uva uva & surrey @ pascal voc 2008host.robots.ox.ac.uk/pascal/voc/voc2008/workshop/tahir.pdfuva...

26
UvA UvA & Surrey & Surrey @ PASCAL VOC 2008 @ PASCAL VOC 2008 Koen van de Sande Koen van de Sande Jasper Jasper Uijlings Uijlings Xirong Xirong Li Li Theo Theo Gevers Gevers Arnold Arnold Smeulders Smeulders University of Amsterdam University of Amsterdam Muhammad Muhammad Atif Atif Tahir Tahir Fei Fei Yan Yan Krystian Krystian Mikolajczyk Mikolajczyk Josef Kittler Josef Kittler University of Surrey University of Surrey Visual Features Machine Learning

Upload: others

Post on 10-Mar-2020

18 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: UvA UvA & Surrey @ PASCAL VOC 2008host.robots.ox.ac.uk/pascal/VOC/voc2008/workshop/tahir.pdfUvA UvA & Surrey @ PASCAL VOC 2008 Koen van de Sande Jasper Uijlings Xirong Xirong Li Theo

UvAUvA & Surrey & Surrey @ PASCAL VOC 2008@ PASCAL VOC 2008

Koen van de SandeKoen van de SandeJasper Jasper UijlingsUijlings

XirongXirong LiLiTheo Theo GeversGevers

Arnold Arnold SmeuldersSmeuldersUniversity of AmsterdamUniversity of Amsterdam

Muhammad Muhammad AtifAtif TahirTahirFeiFei YanYan

KrystianKrystian MikolajczykMikolajczykJosef KittlerJosef Kittler

University of SurreyUniversity of Surrey

Visual Features Machine Learning

Page 2: UvA UvA & Surrey @ PASCAL VOC 2008host.robots.ox.ac.uk/pascal/VOC/voc2008/workshop/tahir.pdfUvA UvA & Surrey @ PASCAL VOC 2008 Koen van de Sande Jasper Uijlings Xirong Xirong Li Theo

22

Pipeline OverviewPipeline Overview

0

1

R e l a t i v e f r e que nc y

1 2 3 4 5

C ode book e l e me nt

0

1

1 2 3 4 5

0

1

1 2 3 4 5

0

1

1 2 3 4 5

0

1

1 2 3 4 5

0

1

R e l a t i v e f r e que nc y

1 2 3 4 5

C ode book e l e me nt

0

1

1 2 3 4 5

0

1

1 2 3 4 5

0

1

1 2 3 4 5

Page 3: UvA UvA & Surrey @ PASCAL VOC 2008host.robots.ox.ac.uk/pascal/VOC/voc2008/workshop/tahir.pdfUvA UvA & Surrey @ PASCAL VOC 2008 Koen van de Sande Jasper Uijlings Xirong Xirong Li Theo

33

Related workRelated work

RealReal--world scenes:world scenes: Large variations in viewing and lighting conditions Large variations in viewing and lighting conditions

image description complicatedimage description complicated

Viewing conditions:Viewing conditions:Orientation/scale of object changesOrientation/scale of object changesSalient point methods can robustly detect regions which are Salient point methods can robustly detect regions which are [LoweIJCV2004], [ZhangIJCV2007] :[LoweIJCV2004], [ZhangIJCV2007] :

TranslationTranslation--invariantinvariantRotationRotation--invariantinvariantScaleScale--invariantinvariant

Dense sampling at multiple scales Dense sampling at multiple scales ‘‘brute forcebrute force’’ solutionsolution

Illumination changes:Illumination changes:How do changes in lighting conditions affect object How do changes in lighting conditions affect object detection?detection?

