v01'ume 16 -...

239
V01'UME 16 1986 Published by : The Vijnana Parishad of India DAY ANAND VEDIC POSTGRADUATE COLLEGE Bu:ndelkhand University ORAi, U.P., INDIA

Upload: others

Post on 21-Sep-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

V01'UME 16

1986

Published by :

The Vijnana Parishad of India DAY ANAND VEDIC POSTGRADUATE COLLEGE

Bu:ndelkhand University

ORAi, U.P., INDIA

Page 2: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

Jl\l'ANABHA

EDI.TORS

H .. M .. Srivastava

University of Victoria Victoria, B. C., Canada

AND

R. C .. Singh Chan.de!

D. V. Postgraduate College Orai, U.P., India

Editorial Ad.visoFy Board

Chief Advisor : J. N. Kapur (Delhi)

R. G. Buschman (Laramie, WY) K. L. Chung (Stanford) R. S Mishra (Lucknow) R. C. Mehrotra (Jaipur) C. Prasad (Roorkee) B. E. Rhoades (Bloomington. IN) D. Roux (Milano) H. K. Srivastava (Lucknow)

L. Carlitz (Durham, NC) L. S. Kothari (Delhi) K. M. Saksena (Kanpur) S. P. Singh (St. John's) L. J. Slater (Cambridge, U.K.) K. N. Srivastava (Bhopal) A. B. Tayler (Oxford. UK.) V. K. Verma (Delhi)

The Vijn.ana Pa.rishad Of India

( Society for Applications to Mathematics )

Office : D. V. Postgraduate College, Orai - 285001, U. P., India

President :

Vice-Presidents :

COUNCIL

J. N. Kapur (Delhi)

R. P. Agrawal (Jaipur) M. K. Singal (Meerut) U. N. Shukla, Principal,

s~cretary~ Treasurer ; (D. V. Postgraduate College, Orai) R. C. Singh Chandel (Orai)

Foreign Secretary:

C. M. Joshi (Udaipur) R. N. Pandey (Varanasi)

R. K. Saxena (Jodhpur) V. P. Saxena (Gwalior)

H. M. Srivastava (Victoria, Canada)

Me:rn bertS M. P. Singh (Delhi) S. L. Smgh (Haridwar)

S. N. Singh (Faizabad) R. P, Singh (Bhopal)

Printed at: Navin Printing Press, Gopal Ganj, Orai-285001, U.P., India

Page 3: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

.'Jfianabha, Vol. 16, 1986

AN UNIFIED APPROACH FOR THE CONTRACTIVE

MAPPINGS

By

D. DELBOSCO

Dipartmento di Matematica, Universita di· Torino

Via Principe Amedeo 8, 10123 Torino, Italy

( Received: June 15, 1985)

ABSTRACT

In this paper we introduce a new definition of cor~tra~ti ve type

mappings called p-contraction. A self mappi~g T of 'metric ~pace (X, d)

. is called a p-contraction if there exists a map P': R3:t. ~R* w:1ere

R* = {t € R : t ;? O}, safofying some s;U.itable hypothesis, such that,

d(Tx, Ty) ~ p( d(x, y), d(x, Tx), d(y; Ty)).

for all pair x, y € X.

The definition of p-contraction~ which . contains some of previous

generalization of contraction mappings, implies a!! conclusions of

Banach contraction principle.

1. INTRODUCTION

We recall Banach's contraction principle and its basic conseq ue­

'nces. A selfrnapping .of a metric spac (X, d) is c~lled a contraction if

there exists h, 0 ~ h < 1. such that for eaeh x, y EX

d(Tx, Ty) ~ h d(x, y).

Any contraction map T of a complete metric space (X, d) has the

following properties :

Page 4: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

2 ]

(A) T has a unique fixed point z* EX.

(B) Convergence of iterates: T11 x ___,.. z*, as n ___,. oo.

(C) Uniform convergence : there exists a neighbourhood U of z* such

that Tn (U) = {T"x : x E U} _,.. {z*}, which means that for any

neighbourhood V of z* we can. find an i.nte:ger no such that

T" (U) C i: for all n. greater than: n0 •

(D) Tis continuous.

On the other hand, Meyers· f6J proved that every self mapping T of

complete metric space (X, d) having properties A, B~ C and Il is a

contraction map under suitable topologically equivalent metric.

T!he purpose of th rs paper is to inve~tigate p-contraction mapp­

ings: (se·e: precise definition below), mappings having some iterate

which is ap-contraction and common fix.ed points of two mappings.

Applications of previous theorem of Meyers are also given.

2. Results on p-Contraction Mappings.

Let us introduce the set P of continuous p : R3* _,.. R*, where

R* = {t E R : t ;> O} satisf,Ying the following properties :

(i) p( I, I, l) = h < I ;

(ii) Let u > 0. If u ~ p(u, v, v) or u ~p(v. u, v) or u ~ p(v, v, u)

then u ~.hv.

Definition l. A self mapping of a metric space (X, d) is called a

p-contraction if there exists a map p E P, such that, for all x, y E X

d1.Tx, Ty) ~ p( d(x, y), d(x, Tx), d()', 7)))

Page 5: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

( 3

Now we indicate 3 examples of contractiv~ type mappings, \Vhich

can be regarded as a p-cor,traction, under suitable function p.

Indeed, If we put p(u, v, z) = au + bv + cz ta+ b + c < 1),

t,hen, we get t~ ~oJl.o,,w,µi,g well know,n :

DefinitioQ. 2. (S. Reich [7], I. Rus f9] ).

There ~xist non negative numbers a, b, c,. a + b + c < 1, such that

for all pair x, y e X

d(Tx, Ty) :::;;; a d(x, y} + b 4(x, Tx) + c d(y, Ty).

Moreover if we put p(u, v, z) = h max (u, v. z) (O ~ h < I),

we have

Definition 3.

There exists a number h, 0 <;;::;; h < I, such that fo,r aJI pair x, y ~ ¥

dtTx, Ty) :::;;; It max {d(x, y), d(x, T1;), d(y, Ty) },

At last if we choose p(u, v, z) = (aur + bv1• + cz•')lfr, r > 0,

(a + b + c < 1) then we find the follo)ViI\~ :

Definition 4. (Delbo,co) [2].

There exist non negative numbers a, b, c aµd thepe exists r > 0, such

that for all pair x, y e X.

d(Tx, Ty)" :::;;; a d(x, y)r + b d(x, Tx)" + c d(y, Ty)'.

Tf1eore~ 2.1 Let T be a p-contraction mapping of a complete metric

space (X, d). Then T has properties (A) and (B).

Proof. Fix z E x. Suppose z # Tz and set Zn = T Zn_J = Tri z. if we

put x = Zn and y = z,,_1 , then inequality (I) becomes :

Page 6: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

4 ]

(2.1) d(Zn+V Zn) ~ p( d(Zn, Zn_J), d(z,,, Zn+J), d(z,q, Zn)).

Hypothesis (ii) on function p implies

(2.2) d(in+1 , Zn) ,;;;;; h d(zn , Zn_J).

On the other hand, hypothesis (i) on p, proves that (zn) N is a nE

Cauchy sequence and completeness of X assures that Zn -? z* E X.

To prove that z* is fixed point of T, we take x = z* and y = z,,

in inequality (l) and we obtain

(2.3) d(Tz*, Tzn) ~ p( d(z*, Zn). d(z"", Tz*). d(z,., Tzn) ).

Smee p is continuous in each variable, letting n -7 oo, we get

(2.4) d(Tz*, z,;,) ~ p( 0, d(z*, Tz *), 0).

d(z*, Tz*) must be zero; hence z* = Tz*

Finally we prove that mapping T has a unique fixeJ point.

Indeed, let us suppose by contradiction, that Tx = x, Ty = y and

that x ;:ft y. Erom inequality (I) we get :

d(x, y) = d(Tx, Ty) ~ p( d(x. y), 0, 0).

It follows that d(x, y) = 0 i.e. x = y.

The proof is, thus, complete

Theorem 2.2 Let The a continuous p-contraction selfmarping of a

complete metric space (X, d). Then T has property (CJ.

Proof. For any r > 0, we define Vr ,-= {x E X : d(x, Tx) < r}. We

~how 1hat v,. is an open subset of X, since it contains a. neighbourhoed

for any point. lndeed, if y E V,, d(y, Ty) = a < r, then continuity of

T implies that there exists r such that

Page 7: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

[ 5·

(2.5) d(z, y) < r' implies d(z, Tz) < a i r < r.

V, is a neighbourhood.of unique fixed point z*. since z* ~ V, and

V, is an open subset of mearic space X.

Now we prove property (C) about T, i e.

(2.6) {T" V,} ~ {z,J, as n becomes infinite.

Let us consider z = Ty E T(V,) = {Tx: x E V,}. From inequality

( 1) we can write that

(2.7) d(Ty. Tiy) <C,,p( d(y, Ty), d(y, Ty), d(Ty, T2y))

we use hypothe~is (ii) on function to deduce that

(2.8) d(Ty, T2y) <C,, h d(y, Ty).

Therefore it follows that

(2.9) T(V,) C Vi,.

and, by induction,

(2. IO) P'(V.) C Vh"r .

1 hus, inclusion (2.10) proves (2.6) (uniform convergence of

iterates - or - property l C) ).

Theorem 2.3 Let T be a continuous p-contraction self mapping of a

complete metric space (X, d). Then Tis a contraction map for suita

ble topologically equivalent metric.

Proof. It suffices to remark that T has properties (A), (B), (C) from

previous Theorem 2.1 and 2.2 and T has also property (D) for hypo­

thesis. Now applying Meyers's result [6J, one proves this theorem.

Page 8: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

6 ]

3. MAPPINGS HAVING SOME ITERATE p-CONTRACTION.

Sometimes a self mapping Tis not a p-contraction, but it can .have

some iterate which is a p-contraction mapping, under suitable function

p E P.

From this point of view, we state and prove some results.

Theorem 3.1 Let T be a self mapping of complete metric space (X, d)

satisfying the following condition

(1 *) there exists an integer n such that for all pair x, y EX

d(Tnx, T"y) ~ p( d(x, y), d(x, P•x), d(y, Tny))

for some p E P. Then T has properties (A) and (R).

Proof. If we put S = Tn,. then Theorem 2.1 shows that S has a uni­

que fixed point that we call z*.

1\ow v.e prove that z* is also a fixed point of T. Indeed let us

consider these equalities

(3.1) T11(Tz*) = T(T11z*)

Tn\Tz*) = Tz*

S(Tz*) = Tz*

Uniqueness cf fixed point of Sand (3. I) imply

(3.2) Tz* = z*

Now we prove that z* is the unique fixed point of T. Suppose

x -::F y, Tx = x and Ty = y and apply (I*)

(3.3) d(x, y) = d(T11x, Tny) ~ p( d(x, y), 0, 0)

\

Page 9: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

d(x, y) .;;;;; p(O, 0, d(x, y))

d(x, y) = 0

Hence x = y and uniqueness of fixed point is proved.

[ 7

To prove property (B) it suffices to remark that we can deduce

the convergence of sequence Pz from the convergence of sequence

Sizo , putting z0 = z, Tz, T2z ... , pi-Iz.

Theorem 3.2 Let Ta continuous self mapping of a complete metric

space (X. d) satisfying (l*) Then Thas property (C).

Proof. For any r > 0 we define v, = {x Ex: d(x, rnx) < r}. where

n is the integer of condition (I*).

We ~hall prove that V,. is an open subset of X containing the fixed

point z*, hence a neighbourhooJ of z*.

Indeed if y E V, , d(y, Tr•y) = a < r, then continuity of T implies

that there exists r such that

(3.4) d(z, y) < r' implies d(z, Tz) < a i r < r.

To prove property ( C), we consider sequence {T''" (Vr )} (k E N) and

deduce the following convergence result

(3.:) {pm (V,.)1,EN ~ {zd, ask becomes infinite.

Suppose z ET" (V,.), then we can write z = T"y, with y EV,.

From condition (I*) it follows

(3.6) d(z, T"z) = d(Tny, T2ny) ,;;;;; p( d(y, T"y), d(y, P•y), d(Tr•y, T2 11y))

Now hypothesis ,i) and (ii) on function p assure that

(3.7) d(z, T"z) ~ h d(y, T 11y) ~hr.

Page 10: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

8 J

Therefore we have

(3.8) Tn (Vr) C Viir

and, by induction,

(3.9) pn (V,) C Vh kr.

