

    Transoid Diene

    215 nm

    Cyclohexadiene*

    260 nm

    R- (Alkyl Group) .... +5 nmRO- (Alkoxy Group) .. +6

    X- (Cl- or Br-) ......... +10

    RCO2- (Acyl Group) .... 0

    RS- (Sulfide Group) .. +30R2N- (Amino Group) .. +60

    Further *-ConjugationC=C(Double Bond) ... +30

    C6H5(Phenyl Group) ... +60

    (i)Each exocyclic double bond adds 5 nm. In the example on the right,

    there are two exo-double bond components: one to ring A and the other toring B.

    (ii)Solvent effects are minor.

    !max(calculated) = Base(215 or 260)+ Substituent Contributions

    "

    When a homoannular (same ring) cyclohexadiene chromophore is present, a base value of 260 nm shouldalways be choosen. This includes the ring substituents.

  • 5/19/2018 UV-VIS

    14/15

    14

    Some examples that illustrate these rules follow.

  • 5/19/2018 UV-VIS

    15/15

    15

    Woodward-Fieser Rules for Calculating the * () *&!maxof Conjugated CarbonylCompounds

    Core Chromophore Substituent and Influence

    R = Alkyl: 215 nmR = H: 210 nm

    R = OR': 195 nm

    Cyclopentenone

    202 nm

    0- SubstituentR- (Alkyl Group) +10 nm

    Cl- (Chloro Group) +15Br- (Chloro Group) +25

    HO- (Hydroxyl Group) +35

    RO- (Alkoxyl Group) +35

    RCO2- (Acyl Group) +6

    1- SubstituentR- (Alkyl Group) +12 nm

    Cl- (Chloro Group) +12

    Br- (Chloro Group) +30

    HO- (Hydroxyl Group) +30RO- (Alkoxyl Group) +30

    RCO2- (Acyl Group) +6

    RS- (Sulfide Group) +85R2N- (Amino Group) +95

    Further *-ConjugationC=C(Double Bond) ... +30

    C6H5(Phenyl Group) ... +60

    # 2 3- Substituents

    R- (Alkyl Group) +18 nm(both # 2 3)

    HO- (Hydroxyl Group) +50 nm(3)

    RO- (Alkoxyl Group) +30 nm(3)

    (i)Each exocyclic double bond adds 5 nm. In the example on the right,

    there are two exo-double bond components: one to ring A and the other to

    ring B.

    (ii)Homoannular cyclohexadiene component adds +35 nm(ring atoms must be countedseparately as substituents)

    (iii)Solvent Correction: water = -8; methanol/ethanol = 0; ether = +7;

    hexane/cyclohexane = +11

    !max(calculated) = Base + Substituent Contributions and Corrections