Page 4: UvA UvA & Surrey @ PASCAL VOC 2008host.robots.ox.ac.uk/pascal/VOC/voc2008/workshop/tahir.pdfUvA UvA & Surrey @ PASCAL VOC 2008 Koen van de Sande Jasper Uijlings Xirong Xirong Li Theo

44

Color descriptorsColor descriptors

In In ““Evaluation of Color Descriptors for Object and Scene Evaluation of Color Descriptors for Object and Scene RecognitionRecognition”” [VanDeSandeCVPR2008]:[VanDeSandeCVPR2008]:Invariance properties of color descriptors shown Invariance properties of color descriptors shown analytically using a taxonomy of invariant properties analytically using a taxonomy of invariant properties within the diagonal model of illumination changewithin the diagonal model of illumination changeDistinctiveness of color descriptors shown on Distinctiveness of color descriptors shown on VOC2007VOC2007

Illumination changes:Illumination changes:Object detection impaired if region description is not Object detection impaired if region description is not robustrobustSIFT is most wellSIFT is most well--known descriptor, stateknown descriptor, state--ofof--thethe--art art performance [MikolajczykPAMI2005,ZhangIJCV2007]performance [MikolajczykPAMI2005,ZhangIJCV2007]Evaluations compare intensityEvaluations compare intensity--based descriptors onlybased descriptors only

Color descriptors have been proposed to:Color descriptors have been proposed to:Increase illumination invarianceIncrease illumination invarianceIncrease discriminative power Increase discriminative power

Page 5: UvA UvA & Surrey @ PASCAL VOC 2008host.robots.ox.ac.uk/pascal/VOC/voc2008/workshop/tahir.pdfUvA UvA & Surrey @ PASCAL VOC 2008 Koen van de Sande Jasper Uijlings Xirong Xirong Li Theo

55

DiagonalDiagonal--offset model of illumination offset model of illumination changechange

Can model shadows, shading, Can model shadows, shading, light color changes, highlightslight color changes, highlights

Diagonal modelDiagonal model

u = unknown illuminantu = unknown illuminantc = canonical illuminantc = canonical illuminant

Page 6: UvA UvA & Surrey @ PASCAL VOC 2008host.robots.ox.ac.uk/pascal/VOC/voc2008/workshop/tahir.pdfUvA UvA & Surrey @ PASCAL VOC 2008 Koen van de Sande Jasper Uijlings Xirong Xirong Li Theo

66

Example: Light intensity changeExample: Light intensity change

Page 7: UvA UvA & Surrey @ PASCAL VOC 2008host.robots.ox.ac.uk/pascal/VOC/voc2008/workshop/tahir.pdfUvA UvA & Surrey @ PASCAL VOC 2008 Koen van de Sande Jasper Uijlings Xirong Xirong Li Theo

77

Photometric AnalysisPhotometric Analysis

Light intensity change (a = b = c)Light intensity change (a = b = c)

Examples: shadows, shadingExamples: shadows, shading

IIcc = a = a IIuu

Page 8: UvA UvA & Surrey @ PASCAL VOC 2008host.robots.ox.ac.uk/pascal/VOC/voc2008/workshop/tahir.pdfUvA UvA & Surrey @ PASCAL VOC 2008 Koen van de Sande Jasper Uijlings Xirong Xirong Li Theo

88

Color Descriptor TaxonomyColor Descriptor Taxonomy

Invariance properties of the descriptors usedInvariance properties of the descriptors usedSee [VanDeSandeCVPR2008] for additional See [VanDeSandeCVPR2008] for additional color descriptorscolor descriptors

SIFT ++ ++ ++ ++ ++OpponentSIFT +/+/-- ++ +/+/-- +/+/-- +/+/--WSIFT ++ ++ ++ +/+/-- +/+/--rgSIFT ++ ++ ++ +/+/-- +/+/--Transformed color SIFT

++ ++ ++ ++ ++

DescriptorsDescriptors MAP on VOC2008valMAP on VOC2008valIntensity SIFTIntensity SIFT 42,342,3

All five All five (=Soft5ColorSIFT)(=Soft5ColorSIFT)

45,545,5

By adding color:

+8%

Page 9: UvA UvA & Surrey @ PASCAL VOC 2008host.robots.ox.ac.uk/pascal/VOC/voc2008/workshop/tahir.pdfUvA UvA & Surrey @ PASCAL VOC 2008 Koen van de Sande Jasper Uijlings Xirong Xirong Li Theo