Thus uniform convergence (3.6) is proved as consequence of inclu­

sion (3.9), letting n __,. oo.

4. Common Fixed Points Of Two Mappings.

The purpose o~ this section is to investigate common fixed points

of two mappings f and g satisfying the following condition

(l**) There exists a functionp E P, such that, for all pair x, y EX

d(fx, gy) ~ p( d(x, y), d(x, fx) d(y, gy))

Theorem 4.1 Let f and g be two self mapping of a comp!ete metric

space (X, d) satisfying ( 1 * *). Then f and g have a unique common

fixed point.

Proof. Fix x E X and define the following sequence

( 4.1) X1 = fx, X2 = g X1 , ... , X2n-l = Jx2n-2, X2n = g X2n-l , ...

If we put y = x1 in(!**) we have

(4.2) d(xb x2) = d( f•, gx1) <.,p( d(x, x1), d(x:, x1)· d(x1, Xz))

d(xv x2) ~ h d(x, x1). ·

Similarly we get

(4.3) d(x2, xa) ;;;:; h d(xi. x2) ~ 1z2 d(x, x1)

and, by induction,

/'\

Page 11: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

[ 9

(4 4) d(xn, Xn+i) ~ hn d(x, X1).

Inequality (4.4) proves that sequence (4.1) is Cauchy.

Completeness of X assures that limit z* of sequence (4.1) belongs

to X.

To prove that z* is a fixed point off an:i g, we set x = z* and

y = x2n_1 in condition (1 **)and deduce

(4.5) d(fz*' X2n) .::;;; p( d(z*' X2n-1), d(z*, fz*), d(x2n-1, X2n))

Leiting n -+ =, ( 4.5) shwos that z * is a fixed point of g. On the

other hand, z* is the unique common fixed point of two mappings f and g. Tlus has simple and standard proof.

Finally we make use of this Theorem 4.1, to study the class of

selfmapp;ng of a metric space (X, d) which satisfy the following conl­

ition

(I***) There exist two integers n, m, such that for all pair x, y EX

d(Tnx, T"'y) ~ p( d(x, y), d(x, Tnx), d(y, Tmy) )

for some function p E P.

Theorem 4.2 Let T be a self mapping of a complete metric space

(X, d) satisfying (l***). Then T has prop<:rties (A) and (B).

Proof. The proof of property (A) follows directly from Theorem 4 l

taking f = T 11 and g = Tm. Indeed there exists a unique fixed' point

such that f'"z* = z* = T"'z*.

But we have

T 11(Tz*) = T(Tnz*) = Tz* = T(Tmz*) = T""(Tz*)

hence, uniqueness of common fixed point implies

Page 12: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

10 ]

T(z*) = z*.

To prove property (B), let us suppose that n > m. Theorem (4.1)

implies that fer any fixed z E X the sequence

(4 6) z, Tnz, Tn+mz. T2n+mz, T2n+'d.mz, ..

converges to fixed point z*.

Putting z = x, Tx, T2x, ... , Tn-lx, in (4 6) we ottain n sequences

cor.taini11g all elements of sequence (Tkx)kEN·

The property (B) is thus proved.

5. Comparison with some recent similar results.

Recently, wme authors PJ ts] have established fixed point theor­

ems involving !unction q: ](5* --+ R:f. satisfying :

(a) q is continuous;

(b) q is increasing, or nondecreasing; in each variable;

(c) q (t, t, t, t, 1) < t for each t > 0.

Now we pre>e1;t the corresponding contractive defrnition: ,. A self mapping T of a complete metric space is "q" contraction if there

exists a function c; such that for all pair x, y E X

d(Tx, Ty) ~ p( d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), dly, Tx)).

Our purpose is to show that f ,.rnctio.1 p is not the restriction of

some function q to its first three component.

Let us consider the following example :

p(u, v, z) =h max {u exp l(u-1) (v-<) (z-u)]2, v, z}, 0 <; h < I.

Page 13: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

l 11

Since function p, as defined above, is not increasing or not decre­

asing in its first coordinate variable, p can not satisfy (b), and hence,

can not be the restriction of some function q to its first three variable.

REFERENCES

[l] R. M. T. Bianchini, Su un problema di S. Reich riguardante la

teoria dei punti fissi, Boll. Un. Mat. Ital. 5(1972), 103-108.

[2] D. Delbosco, Un estensione di un teorema sul punto fisrn di S.

Reich, Rend. Sem. Mat. Univ. Polit. Torino, 35 (1976-77),

233-238.

[3] S. A. Hussain-V. M. Sehgal; A fixed point theorem with a func­

tional inequality, Pub!. Inst. Math. Beograd. 21 (1977),

89-91.

[4] R. Kannan, Some results on fixed point. II, Amer. Math. Monthly.,

76, 4'.)5-403.

(5] S. Kasahara, On some recent results on fixed point, Math. Semi­

nar Nutes, Kohe U., 6 (197~), 373-382.

[6] P. R. Meyers. A converse to Banch's contraction theorem, J. Res.

Nat. Bur. Standards, 71 B (1967), 73-76.

(7] S. Reich, Some remarl<:s concerning contraction mappings, Canad.

Ma1h. Bull. 14 (1971), 121-124.

[8] B. E. Rhoades, A comparison of various definitions of contract­

ive mappings, Trans. Amer. Math. Soc 226(1977), 257-290.

[9] I A. Rus, Some fixed point theorems in metric spaces, Rend.

Sem. Mat. Univ. Tri·ste. 3 (1971), 169-172.

Page 14: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

Ji'Hinabha, Vol. 16, 1986

FIXED POINTS OF SET-VALUED MAPPINGS OF

CONVEX METRIC SPACES*

By

M. D. GUAY

Department of Mathematics, University of Southern Maine

Portland, Maine 04103, U. S. A,

and

K. L. SINGH

Department of Mathematics Fayetteville State University

Fayetteville, North Carolina 28301

t Received: August 3, 1985)

ABSTRACT

The principal aim of the paper is to prove the e'Cistence of fixed

points for set-valued mappings of convex metric spaces. Such spaces

include Banach spaces and starshaped subsets of Banach spaces. and

our results ge1~eralize those of Assad, Kirk, Markin, Nadler, and

others.

INTRODUCTION

In 1970 Takahashi [IO] introduced the definition of convexity in

metric spc:.ce given in Definiti0n 0. l below, and generalized some

* This research supported in part by a grant from NSERG (Canada).

1980 Mathematics Subject Classification

Primary : 47Hl0, 54H25 Secondary : 46825

Key Words and Phrases

Fixed point, set-valued mapping, convex metric space

Page 15: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

14 ]

important fixed-point theorems previously provej for Banach spaces.

Subsequently. Machado [5], Tallman [11], Naimpa1ly and Singh [8],

and Naimpally, Singh and Whitfield [9], among others have obtained

additional results in this setting. This paper is a continuation of these

investigations for set-valued mappings. Our results are motivated by

the results Samanta [ 12] and extends his results to convex metric spaces.

Definition O. 1 Let X be a metric space and I be the closed unit

interval. A mapping W: X x X x I--+X is said to be a convex structure

on X if for all x, y E X, ,\ E I,

d(u, W(x, y, ,\)) < ,\ d(u, x) +(l - A) d(u, y) for all u EX. The space

X together with a convex structure is called a convex metric space.

Clearly any convex subset cf a Banach space is a convex metric space

with W(x, y, ,\) = ,\x +(I- t\)y.

Definition O. 2 Let X be a convex metric space. A nonempty subset

K of X is convex if W(x, y, ,\) E K whenever x, y E K and ,\ s /.

Takahashi has shown that open and closed balls are convex, and that

the arbitrary intersection of convex sets is convex.

Definition 0. 3 A convex metric space X will be said to have Prop­

erty (C) if every tounded decreasing net of nonempty closed convex

subsets of X has a nonempty intersection.

By Srriulian's theorem [2, p. 433], every weakly compact convex subset

of a Banach space has Property ( C).

1 Fixed points for set-valued mappings.

Fixed points of set-valued mappings on Banach spaces haw been

studied extensively. In this section we pre5ent results which generalize

results of Assad and Kirk [I], Kir~ (3], Mor:dn L6], Nadler [7], and

others.

j I !

(~

,_J '< fr~

Page 16: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

~ 15

A few additional definitions will be needed.

Definition t. 1 Let X be a convex metric space and C be a nonem­

pty, closed, convex, bounded set in X. Following Kirk [3], for x" X

we set

rx(C) = sup d(x, y),

J'EC

r (C) = inf {rx (C): XE C}

We then define D = {x E C : rro ( C) = r ( C) } to the center of C.

Definition t. 2 If A, B" 2x, then the Hausdorff distance D (A, B)

is defined as D(A, B) = inf {o: : A C N(B, e) and B C N(A, o:), where

N(C. E) = {x EX: g y" C > d(x, y) < E}.

We denote the diameter of a subset E of X by

<l(E) = jUp {d(x. y): x, y E EJ.

Definition 1. 3 A point x E E is a diametral point of E provided

sup {d(x, y) : y E £} = 13(£), the diameter of E.

Definition 1. 4 A convex metric space is siad to have norm::tl structure

if for each closed bounded convex subset E of X which contains at

least two points, there exists x " E which is not a diametral point of E.

It is clear that any compact convex metric space, and every boun­

ded, closed convex subset of a uniformly convex Banach space will

have normal structure.

Theorem 1.5 Let X be a complete convex metric space with Property

(C) and Kbe a closed, convex, bounded subset of X with normal stru-

cture.

Page 17: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

16 ] .

If T : K ___,,. 2K is a mapping such that

(i) T(x) n K ==/=- ¢ for x E K,

and

(ii) for every closed convex subset of L of K satisfying

T(:.:) n K ==/=- ¢ for all z E L

D( T(x) n L, T(y) n L):;;;;; d(x, y) whenever x, y EL. x ==/=- y,

then T has a fixed point.

Proof. Let G be the family of all nonempty, closed convex subsets

M of K such that T(x) n M ==/=- ¢ for all x E M. Then G is nonempty

since KE G. Partially order G by ir.c!usion. Let t = {F;}. '" be a dec­/E Ll

reasing chain in G. From Property (C) if follows that . n/\ F1 ==!=- ¢. !Eu

Let F0 = i~f, F'-o .a nonempty, closed convex subset of M. Let x E F~.

By hypothesis, T(x) . ~ F, ==/=- ¢.For any F; E ~ T(x)nF. is compact IE Ll

and {T(x) n F1 } ., • is a family of nonempty closed sursets of the com­.J 9' l

pact set T(x) n F, having the finite intersection property. Cons~quentiy

. -0 . (T(x) n F1) ==/=- ¢ and therefore . n /\ ( T( 1) n F; ) ==/=- ef>, i.e. j~l . /Eu

T(x) n Fo ==!=- g,. Thus any cham in G has a greatest lower bound and

by Zorn's Lein ma there is a minirnal mem'Jer Nin G. We claim that

N is a. singleton ~et. If not, then as shown by Takahashi ( l OJ. the center

of N, denoted by P is a nonempty proper closed convex subset of N.

It is enough to show that P belongs to G. Let y E P. Then y E /V and

T(y) n N ==/=- ef>. Take z E T(y) n N Let Q = B[z, r(N)J n N (where

Br(x) = {y EX :~d(x, J).;:;;; r} ). Then Q is a nonempty closed convex

subset of N. Let x E Q. Using hypotnesis (ii) we have

r

-~

Page 18: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

( 17

D(T (x) n N, T(y) n N) .,;;; d(x, y).

Since z E T(y) n N, there is a u E Tly) n N such that

d(u, y).,;;; D(T(x) n N, T(y) n N) .,;;; d(x, y). Thus u E_ Q. Herce

T(x) n Q =F rp for all x E Q. By the minimality of N we have N c; Q;

that is, N c B[z, r(N)]. Consequently, z E p and we have T(y) n p =F rp

for all y E P. Therefore P E G, a contradiction of the minimality of N.

Hence N consists of a single element which is a fixed point of r. The following example show that condition (ii), can not be replaced

by D(Tx, Ty) .,;;; d(x, y) for ·au x, y E K, x =F y.