99

Pipeline OverviewPipeline Overview

0

1

R e l a t i v e f r e que nc y

1 2 3 4 5

C ode book e l e me nt

0

1

1 2 3 4 5

0

1

1 2 3 4 5

0

1

1 2 3 4 5

0

1

1 2 3 4 5

0

1

R e l a t i v e f r e que nc y

1 2 3 4 5

C ode book e l e me nt

0

1

1 2 3 4 5

0

1

1 2 3 4 5

0

1

1 2 3 4 5

Page 10: UvA UvA & Surrey @ PASCAL VOC 2008host.robots.ox.ac.uk/pascal/VOC/voc2008/workshop/tahir.pdfUvA UvA & Surrey @ PASCAL VOC 2008 Koen van de Sande Jasper Uijlings Xirong Xirong Li Theo

1010

Feature ComponentsFeature ComponentsPoint sampling strategy:Point sampling strategy:

HarrisHarris--Laplace detectorLaplace detectorDense sampling every 6 pixels at multiple scalesDense sampling every 6 pixels at multiple scales

Spatial pyramid:Spatial pyramid:1x1 (whole image)1x1 (whole image)2x2 (image quarters) [LazebnikCVPR2006]2x2 (image quarters) [LazebnikCVPR2006]1x3 (horizontal bars) [MarszalekVOC2007]1x3 (horizontal bars) [MarszalekVOC2007]

Descriptors:Descriptors:IntensityIntensity--based SIFT [LoweIJCV2004]based SIFT [LoweIJCV2004]OpponentSIFTOpponentSIFTWSIFTWSIFTrgrgSIFTSIFTTransformed color SIFTTransformed color SIFT

Cf. [VanDeSandeCVPR2008] for evaluation of color descriptorsCf. [VanDeSandeCVPR2008] for evaluation of color descriptors

30 possible combinations of <sampling, pyramid, descriptor>30 possible combinations of <sampling, pyramid, descriptor>

Page 11: UvA UvA & Surrey @ PASCAL VOC 2008host.robots.ox.ac.uk/pascal/VOC/voc2008/workshop/tahir.pdfUvA UvA & Surrey @ PASCAL VOC 2008 Koen van de Sande Jasper Uijlings Xirong Xirong Li Theo

1111

Feature Components (2)Feature Components (2)BagBag--ofof--words model:words model:

Use kernel codebooks [VanGemertECCV2008]Use kernel codebooks [VanGemertECCV2008]Soft assignment to codebook elements using Gaussian kernelSoft assignment to codebook elements using Gaussian kernelCodebook size = 4000, created using kCodebook size = 4000, created using k--meansmeans

AssignmentAssignment MAP on VOC2008valMAP on VOC2008valCodebookCodebook 43,443,4

Kernel codebook Kernel codebook (=Soft5ColorSIFT)(=Soft5ColorSIFT)

45,545,5

+5%

Codebook Kernel codebook

Page 12: UvA UvA & Surrey @ PASCAL VOC 2008host.robots.ox.ac.uk/pascal/VOC/voc2008/workshop/tahir.pdfUvA UvA & Surrey @ PASCAL VOC 2008 Koen van de Sande Jasper Uijlings Xirong Xirong Li Theo

ClassificationClassification

Page 13: UvA UvA & Surrey @ PASCAL VOC 2008host.robots.ox.ac.uk/pascal/VOC/voc2008/workshop/tahir.pdfUvA UvA & Surrey @ PASCAL VOC 2008 Koen van de Sande Jasper Uijlings Xirong Xirong Li Theo

1313

Classifier baselineClassifier baseline

Soft5ColorSIFT run Soft5ColorSIFT run (SIFT, (SIFT, OpponentSIFTOpponentSIFT, WSIFT, , WSIFT, rgSIFTrgSIFT, Transformed color SIFT), Transformed color SIFT)

Combine 30 feature components Combine 30 feature components using equal weightusing equal weightSingle Single γγ22 SVM classifierSVM classifierSame as the flat fusion done in Same as the flat fusion done in [MarszalekVOC2007][MarszalekVOC2007]