Example 1. 6 Let X = R2 with the Euclidean norm and

K = { (x, 0): 0.,;;; x.,;;; l}. Then Kis a bo.mded, closed CJnV.::< s1bset

of a reflexive Banach space X. Define T: K .....,. 2x as folloiis :

7(x, 0) = {(vt (~ - x), v~ 0 - x)), (x + t, O)}, 0.,;;; x.,;;; t

. . x x . . . T(x+f:,0)={(1- vi, ,if

2-),(x,0)},0'<x< t

Then T(x) intersects K for every x in K.

lf (x, 0), (y, 0)< K such that x, y E (0, H 9r x, y E [!, IJ,. then

D( T(x, 0), T(y, 0)) .,;;; 11 (t, 0) -- (y, 0) 11 .

If x, y E [O, n then

D(T(x, 0), T(y + ~" 0) .,;;; [( v~ 0 - x) - y) 2 + ( ifk 0 - x))2 p 12

.,;;; [x2 + y2 + v2xy -:- (x + vt y) + i- )1/2

.,;;; 11 (x, 0) - (y + t, 0) II

whenever ( v2 + 2) XJ-" ~ (1 + vf:) y; /,,e., x :;;;;; f: with y # 0.

Page 19: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

18 ]

Thus D( T(x, 0), T(y, 0)) ~ II (x, 0) - (y, 0) II for all

(x, 0), (y, 0), x ::/=-yin K. Now for x, y € [O, !],

D( T(x, 0) n K, T(y + i. 0) n K)

= 11 (x + ~· 0) - (y, 0) 11

=llx+i-yll

== 11 (x, 0) - (y + i, 0) 11

=lly+i-xll

w:tenever x > y. So Tis nonexpansive and satisfies all but condition

(ii) of Theorem I.5. Clearly T has no fixed.point.

Corollary J. 8 LetX be a reflexive Banach space and K be a boun -

ded, closed convex subset of X which has normal. structure. Let

T: K _,.. 2x be a mapping such that

(i) T(x) n K ::/=- cp for all z E K

(ii) for any closed convex subset L of K satisfying

T(z) n L * cp for all z E L

D( T(x) n L, T(y) n L) ~ d(x,y)

whenever x, y E L, x ::/=- y. Then T has a fixed point

The following result of Takahashi (Thm 3 [IO]) follows from Theo­

rem I. 5.

Corollary 1. 9 Let X be a convex metric space having Property (C).

Let K be a nonempty bounded closed convex s:lbset of X with normal

structure. lf Tis a nonexpansive mapping of K into itself, then T has

a fixed point in K.

'f, i )

.~

(

Page 20: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

[ 19

The following result of Kirk [4) follows from Corollary I. 9.

CoroUary 1. 10 Let K be a nonempty bounded, closed convex subset

of a reflexive Banach space X and suppose that K has normal structure.

If Tis a nonexpansive mapping of K into itself, then T has a fixed

point in K.

To obtain the next theorem we first establish a lemma whose proof

requires that the mapping W: X x X x I -+ X be continuous in ,\ " /.

Lemma 1. 11 Lel H and K be two closed subsets of the con vex

metric space X such that H n K # rf>. If W: X x X x I-+ Xis cont­

inuous in ,\ " I and H is convex, then df!(K) = cfo iff H C K. Here

dH(K) denotes the realative boundary of H n Kin H.

Proof. Ii H C. K,then H - K = <P and dH(K) = <fa. Conversely, su­

ppose that dH(K)=<fo, while H-K # <fo. Let x ".H n Kandy" H-K.

Since H is convex, Wtx, y, ,\) e H for all x, y e 11 and ,\ e /. Let

y=inf {,\: W(x, y, A) e K} and {Yn} be a sequence in I converging toy

such that W(x, y, Yn) e K Since K is closed; and Wis continuous in A,

W(x, y, y)=lim W(x, y Yn) is in K. Assume that y >0 and let e >0 be n

given. Taken" (0,y) such that y-n < -d( e . Then W(x, y, y) e Se x, y)

( W(x, y, y) n (H - K). It follows that W(x, y, y) e dH(K) and cons-

equently, that dH(K)-;:/= <fo, a contradictiou. The result follows.

Theorem 1. 12 Lei X be a convex metric space having Property (C)

such that the mapping Wis continuous in A e /. Let K be a nonempty

closed convex subset of X. Let L be a r.onempty closed bounded convex

subset of A having normal structure, and T: L --+ 1x be a m·appmg

satisfying T(x) n-K-;:/= cf; for all x e L. If M is a nonempty closed con­

vex subset of K such that T(x) n M # cf; whenever x e M n L, ~nd

Page 21: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

20]

(i) D( T(x) n M, T(y) n M) < d(x, y)

for all x, y E M n L and

(ii) T(w) n (M n L) ::/= cp, W..E dM(L), then T has a fixed point.

Proof. Let G be the family of all nonempty closed convex subsets M

of K such that Mn L ::/= cfo and T(x)n M ::f= cfo whenever x E M n L. ·

Then G is nonempty since KE G. Partially order G be set inclusion.

Let t = { F;} . 11 be a decreasing chain i"n G. Since each F1 is closed IE Ll

and convex, it follows from property (C) that Fo = n F; is a none-iE 6

mpty closed convex subset of M. Let x E F0 . Then, by hypothesis,

Ttx) n F; ::/= cp for all i E 6. Mon;over' for a.nY Fi E t ' T(x) n F; js

compact and {T(x) n Fj}.-....... is a family of nonempty closed. sub ets ;,z . of the compact set T(x) n Fi having the finite intersection property.

Therefore, n (T(x)n F1) ::/= cp and consequently n (T(x)n F;) ::/= </;; j":;pf fEt0, .

that is, T(x) n Fo ::/= cfo. Thus every chain in G has a greatest lower

bound and by Zorn's Lemma there is a minimal element . Nin G. If

dN(L) = cfo, then by lemma 11. I, N c; L. In this case Theorem 1.5 is

applicable and T has a fixed point. Thus. we a~sume that dN(L) ::/= cp

atn,d show that N n Lis a singleton set. Let 'f'i(N n L) > 0. Since L

has normal structure, there is a point a in L n N such that

0 < a = 0 sup {d(a, b)} < 'f'i(N n L) b E NnL

Consider the ~et H = {x E N: N n L c; B [x, a]},

(I)

a closed convex subset of N. Since a E H, His nonempty and, by (I)

H ::/= N. We show that HE G. Let ZE H n L and y E dN(L). Then

y E N n L and hence d(z, y) ,;;;;; a. Now; sinci NE G, from hypothesis .

(i) we have for y, z E N n L:

:A

Page 22: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

[ 21

D( T(y) n N, T(z) n N) ~ d(y, z). (2)

Consequently, D( T(y) n N, T(z) n N) ~ a.

Since y E dN(L), by hypothesis (ii),. T(y) n (N n £)=I= rP· Take

u E T(y) n (N n· £). Then, using (2) we obtain for v E T(z) n N.

d(u, v) ~ D( T(z) n N, T(y) n N) ~ d(z, y). Let W = B[v, a] n N.

Then Wis a closed convex subset of K with W n L =I= rfo (since u e

w n L). lf w E w n L c N n L, then d(z, w) ~a.

Further, D( T(w) n N, T(:) n N) ~ d(z, w) ~a. Since v E Ttz) n N,

there exists an elements in T(w)n N such that d(v, s) ~PC T(w)n N,

T(z) n N) ~ d(w, z) ~- oc. This shows that s e W, or. that

T(1-1) n. w_ =t q, for all w E w n L. Therefore w E G. By the

minimality of N we have N = W. Hence N n L C NB [v, a] and

v E H. We now have T(z) n H =I= rP for all z E H n L and it follows

that He G. But His a prcper subset of N, a contradiction. Hence

N n L is a singleton set. Let N n L = {x}. Since by assumption,

<P =I= dN(L) c N n N, dN(L) = {x}. Now by hypothesis (ii), x E T(x).

This completes the proJf.

Remark 1.13· The example re' ow shows that condition (ii) of Theorem

I 12 can not be replaced by the following condition: (ii)' If x e dK(L)

thenT(x) n L =I= <fa.

Example 1. 14 Let X = R2 with the usual metric and K = { (x, 0):

0 ~ x ~ oo} and· L = { (x, 0): 0 ~ x ~ l}. Define T: L ~ 2x .by

T(x, 0) = {(l + x, 0), (0, 1 - x) }, (x, 0) e L.

1hen K is a closed and convex subset of a reflexive Banach space and ,

L is a closed; bounded convex subset of K. The mapping T satisfies

the condition T(x)n K =I= cf> for all x e L, co:1dition (i) of Theorem 1.12,

and condition (ii)·. By takinJ .\.:f = [!, oo) we sQe that hypothesis (ii)

of Theorem 1 12 is not safisfied. Clearly T do.!3 not have a fixed

point. ,··~J·

Page 23: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

22 ]

REFERENCES

[I] N. A. Assad and W.A. Kirk, Fixed point theorems for set-valued mappings of contractive type, Pacific f. Math. 43 (1972). 553-562.

[2] N. Dunford and J. T. Schwartz, Line.ar operators. (Part I: General Theory). Wiley Jnterscience, New York (1964).

[3] W. A. Kirk, A fixed point theorem for. mapings which do not . increase distances, Amer. Math. Monthly 72 (1965), 1004- 1006

[4) W. A. Kirk, Fixed point theorems for nonlinear nonexpansive and generalized contraction mappings, Pacific J. Math. 38 (1971),· 89-94.

(5] . H. V. Machado, A characterization of conve< subsets of normal spaces, Kodai Math. Sem. Rep. 25 (1973), 307-320.

[6] J. T. Markin, A fixed point theorem for set-valued mappings, Bull. Amer. Math. Soc. 74 (1968) 639-640.

[7) S. B. Nadler, Jr., Multi-valued contraction mapping;, Pacific J. Math. 30 (1909)475-488. ,

[8] S. A. Naimpally and K. L. Singh, Fixed points and common fix­ed points in convex metric space, Preprint.

[9] S. A. Naimpally K. L. Singh and J H. M. Whitfield, Fixed po­ints in convex metric spaces, Preprint.

[IO] W. Takahashi, A convexity in metric spaces and nonexpansive mappings I, Kodai Math. Sem. lJ,.ep. 22 ( 1970). 142-149.

{11] ;L. A. Tallman, fixed points for codensing multifunctions in metric; spaces with convex structures, Koiai Math. Sem. Rep. 29 (1977), 62-70.

[ 11] S K. Samanta, Fixed point theorems for multivalued mappings over a reflexive Banach space, Bull. Ca!~·utta A1ath'. Soc 71 (1977), 45-50.

Page 24: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

Jiianabha, Vol. 16, 1986

COMMON FIXED POINT IN METRIC SPACES

By

Duane E. Anderson

Department of Mathematical, Sciences

University of Minnesota, Duluth

Duluth, Minnesota-55812, U. S. A,,

K. L. SINGH

Department of Mathematical Sciences

Fayetteville State University

Fayetteville, North Carolina"28301, U, S. A

and

J. H. M. Whitfield*

Department of Mathematics Lakehead University

Thunder Bay, Ontario, Canada.

t Received: August 3, 1985 )

INTRODUCTION

In 1970 , Takahashi [ 8 ] introduced a notion of convexity in

metric spaces ( see Definition I . 1 ) and generalized some fixed-point

theorems in Banach spaces. Subsequently, Itoh { 4 J , Guay , Singh ,

and Whitfield { 3 J Naimpally, Singh, and whitfield { 7 J, Tallman

{ 9 J , and Machado { 6 ] , among others, have studied fjxed - point

theorems in convex metric spaces. This paper is a continuation of these

investigations.

I. PrelJminari~s and definit:on

Throughout this paper, we will assume that X is a convex metric

*This author's research wc.s supported in part by a grant from NSERC in Canada.

Page 25: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

24 ]

space having property (C) .

Let K be a nonempty, closed, bounded convex subset of a convex

metric space X . Let A ( K ) denote the collection of all nonempty

subsets of K, and for A , B E A ( K) , let II( A , B) = sup

{d( a, b): a E A, b EB}, let r,,,(K) = ll(x, k) = sup { b (x, y): y E K },

II( K ) denotes the diameter of K. Let r( K ) - inf (3( x , K ) : x € K),

and Kc - ( x € K : r ( K ) ~ II ( x , K ) } .