MAP on VOC2008valMAP on VOC2008valSoft5ColorSIFTSoft5ColorSIFT 45,545,5

Page 14: UvA UvA & Surrey @ PASCAL VOC 2008host.robots.ox.ac.uk/pascal/VOC/voc2008/workshop/tahir.pdfUvA UvA & Surrey @ PASCAL VOC 2008 Koen van de Sande Jasper Uijlings Xirong Xirong Li Theo

1414

Linear Linear DiscriminantDiscriminant AnalysisAnalysis

LDA is a traditional statistical method LDA is a traditional statistical method that is proved successful in that is proved successful in classification problemsclassification problems

The objective is to maximize the betweenThe objective is to maximize the between--class covariance class covariance and simultaneously minimize the withinand simultaneously minimize the within--class covarianceclass covariance

The classical LDA is a linear method The classical LDA is a linear method and fails for non linear problemsand fails for non linear problems

Page 15: UvA UvA & Surrey @ PASCAL VOC 2008host.robots.ox.ac.uk/pascal/VOC/voc2008/workshop/tahir.pdfUvA UvA & Surrey @ PASCAL VOC 2008 Koen van de Sande Jasper Uijlings Xirong Xirong Li Theo

1515

Kernel Kernel DiscriminantDiscriminant AnalysisAnalysis

Many nonlinear extensions of LDA Many nonlinear extensions of LDA have been proposed e.g.have been proposed e.g.

Kernel Fisher Kernel Fisher DiscriminantDiscriminant Analysis [Mika et al Analysis [Mika et al 1999, NNSP]1999, NNSP]Generalized Generalized DiscriminantDiscriminant Analysis [Analysis [BaudatBaudatand and AnouarAnouar 2000, Neural Computation]2000, Neural Computation]KKDA using QR decomposition [DA using QR decomposition [XiongXiong et al. et al. 2004, Advances in NIPS]2004, Advances in NIPS]KDA using Spectral Regression [Deng et al. KDA using Spectral Regression [Deng et al. 2007 ICDM]2007 ICDM]

Page 16: UvA UvA & Surrey @ PASCAL VOC 2008host.robots.ox.ac.uk/pascal/VOC/voc2008/workshop/tahir.pdfUvA UvA & Surrey @ PASCAL VOC 2008 Koen van de Sande Jasper Uijlings Xirong Xirong Li Theo

1616

KDA (cont.)KDA (cont.)

The idea of non linear extensions is to The idea of non linear extensions is to solve LDA in a kernel feature spacesolve LDA in a kernel feature spaceNeed to handle the singularity problemNeed to handle the singularity problem

Widely used approaches are Singular Widely used approaches are Singular Value Decomposition and Regularization Value Decomposition and Regularization techniquestechniquesThat normally requires That normally requires eigeneigen value value decompositiondecompositionComputationally expensive for very large Computationally expensive for very large data setsdata sets

Page 17: UvA UvA & Surrey @ PASCAL VOC 2008host.robots.ox.ac.uk/pascal/VOC/voc2008/workshop/tahir.pdfUvA UvA & Surrey @ PASCAL VOC 2008 Koen van de Sande Jasper Uijlings Xirong Xirong Li Theo

1717

KDA using Spectral RegressionKDA using Spectral Regression

Recently KDA using SR is introduced for Recently KDA using SR is introduced for spoken letter and face recognition by spoken letter and face recognition by Deng Deng CaiCai (ICDM 2007)(ICDM 2007)Avoids Avoids eigeneigen--decomposition of the decomposition of the kernelkernel--matrixmatrixThe main idea is to use The main idea is to use CholeskyCholeskyDecomposition to solve linear equationsDecomposition to solve linear equations

yI)( =+ αδK

Page 18: UvA UvA & Surrey @ PASCAL VOC 2008host.robots.ox.ac.uk/pascal/VOC/voc2008/workshop/tahir.pdfUvA UvA & Surrey @ PASCAL VOC 2008 Koen van de Sande Jasper Uijlings Xirong Xirong Li Theo