It is well known [ 8 ] that if K is a closed, bounded, convex subset

of a convex metric space having property l C) then Kc is a nonempty

closed convex subset of K . Furthermore, if K has normal structure

then II ( Kc ) < o ( K ) , whenever a ( K ) > O ,

In the sequel, we use I for the interval [ 0, I ] . The following

notion wa~ introduced by Takahashi [ 8 ] •

Definition 1. 1 Let X l:e a rr:etric space. A mapping

W: X x X x I ----)> X is said to be a co11vex structure on X if for all

x, y E X, ,\ E /, d(u, W(x. y, ..\)) ~ /..d(u, x) + (I - ..\) d(u, y) for all

~ E X, X together \\ i1l1 a convex structure is called a convex mPtric

space ..

Remark 1. 1 lf Xis a Banach space. then as a metric space with

·d(x, y) = II x ~ 'y II , ihe rrapping W: X x X x I_,. X defined by

JV(x, y, /..) == ltx + (1 - ..\)y is a convex stri.;cture. More generally, if

X is a linear space with a translation invariant metric satisfying

d(/..x + (1 - /..) y, 0) ~lid(.;, 0) +(I - ..\) d(y, 0), it is a convex met­

ric space. There are mariy other examples, but we consider these as

pc:.radigmatic.

Definition l. 2 Let X be a convex metric space. A nonempty subset

Page 26: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

[ 25

K C Xis.convex if W(x, y, ,\) e K, whenever x, ye Kand A e /.

Remark 1. 2 Takahashi [8] has shown that the open spheres,

E(x, r) = {ye X: d(x, y) < r}, and clo>ed spheres, B[x, r] = {ye X:

d(x, y) ~ r} are convex Also, if {K"' : a e 6} is a family of convex

&ubsets of X, then n{K"': a e 6} is convex.

Definition 1. 3 A convex metrie space Xis saic to have property (C)

if every decreasing net of nonempty, closed c0nvex subsets of X has

nonempty intersection.

Remark 1. 3 It is a theorem of Smulian [2, p. 433) that a convex

subst.t of a Banach space has property (C) if and only if it is weakly

compact.

Definition 1. 4 Let B be a bounded set in a convex metric space X,

and let a(B) be its diameter, i. e., o(B) =sup {d(x, y): x, ye B}. A

convex subset S·of Xis said to have normal structure if every bounded

convex subset S1 of S which contains more than one point has a point

which is a nonJiametral point of Si. i. e., there is a point x of S 1 such

that sup { d(x, y): y e S1} < o(S1)·

It is easily seen that the following definition is equivalent to the

above definition. A bounded, closed conve.{ subset S of a metric space

Xis said to have normal structure if for eac.1 closed convex subset S1

of S which contains more than one point, there exists an x e S1 and

~(S), 0 < cx{S) < 1, such that sup {d(x, y): ye S1} = r,,(S1)

~ a{S1) o(S1).

2. Main Results

Theorem 2. 1 K be a nonempty, closed, bounded, convex subset

of X. Assume Kha-; nor.nal structure. Let T: K -+ A(K) be a mapping

Page 27: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

26 J

satisfying for each closed convex subset F of K invariant under T and

with ll(F) > 0, there exists some ix(F), 0 < ix(F) < 1, such that

'8(Tx, Ty) < max { ll{x, F), a(F) '8(F)} for all x, y E F. Then T has a

fixed point.

Proof let G be the family of all nonempty, closed convex

subsets of K, each of which is mapped into itself by T. Partially order

G by set inclusion. Using property (C) and Zorn's lemma, we infer

that G has a minimal element, say M. We show that M consists of a

single point. Suppose M contains more than one element. By the defi­

nition of normal structure, there exists an x0 E M and a 1{M),

0 < a 1 (M) < I, such that '8(xo, M) = sup { d(xo, y): y E M}

< ()(.1 (M) '8(M). lf '8(Tx, Ty) ,,:;;; '8(x, M) for all x, ye M, let

Mo= {x € M: '8(x, M) ~ a 1 O(M)}. Otherwise, by hypothesis, there

, exists at(M) > 0 0 < ()(.(M) < 1, such that o(Tx, Ty) ,,:;;; a3(M) for

some x, y E M. Let ~=max{ix, a 1} and H = {x E M: 3(x, M),,:;;; ~0(1H)}.

His nonempty, since xo E H. Clearly, His convex. Since x _,.. o(x, iH)

is continuous, His closed. Let x E H, o(Tx, Ty)~ max {o(x, M), ao(M)}

~ ~ll(M) for y E M. Hence, T(M) is contained in a closed ball of cen­

ter Tx and of radius ~o(M). By the minimality of M if m e Tx, then

MC S[m, ~o(M)J (the closed spherical ball of center m and radius

. ~'8(M)), whence m E H and T(H) C H.

But o(H) ~ ~o(M) < o(M), which contradicts the minimality of

M. Thus, Mis a singleton, and this completes the proof.

CoroJlary 2. 1 Let K be a bounded, closed convex subset of X.

Assume K has normal structure. Let T be a mapping of K into itself

which satisfies for each closed conve.:\ subset F of K invariant undM T,

with o(F) > 0, there exists some rJ.(F), 0 < a(F) < I, such that

j. \ ,.

Page 28: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

l 27

d(Tx, Ty) ~ max { 8(x, F), a(F) 8(F)} for each x, y EX, then T has a

fixed point.

Corollary 2. 2 Let K be a nonempty, closed, bounded convex

subset of X. Assume K has normal structure. Let T be a self-mapping

of K satisfying: for each closed convex subset F of K invariant under

T, with o(F) > 0, there exists some a(F), 0 < rJ.(F) < l, such that

d(Tx, Ty)~ max { d(x. y), r(F) a(F) o(E)} for x, y E F,

then T bas a fixed point.

The follow;ng example shows that our results generalize those of

Browder [I], Kirk [5], and Takahashi [8].

Example 2. 1 Let X = R with the usual norm and K = [O, 4].

Define T : K _,. K by

{o for x * 4

T(x) = 3 for x = 4.

Each closed convex subset F of K invariant under T with 8(F) > 0 is

of the form [O, r], r ~ 4. For r < 4, T([O, r]) = {O}, and in this case

I Tx - Ty I ~ max { I x - y I , r(F), a 8(F) }, for x, y E F, is satisf­

ied for any a > 0. For r = 4, T([O, r]) = {O, 3}, hence for ix = 4/5,

I Tx - Ty l ~ max t I x - y I , r(K), aa{K)} for all x, y E K is sati­

sfied with 0 as a fixed point of T. Since I T4 - T3 I = I 3 - 0 I = 3,

I T4 - T3 I ~ I 4 - 3 I = 1 is not satisfied for 3, 4 E K. In fact,

I Tx - Ty j ~ max { I x - y I , r(F)} is also not satisfied for F = K.

Theorem 2. 2 Let K be a closed, bounded, convex sub3et of X.

Let T1 , T2 : K _,. K be two mappings satisfying :

(i) d(T1x, T2Y) ~ max {[d(x, T1x) + d(y, T2y)]/2,

[d(x, T2Y) + d(y, T1x)]/3,

[d(x, y) + d(x, T1x) + d( y, T2y)]/3) for all x, y EK;

Page 29: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

28 1

(ii) T1A C A if and only if T2A c A for each closed convex subset

A of K with o(K) > O :

(iii) either sup d(z, T 1z) :;;;;;; o(A)/2, or sup d(z, T~z) :;;;;;; o(A)/2 ZEA ZEA

fer each closed convex subset A of K invariant under T1 and T2 with

~(A) > 0. Then, T1 and T2 have a unique common fixed point.

Proof Let G be the family of all nonempty, closed, convex subsets

of K, each of which is mapped into itself by T1 and T2• Partially order

G by set-inclusion. By property (C) and Zorn's Lemma, it follows

that K has a minimal element, say F. Suppose o(F) > 0. Without loss

of generality, we may assume that sup d(z, T2z) :;;;;;; a(F)/2. Let x E Fe. z E F

Since x E Fe ' o(x, F) = r(F). Also, o(F)/2 :;;;;;; r(F). Therefore, for

y E F, ! [d(x, T1x) + d(y, T2y)] :;;;;;; ~ [o(x, F) + sup d(z, T2z)] z E F

:;;;;;; ~- [r (F) + -o(F)/2.] :;;;;;; r(F) Likewise, 1/3 [d(x, T2y) + d(y, T1x)J

:;;;;;; 1/3 [r(F) + r (F):;;;;;; o r(F), and 1/3 [d(x, y) + d(x, T1x) + d(y, T2y)]

:;;;;;; 1/3 [r(F) + r(F) + o(F)/2] :;;;;;; 1(F). Hence, d(T1x, T2y) :;;;;;; max

{ [ d(x, Tix) + d(y, T2Y)J/2, [d(x, T2y) + d(y, Tix)]/3 + [d(x, y)+

d(x, Tix)+ d(y, T2Y)]/3} :;;;;;; r(F). So, T2(F) CB [Tix, r(F)] and, hence.

T2 (F n B) c F n Bas T2 (F) c F. By hypothesis (ii). it follows

that T1(F n B) C F n B. By the minimality of F, we conclude that

F c B. This gives o(T1x. F) = r(F), whence, Tix E Fe . Therfore,

Ti(Fc) C Fe, and by hypothesis (ii), T 2(Fc) C Fe . We claim that Fe is

a proper subset of F.Suppose not, that is, F =Fe . Since 8(x, F)=r(F)

for each x E P, we obtain 8(F) = r(F) = o(x, F). From (i), we get

d(Tix, T2y) :;;;;;; max {[d(x, Tix) + d(y, T2y)]i2, {d(x, T2y)+d(y, T 1x)]/3,

[d(x, y) + d(x, Tix)+ d(y, T2Y)]/3} < max {3 o(F)/4, [o(F) + o(F)]/3,

[o(F) + o(F) + o(F)/2J/3}

= s o(F)/6. Sim1/arly, o(T1x, F) .;;;; 5 o(F)/6 < o(F),

',.;:;_.

Page 30: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

[ 29

which is a contradiction. Consequently, if F contains. more than one

elen:ent, then Fr is a proper subset o'f F, a contradiction to the mini­mality of F. Hence, F contains exactly one element, &ay, x0 , whence

T 1x0 = x0 = T2x 0• Unicity of the fixed point is clear.

Theorem 2.3 Let K be a nonempty, closed, bounded, convex subset

of X. Suppose K bas normal structure. Let Tv T2 : K __,,. K be two map­

pings satisfying :

(i) for each closed convex subset F of K invaria{lt under T1 and T2,

with S(F) > 0, there exists some ix 1(F), 0 < ix 1tF) < 1, such that d(T1x, T2y) ~max {[d(x, Tix) t d(y, T2Y)]/2, [d(x, Tzy) + d(y, T1x)]/3,

[d(x, Y) + d(x, Tix)+ d(y, T2y)J/3, a(x, F), ix1(F) a(F)} for x, y E F.

(ii) T1A C A if and only if T2A C A for each closed convex subset A

of K with a(A) > O,

(iii) for each closed convex subset B of K invariant under Th T2 with

8(8) > 0, there exists some a2(B), ~ ~ ix2(B) < 1, such that either

sup d(z, T1z) ~ max { r(B), a2(B) a(B) }. Then, T1 and T2 have a zeB col,llmon fixed point

Pro<lf As in the proof of Theorem 2.2, there exists a minimal element

F. Suppose F contains more than one element. By the definition of

normal structure, there exists xo e F such that

sup {d(xo, y) : y " F} = a(xo, F) = r xo (F) ~ a3 (F) a(F)

for some a3, 0 < a.3 < l. Without loss of generality, we assume that

sup d(z, T2z) ~ max { r(F), ix2 8(F)} for some a2, i ~ cx 2 < 1. If ZEF

d(T1x, T2y) ~ max { [ d(x, T1x) + d(y, T2y) ]/2,

[ d(x, T2y) + d(y, T1x)]/3, [ d(x, y) + d(x, Tix) + d(y, T2J)]/3, rx(F)}

for all x, y" F, let~ = max {ix2, as} and Fo = {x e F: rx(F) ~ ~a(F)}.

Otherwise, by hypothesis (i), there exists a 1(F),

Page 31: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

30]

0 < rx 1(F) < 1, such that d(T1x, T2y) ~ cx1(F) 3(F) for some x, y E F.

Let l' = max { ai, a 2, a 3} and F0 = {x E F: rx(F) ~ l'3(F)}. Fo is non­

empty, since x0 E F0 • Clearly, F 0 is convex and closed. Let x E Fo.