1818

KDA using Spectral RegressionKDA using Spectral Regression

The equation The equation has close has close connection with regularized regression connection with regularized regression [[VapnikVapnik, Statistical learning theory, 1998], Statistical learning theory, 1998]Projection functions are optimal for Projection functions are optimal for separating training samples with different separating training samples with different labelslabelsTo avoid To avoid overfitoverfit, regularization is necessary, regularization is necessary

yI)( =+ αδK

Page 19: UvA UvA & Surrey @ PASCAL VOC 2008host.robots.ox.ac.uk/pascal/VOC/voc2008/workshop/tahir.pdfUvA UvA & Surrey @ PASCAL VOC 2008 Koen van de Sande Jasper Uijlings Xirong Xirong Li Theo

1919

KDA using Spectral RegressionKDA using Spectral Regression

Theoretical analysis has shown that Theoretical analysis has shown that SRKDA has achieved 27SRKDA has achieved 27--times times speedup over conventional KDAspeedup over conventional KDA

Also competitive with Support Vector Also competitive with Support Vector Machine in terms of classification Machine in terms of classification accuracyaccuracy

MAP on VOC2008valMAP on VOC2008valSoft5ColorSIFTSoft5ColorSIFT 45,545,5SRKDASRKDA 46,346,3

Page 20: UvA UvA & Surrey @ PASCAL VOC 2008host.robots.ox.ac.uk/pascal/VOC/voc2008/workshop/tahir.pdfUvA UvA & Surrey @ PASCAL VOC 2008 Koen van de Sande Jasper Uijlings Xirong Xirong Li Theo

ResultsResults

Page 21: UvA UvA & Surrey @ PASCAL VOC 2008host.robots.ox.ac.uk/pascal/VOC/voc2008/workshop/tahir.pdfUvA UvA & Surrey @ PASCAL VOC 2008 Koen van de Sande Jasper Uijlings Xirong Xirong Li Theo

2121

Object Category SurreyUvA_SRKDA UvA_Soft5ColorSift UvA_TreeSFS

Aeroplane 79,5 79,7 80,8

Bicycle 54,3 52,1 53,2

Bird 61,4 61,5 61,6

Boat 64,8 65,5 65,6

Bottle 30,0 29,1 29,4

Bus 52,1 46,5 49,9

Car 59,5 58,3 58,5

Cat 59,4 57,4 59,4

Chair 48,9 48,2 48,0

Cow 33,6 27,9 30,1

Dining table 37,8 38,3 39,6

Dog 46,0 46,6 45,0

Horse 66,1 66,0 67,3

Motorbike 64,0 60,6 60,4

Person 86,8 87,0 87,1

Potted plant 29,2 31,8 30,1

Sheep 42,3 42,2 41,5

Sofa 44,0 45,3 45,4

Train 77,8 72,3 74,3

TV/Monitor 61,2 64,7 59,8

MAP 54,9 54,1 54,4

(also uses randomized forests)

Page 22: UvA UvA & Surrey @ PASCAL VOC 2008host.robots.ox.ac.uk/pascal/VOC/voc2008/workshop/tahir.pdfUvA UvA & Surrey @ PASCAL VOC 2008 Koen van de Sande Jasper Uijlings Xirong Xirong Li Theo

2222

VOC2007 vs. VOC2008 dataVOC2007 vs. VOC2008 dataRuns Soft5ColorSIFT and 20072008Soft5ColorSIFT30 components combined using equal weightSingle γ2 SVM classifier

Train setTrain set MAP on VOC2007testMAP on VOC2007test2007 2007 train+valtrain+val 60,5*60,5*2008 2008 train+valtrain+val 55,855,82007+2008 2007+2008 train+valtrain+val 63,863,8

Train setTrain set MAP on VOC2008testMAP on VOC2008test2007 2007 train+valtrain+val ??2008 2008 train+valtrain+val 54,154,12007+2008 2007+2008 train+valtrain+val 58,658,6

* 2007 Challenge best = 59,4 [MarszalekVOC2007]