Then, d(Tix, T2y) ~ max { ! d(x, Tix) + d(y. T2y)J/2,

[ d(x, T2Y) + d(y, Tix)]/3, [ d(x, y) + d(x. Tix) + d(y, T2y)]/3, r.,(F),

cx1(F) o (F )} ~ !)3(F) for y E F. The same argument as in Theorem 2. 2

yields Fo E G. But.

o(Fo) ~ !'o(F) < o(F ), which contradicts the minimality of F. Hence,

F contains exactly one point, which is a common fixed point of T1

and T2•

Remark 2. 1 The following example shows that normal stru~ture

alone is not sufficient to establish the existenee of a com non fixed

point for T1 and T2• In other words, the condition ( iii ) cannot be

dispensed from Theorem 2 3.

Example 2. 2 Let X = R with the usual metric. and Let K = [O, 4].

Define T: K --? K as follows : To = 4 and Tx = 0 for . x =I= 0.

Clearly, K, being a compact convex subset, has normal structure.

Moreover, Kis \\Caklycompact and, hence, has property (C). Taking

T1 = T2 = T, it follows easily that T satisfies all conditions, except

(iii) of Theorem 2. 3, and is without fixed point .

REFERENCES

[IJ F. E. Browder, Nonexpansive nonlinear operators in a Banach space, Proc. Nat. A cad. Sci . . 54 (1965), 1041-1044.

[2] N. Dunford and J. T. Schwartz, Linear Operators, (Fart I: General Theory), Wiley Interscience, Ne\v York, 1958.

[3] M. D. Guay, K. L. Singh, and J. H. M. whitfield, Fixed point theorems for nonexpansive mappings in convex metric

~

~.

Page 32: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

( 31

spaces, Nonlinear Analysis and Application, Marcel Dekker, Inc. , New York (1982), 179~189.

[4] s. Itoh, Some fixed point theorems in metric spaces, Fund Math. 102 (1979), 109-117.

[5] W. A. Kirk, A fixed point theorem for mappings which do not increase distances, Amer. Math. Monthly 72 ( 1965 ) , 1004-1006.

[6] H. V. Machado, Fixed point theorems for nonexpansive mappings in metric spaces with normal structure, Ph. D. Dissertation University of Chicago (1971).

[7] S. A. Naim;>al!y, K. L. Singh, and J. H M. Whitfield, Fixed and common fixed points for nonexpansive mappings in convex metric spaces, Math. Seminar Notes (to appear).

(8] W. Takahashi. A convexity in metric spaces and nonexpansive mappings I, Kodai Math. Sem. Rep. 22 (1970), 142-149.

[9] L. A. Tallman, Fixed pomts for condeming multifunctions in metric spaces with convex structures, Kodai Math. Sem. Rep 29 (1977), 62-70.

Page 33: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

Jfianabha, Vol. 16, 1986

A THEOREM ON THE EXISTENCE

OF POSITIVE EIGENVALUES OF k-SET CONTRACTIONS (*)

By

A. Carbone and G. Trombetta

Department of M"thematics University of Calabria

8/036 ARCAVACATA DI RENDE (Cosenza)

ITALY

( Received : August 8, 1985

In this note we prove a res.ult on the existence of non-zero

eigenvalues fork-set contractions which satisfy a Birkhoff-K~llog type

condition on a bounded open subset of a special wedge (see definition

below).

If we restrict our maps acting in c.ones, then analogous results

obtained previuosly by several authors (cfr. [3, 5, 6]).

To be more specific, . let X be a real Banach . space, P a special

wedge iw X, Q a bounded open subset of X containing 0 € X, . .. . ''···:

Q = 0 n P and/: .a - P a k-set contraction with k < I. Using some

elementary properties of the topological degree and a result of Fournier­

Peitgen [2], \\e succeeded in showing the fol'lowing :result:

Let f: .Q - P beak-set contraction satisfying the condition

inf { 11 /(x) Ii : x e aO} > k sup { 11 x 11 : x € aO},

then there exist an eigenvalue A > 0 and an eigenvector x e oO with

j(x) ='= AX.

-·---··--------* Work supported by M. P. I., G. N. A. F. A. - C. N. R. <>f Italy.

Page 34: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

34 ]

"1'

In order to prove the above result we recall, for sake of comple­

teness, some basic definitions.

Let (M, d) be a metric space. By the Kuratowski measure of

non compactness of s~t A C M is meant the <XM(A)-number

n aM(A) = inf { e > 0: A = U Si, n < oo and diameter (S;) ~ e

i=l

for l ~ i ~ n}.

Let f: M ~ N be a continuous map where (M, d) and (N, d')

are metric spaces: By the measure of, non compactness. of the map

f(cfr. [IJ) is meant the ix(f)-number:

a(/)= inf {k: ctM(f(A)) ~ k IXM(A) for all A C M}. )

Let n be a subset of M. A continuous map/: n ~ M, is called

a strict-set contraction if a(f) ,< I. We will say that the map f is a

k-set contraction if k ~ ix(/).

Let X be a real linear normed space. Following Schaefer [7], a

nonempty closed, convex subset P of X is called a wedge if x € P imp­

lies tx E P for t ·~ 0.

For r > 0, we set

B, = { x € P : 11 x II ~ r}

arid "J

oBr = { x € P: 11x11 = r}.

We recall that a linear ordering of X associataji with a wedge P

is the relation ~ defined by

x~y implies Y - x € P.

r

Page 35: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

l 3~

By an ordered linear space X we shall mean a real linear space

with a linear ordering.

Let X be an infinite dimensional real Banach space with norm

II . II . We call a special wedge (see [21), if P is a wedge for which there

exists y0 € P, yo ::j:. 0, such that

11 x +Yo II> II x 11

for all x € P. This is a crucial assumption on deriving our main result.

In fact, in a special wedge P, the following lemma, proved by

fournier-Peitgen in {2, Lemma I. 5. I, p. 173], holds:

Lemnla 0- Let P be a special wedge in a" linear normed space X and

let r > 0. For all e > 0, there exists a retraction

F~ : . B, __,. aB, such that

p~/ oBr = Id a Br

and ~(pe) ~ l + e.

Let Q be a bounded, relatively open subset of a special wedge P

·( i. e., n = 0 .,() P for some open subset 0 of X ). By n and an we

denote the clousure and the boundary of Qin P, respectively. "

If f: Q __,.Pis a k-set contraction, we denote with i (f, Q) the

fixed point index off in n (see {41).

The'fir_st result that we shall prove is the following :

Theorem 1. Let (X, P} be an infinite dimensional ordered real Banach

space, P a special wedge and let n be a bounded, relatively open subset

of P containing 0. Let /:75. ~ P be a strict set-contraction.

Page 36: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

36 ]

Assume that

i) a = inf { 11 f(x) II : x € an} > sup { 11 x 11 : x € an} = d:

Then

i( f, 0) = 0.

Poof. Let us note first of all that if condition i) of Theorem 1 is rep­

laced by the stronger one:

i') a' = inf ii { (x) 11 : x € O} > sup { 11 x 11 : x € an} = d,

then 1he conclusion of the theorem. is straightforward, i. e.,

i(f, 0) ~ 0.

Indeed, if we assume the contrary, by the solution property of the

. index, there exist"s Xo € n such thatf(xo) -~ Xo • But then

8' ~ II f(xo) II ~ II xo II ~ d,

contradicting i').

Clearly, i) can be replaced by the following inequality :

i") 1l > (1 +-e:o)d, for some e:0 > O.

~ Being a(f) < I, there exists some positive e: < .e:0 such that

(! + e:) a(f) < I.

Now, by Lemma 0, we can choose a retract,ion_ pe of Bs onto its

boundary with a{pe) <;; 1 + e:. Define a map p: P - P by

{

PE(x) if x E Bs p(x) =

x if x E P/Bs.

C1early p is a (I + e: )-set contraction ..

Page 37: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

i ~ -

I 37

··):'

Moreover, the m,.ap.g,: .!.1.+Pcefined by ·~ 1 :-, - '

. . -G.!; .·,_::.

·· .... \ . \ ~ .. .- .. ,·.

,.. . g(K) = p(f(x)) for x E· Q

has th~ following propertfos:

ii g(x) ii > 3 for any XE Q

and a(g) ~ a(;i) a(/) ~ (l + i;;) a(j ).

Hence, by our choice of i;;, we obtaih that a(g) < I, i.e., g is a

strict-set contraction satisfying i').

Thus i

i(g, 0) = o.

But the restriction of g to oO coincides with the map f. therefore

by the invariance property of the fixed point index (upon the boundary)

we obtain that

i(f, 0) = 0.

Remark. The same result holds in an infinite dim~nsional real

Banach space X for which for al! e > 0 there exists a retraction Pe of

the ball ~. ;: . '

B = {x E X: Ii x II < l} ·

onto its boundary

0B = {x E X: II x II = I} such that

ix(pe) ~ I + E,

The characterization of spaces with this properties will be the .· . ' . ;

object of a forthcoming paper.

Page 38: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

38]

For a k-set contraction, k < I, we derive the foJlowing result:

CorolJary. Let (X, P) be an infinite dimensiona/ordered real Banach

space, Pa special wedge and let .Q a hounied, relatively open subset of

P containing 0. Let/: .Q-+ P beak-set contraction, 0 < k < I, such

that

io) 8 = inf { II f(x) II : x e ().Q} > k sup { II x II : x e c!l} = hi;

iio) i\x-::/= f(x)for k < ,\ < I and x e ().Q

then

i ( f, .Q) = 0.

Proof.

Let e: > 0 such that 8 > (k + e) d and k+e<I.

1 -Consider the map k + e f : .Q -+ P •

. Clearly, this map is a strict-set contraction which satisfies assum­

ption i) of Theorem 1 and so we have that

i(·I f) k+e: '.Q = o.

Consider the homotopy H : .Q x [1. _I-]-+ P defined by k+e:

H(x, t) = x ~ tf(x).

By iio) His an admissible homotopy in the sense of [4J hence we have

that

i(J,.n) =; (-1- J, u) = o.

k+e:

This completes the proof.

r ) \

-At

Page 39: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

,.·:.:o,

., q'-i"

[ 39

We show now how, using the previous results, we can obtain the

existence of positive eigenvalues for k-set contraction in special wedgs

with satisfying the Birkhoff-Kellog type condition (cfr. [3, 5, 6]).

Theorem 2. Let (X, P) be an infinite dimensional ordered real Ban­

ach space, Pa special wedge, .Q a bounded relatively open subset of P

containing 0. If f: Q _,,. P is a k-set contraction for which

I) inf{ ilf(x) Ii: x € o.O} > ksuP { 11 x Ii: x € o.0},

then there exist.\ > 0 and x € c.O such that

,\x = f(x).

Proof. Assume the contrary, i. e., for all .\ > 0 and for all x E ()0,

.\x-::/= f(x).

Now, let e > 0 such that a > (I + e)d. Consider the map

1 k + e f: IT _,,. P.

Clearly, this map is a strict-set contraction satisfying assumption .

i) o.f Theorem 1. Hence

i (-1 f, .Q )· = 0.

k+e

On the other hand, for all

1 O~t~k+e'

Page 40: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

40 1

the homotopy H: 0 x [o,-1-J _.,. p , ·· k + E '/·

defined ~Y H (x; t) = H1(i) · = >c ..::__ tf(x)

.·r for X € .Q a:rid'for'for .f .E f, --, . , .:'·' ! ·:· [--·, : .. ::·1 J

' 'k+e:' ' ' >: '·

is admissibl~ since .\x' # f(x) for all .\ ;;;.: k + e:, •. '

Hence i (·-1_·· f,·a ) ~ i(H0,.Q)=:' I, k + E . . . ,.. •

which is a contradiction.

REFERENCES

[1] G. Darco, Punti uniti in trasformazioni a codominio non comp­atto, Rand. Sem. Mat. Un. Padova, 24 (1955), 353-367.

[2] G. Fo~rnier-H. 0. Peitgen,: Leray End.omorphjs and Cone Maps, Ann. Sc. Norm. Sup. Pisa, Clas.s.e Scienze: Serie 5 (1978), 149-179.

[3] I. Massab9 and C. Stuart, Positive eigenvectors of k-set contra­ctfons, Nonlinear Analysis, T. M. A. 3 (1979) 35-44.

[4] R. ti. Nussbaum, The fixed point index for local condensing maps, Ann. ii.fat. Pura Appl. 89 (1971), 217-258.

l5J R: D. NU._ssbaum, Eigenvectors of Nonlinear PQsitiVe Operators and the Linear Krein.-Kutman Theor~m Fixed Point Theory, Lecture Notes in Mathematics, 886. E. Fadell and G. Four­nier, eds (1981), 309-331.

[6] W. v. Petryshin, On the s9lvability of x ET(.\'.) + .\F(x) in quasi­normal cones with T and F k-set contractive. Nonlinear An­alysis, 5 (1981), 585-591.

[7] H. H. Schaefer, Topological Vector Space, Springer Verlag, New York, 1971.

t !

Page 41: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

Jiiiiniibha, Vol. 16, 1986

A DEGREE THEORY FOR WEAKLY CONTINUOUS

MULTIVALUED MAPS IN REFLEXIVE BANACH SPACES*

By

Giulio Trombetta

Department of Mathematics, University of Calabria

87036-Arcavacata di Rende, Italy

Received : September 9, 1985

ABSTTRACT

In this paper we propose a degree theory for multivah1.::d weakly

upper semicontinuous maps with convex valu~s in a reflexiv~ Banach

space with Schauder basis.

INTRODUCTION

A degree theory for singlevalued weakly continuous maps was

developed in [41 The aim of this note is to introfoce a degree theory

for multivalued weakly upper semicontinuous maps (see Definition

l. 5). Our results extend the degree theory of singlevalued weakly

('Ontinuous maps of (4J.

The paper is divided into three parts.

In the first part we give the notations and the basic definitions to

be used in the sequel and we introduce the so-called condition (A)

"'hi ch plays the same role in our theory as the usual condition "the

*Work supported by M. P. I., G. N. A. F. A. and C. N. R. of Italy.

Page 42: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

42 ]

map has no fixed points on the boundary" i11 the case of maps upper

semicontinuous with convex compact values.

The second part is devoted to the degree theory for the multivalued

weakly upper semicontinuous maps with convex values, satisfying the

condition (A) with respect to some Schauder basis in reflexive Banach

spaces.

Finally, in the third part we introduce a class of multivalued maps

which satisfies the condition (A) with respect to every orthonormal

basis of a Hilbert space.

1. NOTATIONS, DEFINITIONS AND PRELIMINARY RESULTS

We recall that a multivalued map of a set X into a set Y is a tri­

ple (G, X, Y), where G, the graph of T, is a subset of X >< Y such that

Tx = {ye Y; (x, y) e G} is nonempty for each x e X. TX= {Tx:x e X}

is the range of T, while Xis its domain. We shall use the symbol

T: X ~ Y to indicate a multivalued map. If D C X then

TD = {Tx: x .e D}.

Let X and Y be topological spaces and T : X ~ Y.

Definition 1. 1.

The map Tis called upper semicontinuous (u. s c.) at x0 "X if

for any open set. V containing Txo there exists a neighbourhood U of x0

such thatx.e U impl~es Tx CV.

Definition 1. 2.

The map T is called u. s. c. on X if it is u. s. c, at each point x € X

and Tx is compact for every x E X.

Definition 1. 3.

The map Tis called closed if its graph is closed in XxY.

t

Page 43: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

l 43

Definition 1. 4.

The map T is called closed if its graph is closed in Xx Y.

A fixed point of a multivalued map T : X --? Y is a point x EX such that x E Tx.

Let X be a real refiexive Banach space with norm II · II , which

admits a Schauder basis. By Br we denote the ball {x E X : ii x II .,;;;;; r},

where r is a real positive number, with oBr the s11here {x E X:

II x II = r}. We shall also use the symbols "-o" and,,__,.,, to denote the

strong and the weak convergence in X respectively. Moreover, we shall

denote by -r the weak topology on X.

Definition l. 5.

The map T : B, --? Xis called weakly upper semicontinuons (w. u.

• 7" s. c.) at x0 ES,, if it is u. s. c. at xo, with respect to the weak topo~

logy'·

Definition 1. 6.

The map T: S, -+ Xis called w. u. s. c. on B,, if it is w. u. s. c.

at each po int x E B, and Tx is weakly compact (i. e. compact with res -

pect to -r) for every x E S,.

Defin.ition 1. 7.

The map T : B, --? X is called weakly closed, (fits graph is closed

in B, x X with respect to the weak topology on the product.

Remark 1. 1.

If T: S, -+Xis weakly closed then (see [I]) :

{xm} C. S,, Xn -"" X} )In --» y ==> y E Tx.

¥ n E N, y,. E Tx,. ·

Page 44: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

44 I

Definition 1. 8.

Let D C X. The map T: D -J> Xis called bounded on D, if it maps

bounded sets of D into bounded sets of X.

Remark 1. 2.

Let D c X. If D is weakly compact then D is bounded and wea­

kly closed (i. e. closed with respect to 1'), by the reflexivity of X.

Remark 1. 3.

If T: S, _,,.Xis w. u. c. on S, then it is weakly closed (see [I)).

Remark I. 4.

If T: X _,,. X is w. u. s. c. then it send.; weakly cJm;:iact sets of X

into weakly compact sets of X (see [I]).

Remark 1. 5.

If T: B, _,,. X is w. u. s. c. on S, then Tx is closed for any x E B,.

Proposition I. 1.

Let D C X. If T : D _,,. X is w. u. s. c. and D is weakly c!osfd

then Tis bounded on D.

Proof: Given a bounded subset K C D, its weak closure K ( i. e.

the c.losure of K with respect to -r) is weakly compact, by the reflexi-

vity of X. Moreover, K is contained in D, since D is weakly closed.

Consequently, TK is weakly compact (see Remar'.< l. 4). Form the

Remark I. 2 it follows that TK is bounded and we.ikly closed. Hence =-

TK C TK is bounded "

Let X be a real reflexive Banach space, { ei} a Schaujer basis of X and

{<f.;} the corresponding biorthogonal system in the dual space X*, i. e. ¢1 (e1) = a11. Given n E N, by 3,,;S, we denote the

'r-

Page 45: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

.. [ 45

n n-dimensional sphere { x € as. : ~ I tfo; (x) 12 = ,2 }.

i=l

We say that the map T: B --+ X satisfies the condition (A), with res­

pect to the Schauder basis {es}, if there exists no E N such that, for all

n > no and for all x E a..S, and y E Tx, there exists j ~ n such that

cfo; ( y) -::/=- cfo; ( x).

In particular, we say that the map T: B--+ X satisfies the cond­

ition (B), if it satisfies the condition (A) with no = I.

Finally, the map T : B --+ X satisfies the condition (C), if

x ~ Tx for all x E a s ..

The following examples prove the mutual independence of the

condition (A) and ( C).

Example 1. 1. ((A) does not imply (C) ).

Let H be a real and separable Hilbert space with inner product (,)

and orthonormal ba~is {ei}. Fix a E H such that II a II = 2r - e, where

e: < r is a real and positive number. We define Tx = Sa + a - x',

where sf = { z E H: II z Ii ~ e:}, for all x E Sr. The map T has a fixed

point on as,. Let x = [r/(2r - e:)]a and z = [e:/(2r - e)]a, then we

have ,; = z + a - x with II x II = r and II z ii =e:. Consequently,

; is a fixed point of T on as, and thus (C) does not hold. On the

other hand the map T verifies the condition (A) with respect to every

orthonormal basis {ei} with the property that (a, e;) -::j=.0 for infinitely

many indices j. Suppose now that T does not satisfy the condition (A).

Then one can fmd x and z such that (z + a - x) E Tx, XE onSr, and

(z + a - x, e;) = (x, e;), for j = l, ... ,n. By the second and, third n

prop~rt y, lJ [ (z, e;) + (a, e;) ]2 = 4,.2; on the other hand j=l

Page 46: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

46 ]

n ~ [(z, ei) + (a, e;)]2 < 4,.2, since (a, e:) =I= o for infinitely many j.

j=l .

This contradiction completes the proof.·

Example 1. 2. ( (C) does not imply (A))

Let {ei} be an orthonormal basis of H and e < r a real positive

number. We define, for all x E Sr

00

Lx = {h E H: h = x + ~ (y, e,) e;+l for some y ES, + x}. i=l

lt is easy to verify that the map Lis without fixed points on as,. The

map L, however, does not satisfy the condition (A) with respect to the

orthonormal basis {e.}. In fact, for all n E N, the element ren € onSr is

such that

00

(ren, e1) = (re,, + L: (re,., e,) e;+ 1, e;) for j = I, ,n. i=I

Remark I. 6.

Obviously, in the definition of condition (A), the choice of the incex

no depends, in general, on the basis. Moreover the example I. 1 shows

that no may tend to + oo, if the orthonormal basis {e;} changes.

Proposition l 2.

If T: B, --+Xis w. u. s. c. and does not sati~fy the condition (A) with

respect to a Schauder basis {e;}, then T has fixed point in S,.

Proof: Ii T does not satisfy the condition (A) there exists an infinite

sequence {111,} of positive intergers with m -o +oo and a sequence

{xk} with x" € o B,, llk

Page 47: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

( 47

for all k e: N, such that </li(Y) = <fai(xk) for j= 1, .. ,n1, for some ye: Tx1 ..

. h . n,, T nk By contruct1on, t ere exists ze .: x ,

nk such that znk = xnk + / 1k with xn" = }.;

i=I

00

<fo; (xn1')ei

and y~~ = }.; <fo; (zm) e;, since {xnk} is bounded there i=nk+l

existg a subsequence {xnkcsi } of {:/11'} such that xnk<•> --+ x .: ST.

Moreover. the corresponding subsequence {znk<s1 } of { znk}

converges also weakly to x. In fact. this follows from the bounded

ness of the sequence {znk<•> }and the map T, (see Proposition l.l), since

( zn1'<•1 • e;) -o (x, t-;) for a!l j E N. Finally. since the graph of T is

weakly closed, one has x E Tx (see Remark I 1)

2. Definition of a Topological Degree for Multivalued

W. U. S. C. Maps

Let T : B~ __,. X be w. u. s. c., and {ei} a Schauder basis in X with

· biorthogonal system {,Pi} (see before). Let Xn = [e1 , , en] the linear

hull of the first n basis vectors, s: the sphere of radius r in Xn, and

08~ its boundary For fixed n.: N, we define Tn : B~ --o- Xn by

,Tn (x1 , .. ., Xn) = { (y1, · , y,.): y E Tx},

where Xi = .p;(x) and Y• = rfo;(y) for i = l , ... , n.

If T ; S ,--o- Xis w. u. s. c. and satisfies the c0nd1tion (A) with respect

to the Schauder basis {e;}, then Tn : B~ ~ Xn is.f~~ed point free on

Page 48: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

48 J

cB;, for all n > n0• In fact, if we had x E Tnx for some x E oB~

there would exist y E Tx with x n ~ <Pi (x) ei and hence

i=I

q,j (y) = </J;(x) for j = 1 , .. , n, contradicting the condition ( 4). More-

over, Tn is u. s. c. for all n-~ N, as composition of map T with

imbeddings and projections.

Definition 2. I.

Let T: Br --? X be w. u s. c, with convex values. If T satisfies th~

condition (A), with respect to the Schauder basis {e;}, we d~fine

Deg(l-T, S,, 0), the degree of Ton S, with respect to 0, a~ follows: Let fl

L., be the set of all integers togethers with { + oo } and { -- oo }. Then h

Deg (I-T, S,, 0) is defined to be the subset of Z given by:

'· Deg (l-T, S,, 0) = {y E Z/there exists an infinte sequence {Ilk}

of positive integers with n,, -o = s'uch that Deg ( /-T11

k ,B~", O) - o y}.

Remark 2. 1.

h

Deg U-:-T, S,, 0) # q,, since Z is co.npact. In particular, if y is a

(finite) integer, then Deg (l-T , h~k. 0) -o y iff Deg (I-T , Bn" O) ni, nk r '

= y for all but a finite number of n""

Remark 2. 2.

The degree Deg (I-T , B~k, 0) used in Definition 2. I is the Cellina n"

-Lasota degree [3 ]. It is. well .defined for all nk > n0 •

In fact, the map T is w. u. s. c., bounded, with convex and closed

Page 49: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

[ 49

values (see Proposition 1. 1 and Remark 1. 5). Hence

1-T : B~" - X is u. s. c., with convex and compact values. nk n"

The following theorems gather the main properties of the degree of

Definition 2. 1.

Theorem 2. 1. (Solution property).

Let T : B, - X be w. u. s. c., with convex values, and such that condi­

tion (A) holds with respect to the Schauder basis {ei}. If Deg (I-T, B,, 0)

:f=. {0}, then there exists an element x E B, such that x E Tx.