Page 23: UvA UvA & Surrey @ PASCAL VOC 2008host.robots.ox.ac.uk/pascal/VOC/voc2008/workshop/tahir.pdfUvA UvA & Surrey @ PASCAL VOC 2008 Koen van de Sande Jasper Uijlings Xirong Xirong Li Theo

2323

TRECVID2008 benchmarkTRECVID2008 benchmark

Using same visual features Using same visual features [MediamillTRECVID2008]:[MediamillTRECVID2008]:Highest overall MAP in TRECVID2008 Highest overall MAP in TRECVID2008 HLF (HLF (““concept detectionconcept detection””) task) taskHighest AP for 9 out of 20 concepts, Highest AP for 9 out of 20 concepts, not all with same parameter settingsnot all with same parameter settingsMany factors can influence final Many factors can influence final results, see [TRECVID]results, see [TRECVID]

Page 24: UvA UvA & Surrey @ PASCAL VOC 2008host.robots.ox.ac.uk/pascal/VOC/voc2008/workshop/tahir.pdfUvA UvA & Surrey @ PASCAL VOC 2008 Koen van de Sande Jasper Uijlings Xirong Xirong Li Theo

2424

ConclusionsConclusions

Adding color information in Adding color information in descriptors on top of intensity descriptors on top of intensity information improves ~8%information improves ~8%In Pascal VOC Challenge, In Pascal VOC Challenge, SRKDA gives better mean SRKDA gives better mean average precision (MAP) than average precision (MAP) than Support Vector MachinesSupport Vector MachinesAdding kernels based on diverse Adding kernels based on diverse features increases the MAPfeatures increases the MAP

Page 25: UvA UvA & Surrey @ PASCAL VOC 2008host.robots.ox.ac.uk/pascal/VOC/voc2008/workshop/tahir.pdfUvA UvA & Surrey @ PASCAL VOC 2008 Koen van de Sande Jasper Uijlings Xirong Xirong Li Theo

Questions?Questions?

Visit http://www.science.uva.nl/~ksande for color descriptor executables (in a few weeks)

Page 26: UvA UvA & Surrey @ PASCAL VOC 2008host.robots.ox.ac.uk/pascal/VOC/voc2008/workshop/tahir.pdfUvA UvA & Surrey @ PASCAL VOC 2008 Koen van de Sande Jasper Uijlings Xirong Xirong Li Theo

2626

ReferencesReferences[VanDeSandeCVPR2008] K. E. A. van de Sande, T. Gevers and C. G. M. Snoek, “Evaluation of Color Descriptors for Object and Scene Recognition”, CVPR 2008[VanGemertECCV2008] [VanGemertECCV2008] J.C. van Gemert, J.M. Geusebroek, C.J. Veenman, A.W.M. Smeulders, “Kernel Codebooks for Scene Categorization”, ECCV 2008[CaiICDM2007] “Efficient Kernel Discriminant Analysis via Spectral Regression”, International Conference on Data Mining 2007[MarszalekVOC2007] M. Marszalek, C. Schmid, H. Harzallah and J. van de Weijer, “Learning Object Representations for Visual Object Class Recognition”, Visual Recognition Workshop in conjunction with ICCV 2007[TRECVID] A. F. Smeaton, P. Over and W. Kraaij, “Evaluation campaigns and TRECVid”, MIR 2006[MikolajczykPAMI2005] K. Mikolajczyk and C. Schmid, “A Performance Evaluation of Local Descriptors”, PAMI 2005[LoweIJCV2004] D. G. Lowe, “Distinctive Image Features from Scale-Invariant Keypoints”, IJCV 2004[ZhangIJCV2007] J. Zhang, M. Marszalek, S. Lazebnik and C. Schmid, “Local Features and Kernels for Classification of Texture and Object Categories: A Comprehensive Study”, IJCV 2007[MediamillTRECVID2008] C. G. M. [MediamillTRECVID2008] C. G. M. SnoekSnoek et al, et al, ““The The MediaMillMediaMillTRECVID 2008 Semantic Video Search EngineTRECVID 2008 Semantic Video Search Engine””, TRECVID , TRECVID Workshop 2008Workshop 2008