Proof: If Deg (I-T, B,, 0) ::/= {O} there exists an infinite sequence

{nk} of positive integers with mo -o + oo such that deg (I-T ,B~\O):f=.O. m

By the solution property of the Cellina-Lasota degree it follows that

for every nk there exists x n,, E B~7' such that xm E T xn,'. The rema­nk

ining part of the proof is analogues to that of the Proposition I. 2.

Theorem 2. 2. (Homotopy invariance).

Let H: Br x [O 1] - X be aw. u. s. c. map such that H(x, t) ts convex

for every (x, t) E B, X [O, I]. If the family of the maps Ht = H(· , t):

Br -;. X verifies the condition (A) for all t E [O, I], with respect to the

Schauder basis {e1}, and if there exists n E N such that no (Ht) ~ n, for

all t E [O, l], then Deg (I-Ht, B,, 0) is independent oft E [O, l].

Proof: For all n ;;;;. n, H,.: B~ x [O, I]-;. Xn is a homotopy such that

0 ~ (·, t)) (a B~) for 0 ~ t ~ 1. By the homotopy property of the

Cellina-Lasota degree, we have that Deg (I-Hn (· , t), B~ , 0) is inde­

pendent oft E [O, l]. Hence also Deg (I-Ht , B, , 0) is independent of

fE(O,l].

Theorem 2. 3 (Excision property) ,,,g;

Page 50: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

50 1

Let T: B, - X be w. u. s. c., with c.onvex. values. If T sati:sfies, the

condition. (A), on aS).., with respect t.o the Schauder basis {e;J, for any A

with r ~A~ R, then Deg (l-T, B,, 0) = Deg (l-T, BR, 0).

Proof: We have that, for all n">no, deg(l-Tn, B~, O)=degEf-T, Bn, 0) R

0 0 sinee 0 ~ (l-Tn) (B; '-B; ), where B~ = B~'-aB~ .

Theorem 2. 4. (Borsuk type theorem).

Let T :.Br - X'be w. u. s. c., with convex values If T satisfies the

condition (A), with respect to the Schauder basis (e,}, and is odd on

3B, , then Deg(I-T, B, , 0) is odd (i. e., 2m ~ Deg(l-T, B, , 0) for any

integer m). In particular, {O} =f=. Deg(I-T, Br , 0) so that the equation

x i: Tx has a. sotutdon in Br •

Proof : For all n i: N, Tn : B~ - Xn is an u. s. c. map, with compact

and convex values, which is odd on 3B~. Hence, for all n >no,

deg(l-Tn,B;, O)is odd. In fact, the homotopy

H 11(x, t) = [l/{l + t)] (l-Tn) x + [t/(1 + t)] (-I+ Tn) x

is admissible in the sense of [3], hence

deg (Hn(", 0) B~, 0) =deg (H,.(",l), B~, 0)

and there exists ii i: N such that n ~A') ~· ii , for all Ai;fr , R],

r

Page 51: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

[ 51

where H11(· , 1) is an odd map on aB;. The fact that deg U:fn(·, 1),B',1,0)

is an odd: integer can be shown by constructing a sequence

(see [5] , Lemma 2.3) of singlevalued continuous odd maps

f ~ : B~ __,,. co R(Hn (· , 1)) , where co R(Hn (" , J)) is the clo3ed

convex hull of the rangeR(l/,. (· , 1)) of the map H,.(· , l), converging

to Hri(· , I) in the sense of [3J. Consequently, Deg (l-T, Br,O) contains

only odd integers .

Theor.eJn 2.5. (Boundary value dependence).

Let T, L : B, __,,. X be two w. u. s. c. maps, with convex values, which

satisfy the condition (A), with respect to the Schauder basis { et}. If

Tx=Lxfor all x E aB,, then Deg (l-T, Br, O)=Deg (l-L, Br, 0).

Froof: For aB nEN and for all XEoB~,,Tn x=Lnx. For all n >ii

=max {no (T), no(L)}, deg (l-T,., B~,O) and deg (I-L,., B~, 0) are well

defir.ed. Hence the homotopy

H,. (x, t) = (l-t:) (l-T,,) x+t (I-L,,)x

is admissible in the sense of [3] for all n>n. Therefore

deg (I-Tn, B~, 0) =deg (I-Ln, B~, 0) for all n>n,

and hence Deg (I-T, B,, 0)= Deg (l-L, Br, 0) .

3. A SPECIAL CLASS OF MULTIVALUED MAPS

In this section, let H denote a real separab1e Hilbert space, We give a

sufficient condition for a map Tto satisfy condition (A) with respect

to every orthonormal basis { et } in H. To this and, we first prove

following

Page 52: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

52 ]

Proposition 3. 1.

For a map T: B, --+ H the following assertions are equivalent

(i) The map T satisfies the condition (B), with respect to every

orthonormal basis {e;}.

(ii) For all x E 3B, and y E Tx we have (y , x) -::j=. II x II 2.

Proof: (i) =>(ii). Let x E 0B, and {ei} be an orthonormal basis of H,

where e1 =x/r . By assumption, the map T satisfies the condition (B),

with respect to the orthonormal basis {e;}, and x E 01 Br = {x E oBr :

(x, e1)2 = r2}. Hence (y, x) * II x It 2 for each y E Tx.

(ii) => (1). Let {e;} be an arbitrary orthonormal basis of H. lf T did

not satisfy condition (B) with respect to {e;}, then for all n E N we

could find x E on B. and ye Tx such that (y, e;) = (x, e;) for}= I, ... ,n,

hence

(y, x)= II x I! 2, contradicting (ii).

Theorem. 3. 1.

If the map T : B, _,,. H is bounded and satisfies the following

condition:

( I There exists a real number k > 0 and an element a E H such I I that, for all x E oBr and y E Tx, one of the following I

(b) ~ conditions hold : I j {I) (x, y) * 11 x 11 2 ;

I j (II) I (a, x-y) I > k ; l

then the map T satisfies the condition (A), with respect to every

Page 53: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

[ 53

Orthonormal basis {e,} in H.

Proof: Let {e;} be an orthonormal ba·sis in H. Since T is bounded,

there exists no e N such that

\ ~ (a, ej) (y, ej) / < k

j=l1o

for ally € TB,,

Now, if the map T did not satisfy the condition (A), with respect to

{e1}, then for all n E N we could find x € onBr ar:.d y € Tx such that

(x, e;)=(y, e;) for j=: I, .. •'!·

If x verifies condition I) of (b), this contradicts Proposition 3. 1. On '

the other hand, if x verifies condition II) of (b ), , this gives a contrad-

iction for n ~ no , since

k .,;;;, I < a , x - y ) I =J ~ ( a ,,ej ) ( y, e; ) · / <k . · j=m+l

Remark 3. I • ...... 11'

· If T : B, -+ II is a w. u. s. c. map which si,itisfies the condition (b) of

Theorem 3. 1, the~ de~ree of Defi~itiori'"3.1 is well defined with resp­

ect to every orthonormal basis [ ei ] in H.

Remark 3. 2.

The class of singlevalued weakly continuous maps which satisfies the

.condition ( b) of Theorem 3. I strictly includes the class for which the

Canfora-Pacella degree theory applies ( see [ 2 ] and [ 6 J ) .

At last we give a fixed point theorem .

Page 54: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

SA l

Theorem 3. 2.

te( T : S ~ H. bt;, w •. ii. ~. c .. • SupJJPSe that th.ere exis.ts q number fi suah

that , for all n > ii , the condition ( y , :>; ) .~ II :>; n 2 holds far any

x " on B, and y "Tx. Then T has afixedpoint in B,.

p..,oof. We consider the homotopy H (t, x) = t ( I~T) x. Then the

proof of the theorem follows from the proposition l '2.

REFERENCES

[ 1 ] C. Berge , Espaces topo/ogiques, fonctions multivoques, Paris,

Dunod, 1966 . .

[ 2 ] A. Canfora, la teoria de! grado tOpologico per una classe di

\.~

operatori non compatti in spazi di Hilbert , Ric. di Mat . , '

[ 3 ]

38( 1979)' 109-142.

A . Cf;lllin~-A, . ~a~Q.ta., ~ ~~w apprQ.acli. t.Q the defi11it.iott of

topological degree for multivalued mappings, Atti Accad. Naz.

Lincei Rend. Cl. Sci. Fis. Mat. Nat., (8) 47 (19()9) 434-440.

[ 4 ) E. De Pascale-G. Trombetta, Un approccio al grado topolog­

ko per· le appHcazioni debolmente continue in spazi di Banach

riflessivi, Le Matemattche, (to appear).

[ 5 ) P. M. Fitzpatrick-W. V. Petryshyn, A degree theory, fixed

point theorems and mapping theorems for multivalued nonco­

. mpact mappings Trans. Amer. Math. Soc., 94 (1974). 1-24.

l1 6 ], f .. :F.ac:~U~. U'gJJ~.QQ,t.QRolQg,(W;; P~.f Q,}1)~a:twi 11011: 1::0 .. mpatti 111 spa?i dj a~u_a~h q()n, iJ c;f;qq~ ~.tr~tt~A1~:11-t~ C-Qnves,~Q;, Rla• di. Mat., 29 (1980), 277-305,

)"

Page 55: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

Jnanabha, Vol. 16, 1986

ON CERTAIN OPERATIONAL GENERATING; AND

RECURRENCE RELATIONS t

By

HUKUM CHAND AGRAWAL

Department of Mathematics, Bundelkhand' Post-Graduate Coll.ege,

Jbansi - 284002, U. P. , India

( Received : June 24, 1984 ; Revised: February 3, 1986)

ABSTRACT

In th is paper we have deduced certain operational generating

and operational recurrence relations for the polynomials sets, involv-(,0<) <n>

ing the operators R11

,,. and S°',,. defined below. We have also given

( as an illustration ) the, generating and recurrence relations for the

generalized Rice polynomials .

1. INTRODUCTION

In the recent literature several authors have used various combinations

of the differential operator to get generating and recurrence relations .

For example, Mittal* ( [3]. [4]) has given certain operational

t This work was carried out under a fellowship of the University Grants Commission ( Government of India ) .

* For a systematic presentation of val!ious:. classes of' gen:emtirtg: fun.e­

tions that are rather easily derivable consequences of Lagrange's

expansion theorem, see Chapter 7 of the latest work on the subject

by Srivastava and Manocha ( [8] , p. 354· et seq~ ) •

Page 56: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

56 1

generating and recurrence relations involving the differential operator

Tk = x ( k + xD. ), where k is a constant, for the polynomial sets; and,

as a sequel, he has· given some_ characterizations for special functions •

He has also given the generating and recurrence relations for the

generalized Laguerre, Hermite, Bessel, and _Jacobi polynomials (see

also Srivastava and Buschman [ 7 ] for a unified study of these

clas~es of generating functions) .

In this paper an attempt has been made to derive the operational '

generating and recurrence relations with the help of the operators

R~"'k and s~nl, which. are the com_binati.ons of the finite diffcrenc~ ' . ' - . "

operators !::,,"' ahd \}'"' , defined by (for n= 1,2, ... )

!::,,"' { f' (a) } == f( d + l )- f (a),

1::,,: { f ( a ) } = Lo. -{ 1::,,:-1 f ( o: ) } (I. 1)

and

\7"' { J ( a ) } = /( ~) - f _( o:-1 ) ,

~~ !

v: { f (a ) } v"' { v:-1 Jc o: ) } , (1. 2)

respectively.

In § 4, we obtain certain generating and recurrence relations for

. the generalized Rice polynomials [2].

2. Operational, Generating And Recurrence Relations

Consider the operator

)r

~

.l

Page 57: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

I 57

n . R~~! = IT [ (a - j) k + ( a - j) ( 1>: -· j +. 1 ) /':;,"' ]

j= I

n :=(-)"(1-a)n TI [1>:6"'+k+j-l], (?..I)

j=l

where k is constant and n a positive integer. ·

It can be proved easily, that

R~~k { { a )r } = { k + r )n { a - n )n+r

and

\ [a, (c); x ll R~~k+mn l c+iFD (d); J~

=(a-n)n (k+mn) c F [ 1>:, (c), k+ (m+ 1) w x] n +2 D+l '

(d), k + mn" '

Consider the function G~"'> (x, y), defined by

00

G~"') ( x, y) = ~ (a)r Ar (x, s) _L , r=O r!

where, A, (x, s) are independent of a and n.

Using the Lagrange expansion formula [5]

00 tn IT 1>: (a + mn + l)n_J -- = (1 + v)"'

n=O n!

and the well-known result [5]

{l + v)"<Tl 1-m-v

oo (1>: + ( m + 1 )n) ~ tn

n=O n

(2.2)

(2.3)

(2.4)

(2.5)

(2.6)

Page 58: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

58 l

where v = t( I + v )m+I, m being a constant. The following results can

be proved easily;

( 11. - n) R~~i'Hmn+I[ k G~rxi ( x, y) + 11.tc, .. G~rx> ( x, y,) ]

= R~~\+mn+I { G~ .. > (x, y)} - n (m+ 1) (11.-"--'n) R~~'r1<+mn+I{ G~ .. >(x,y) },

(2.7)

( 11. - n) R~°:.>1' 7c+mn+I [ k G~Ot.J ( X, y) + al:c,rx G~rxJ ( X, y )]

= R~~l k+mn { G~rx'(x,y) }- mn(11. - n) R~°:'l' k' mn+I { G~Ot.J (x, y) };

(2 8)

(11. - n) 6 .. [ R~~>k+mn ( G~ .. > ( x, y ) ]

I - -- R<rx> { G'rx> (' a-n-l n+I'k+mn s X,J)}-

- ( k + mn ) R~~\+,,.,. { G~ .. , ( x, y ) }, (2 9)

( IX - n ) tc, .. ( R~;> k+mn ( G~Ol.l( x, y) ]

I - . R<0t.> { a<rx> ( - 11.-n-r n+I' k+mn-1 s x, Y ) } -

- ( k + mn - n - I ) R~~>k+mn { G~ .. > ( x, y ) }, (2.10)

R~~>k+mn+l { G~Ot.) ( x, Y ) }

(Of.) (O<) (O<) (O<)

= n (a - n)R,.-p k+mn+I { G. ( x, y)} + K,.. Hmn { Gs ( x, y) },

(2.11)

oo tn . (O<)

E - r ( IX - n + I ) R,.-p k+mn+ 1 0

n! . n=

y-

cir

Page 59: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

k Gs (x, Y) + [

(od 00

2: p=l

[ 59

' p (Ot) J (a)p /::,"' Gs (x, y)

00

(<Z)r A. (x, s) ( k + · 2: (-)P (-r)v] (y(I + v))" 00 p=l

= r (a) ( 1 + v )k 2: (k + r)r!

and

r=O

oo (o<)

2: ..!:..__ I'( a - n + I ) R,.-i• 1.:+"111+1 n=O n!

Cod (0t) ]

[kGs (x,y) + al:,oe Gs (x,y)

k (Ot)

= I'( a ) ( 1 + v) Gs ( x, y ( 1 + v ) ),

~ _ r( oc - n) R,.•1.:+mn+l (Gs (x, Y)) 00 t'TI [ (Ot) (0.)

n=O n! .

(Ot) (Ot) J - n(m + I) (a - n) R,,~r k+mn+l (Gs (x, Y)

(Ot)

= r(a) (I + v)k G. (x, y(l + v) ),

oo tn (o.) (Ot)

~ - I'(a - n) [R,., 1.:+mn ( Gs (x, y)) n=O n!

(Ot) (0.)

- mn (a - n) R,,.-1' k+mn+l ( Gs (x, y) ) ]

(Ot)

= r(a)(l + v)kG. (x,y(l + v)),

00

~ n=O

tn (Ot) (Ot)

-,- I'(a ,...-- n) Rn, k+mn+l{ G 8 (x, y)} = n.

(2.12)

(2.l3)

(214)

(2.15)

Page 60: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

60 ]

=r(a) (l + v)k+l c:Ot.) (x, y (I + v) ), (2.16)

where, v = t (l + r)m+1.

3. THE OPERATOR S"' ,k

· In this section we deduce some operational generating and recur­

<"'-> rence relations for the polynomial sets { Gs (x, y) }. But this time we

shall make the use of the operator S"', k, defined by

I S0t.,,, = I-ix [k + (1 - a - k) \7"' ], (3.1)

where the operator \7"' is given by ( I.2) and k is a constant. It is easily

seen, by induction hypothesis, that

s:.k { (ix)r} = (-)'! (k - r)n (oc)r_n (3.2)

where n is a positive integer and r is any integer.

Also, we have

s:,k l n

(T-) 11 [ (1 - IX - k) \7"' + k + j - I J. -a" j=l

(3.3)

One can easily, show that

s:+;•Hmn+l [ (a + n) !::,"' G~"'+ni (x, y) - k G~"'+n> ( x, y )

= ( a + n) s:+n+l' k+mn+I { G~"'+n+i ( x, y ) }

+ n ( m + 1 ) s:+1n' Hmn+I { G~"'+n> ( x, y) }, (34)

)--

,

1.

Page 61: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

[ 61

s:+~· Hmn+l [(a + n) 60. G~°'+n> ( x, y ) - k G~°'+n> (x, y) ]

- ( + ) sn { c<0<+11~l> ( ) } - ot n 0<+n+l' k+mn s . x, y

+ Sn-1 { G<°'+n> ( ) } mn 0<+n' k+mn ~1 s x, y ' {3.5)

( a + n ) 6°' [ s:+n' ktmn ( G~°'+ni ( x, y ) ) ]

_ ( + )sn+l { G<°'+n+u ( ) } - ot n 0<+11+1' k+mn-1 s x, y

+ ( k + mn) s:+n' 1,+mn { G~°'+"> ( x, y ) } , (3.6)

[ n ( <o.+nl ) ] (IX+ n) 60< So.+n' k+mn Gs ( x, y )

n+l { (o.+n+l> } = {a +n) Sat+n+l' k+mn-1 Gs { X, Y)

n { <o.+nl } + ( k + mn - n - 1 ) So.+n' ktmn Gs ( x, y ) • (3.7)

n { <o.+nl } ( a + n - 1 ) So.+n' ic+mn+l Gs ( x, y )

n { <0t+nl } = ( a + n - 1 ) S or.+n' k+mn G • ( x, y )

n" 1 { <or.+11-1) } - n Sor.+n-1 k+mn+1 c. ( x, y) ·

' ' (3.8)

00 111 ( a )n }.; n' n=O .

n-1 [ (Ot-!-n) Sor.+n, kt-mn+l ( ot + n) 6°' G. .. ( x, y )

(or.+n> J k (0<+1l - k G 8 (x,y) =a(+ v) c. (x,y/ (l+v)), (3.9)

Page 62: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

62 l

co tn ( a )n r(· ) S" . f 0'a.+n+1> ( . ) 1 ~ --i-- 0( + n 0<+n+l' k+mn+l s . x, y . n=O n. L

n-1 { (o.+n> } ] + n ( m + ! ) s .. + .. • k+mn+l a. (x, y )

(0<+1> = a ( 1 + v )k G 8 ( x, y / ( 1 + v ) ), (3.10)

~ --,- ( oc t n ) S"'+n+l' ktmn Gs ( x, y ) 00 tn (a )n r .. < f (O<+n+ll . }

n=O n.

n-1 f (0<+n> J + m n Sa.+n' Tc+mn+I G. ( x, y ) }

=oc(l+v)1' a. (x,y/(l+v)' (0<+1> )

(3.11)

and

00 (n ( oc )n " f (0<+n> }

~. n! S"'+n' k+mn+l c. ( x, y) n=O ·

( 1 + v )k+l G(O<) ( x, y I ( 1 + v)) = ( 1 - mv) s (3.12)

where,

v ;:::: - / c i + v r+1

.·. 4. APPLICATIONS

In this section, we give certain generating and recurrence relations

involving generalized Rice's polynomial [ 2 ]

(0<' 13> . ( 1 + !X )n H .. (p, q;x)= n!

;

,F, c- n, I+" + ~ + n,p; x] 1 + a, q;

)v·

~

Page 63: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

. ~ .;

with the help of the operational relations obtained ~n § 2,

From the equation ( 2. I I ), we have

<"+P+l { <"+P+ll .. } Rn' k+mn+l Gs ( X, Y)

<0t+P+ll { <ai+P+ll } =n(a+(3-n+ I) Rn-1' k+mn+l Gs { X, Y)

. <0t.+P+ll { <"'+P+ll }. +Rn'k+mn. Gs (x,y)

where,

( 63

(4.1)

<0t+P+I> n ~ Rn' k = I1 · ( a + (3 + I - j) k + (a + (3 + 1-j)

j=l -'l

(oc+(3-j+2).6.(3 J Let,

(0<+!1+1> -s (0<-s'ill Gs ( x, y ) = ( - x) P s ( I -2 x) , (4.2)

- . (Ot'ill • • • where P s ( x ) 1s the Jacobi polynomial [ 6 ).

It is obvious that

{. (et+P+ll .. } . '!et+ P+2i

.6.p Gs (x,y) =Gs-1 (x,y) •

Using ( 2.2 ) , one can easily show that

<0t+ll+ll ·{ <0t-s'Pl } R,,,,. . . P • . . •. { 1 -:- 2 x ) . . . . .

(0<-s'l3l = ('.1 + (3- n + l)n (k)n H, (k + n, k; x). (4.3)

<et+P+ll Putting the value of Gs { x, y ) from ( 4.2 ) in ( 4.1 ) and

. making the use of ( 4 .3 ): we get

Page 64: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

64]

(k + (m + 1) n) H!"'' P> (k + (m + 1) n + 1, k +' mn + 1; x)

= n H!°'' P1 (k + (m + 1) n, k + mn + 1; x)

+ (k + mn) Ht"' P1 (k + (m + 1) n, k + mn; x). (4.4)

Similarly, starting from (2.9), (2.10), (2.14), (2.15) and (2.16) and

using (4.2), (4.3) we can easily derive the following formulae :

1:.p [ (a + ~ - n + s + 1)11 H!°'' Pi (k + (m + 1) n, k + mn; x) J = ( a + ~ - n + s + 2 )n-1

( k + ( m + 1) n) H!°'' B> ( k + ( m + 1 ) n + 1, k + mn, x)

-(a+ ~-n + s + 2)11_1 (k + mn) Ht'B 1(k+(m+I)n, k+mn;x),

(4.5)

613 [ (a + ~- n + s + 1 )11 H~"''B (k + (m + 1) n, k + mn; x) J = (a + ~ - n + s + 2)n_1 (k + mn - 1)

H~"'·P (k + (m + I) n, k + mn-l; x)-(ix + ~-n + s + 2)n_t

(~ + mn - n - 1) H~"'·B> (k + (m + 1) n, k + mn; x), (4.6)

~ ~r(k + mn + n) [<k + (m + l)n)H!"'' 131 (k + m + l)n+I, n=O n! r(k + mn + 1)

k + mn + 1; x) - n (m + 1) H!"'•13 > (k+m + l)n, k+mn + l; x) J = (1 + v),. P~"'·B (1 - 2 x (l + v)), (4.7)

).--·

l

Page 65: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

(65

00

tn r(k + mn + n) [ k + mn) H~°''P> (k + ( m + 1 ) ~. n:o n! r(k + mn + 1)

k + mn; x) - mn H!°'' 13> ( k + (m + 1) n, k + mn + 1; x) J

= (1 + v)7i P!°''P1 (1 - 2 x (1 + v ) ) (4 8)

and

oo (k + (m + I) n ) ~ t" . H!°'' 131 (k+(m+l).n+l,k+mn+_l;x)

n=O n ·

(1 + v)k+I p(°'•f3 (1 - 2 x (1 + v)), 8

1- v (4.9)

where, V = t (l + vr+I.

In a similar way more generating and recurrence relations can be

obtained for generalized Rice's polynomials from (3.4) to (3.12).

We conclude this paper ·with the remark that in (2.4), if y = 1

and Ar (x, s) = P~°.!.r ( x ) , then

G~°'> (x, 1) = ~ (a)r P!~r ( X), r=O r!

The polynomials G~°'> (x, 1), satisfy the functional relation

D,°' { G~°'> (x, 1) } = G~0:.!1 > (x, l),'

Page 66: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

66 J

which has been studied by the author in bis recent paper. [ J ] . Th us

we can get the operational generating and recurrence relatrori~- for~ the

polynomials G~°'-> (x, 1), which satisfy the above functional relation,

directly from the results derived in § 2 and · § 3 .

Acknowledgments

My sincere thanks are due to Professor R. P. Agarwal for his'help during the preparation this paper. I am also thankful to Professor H. M. Srivastava for his valuable suggestions.

REFERENCES

[l] H. C. Agrawal, On a unified class of polynomials, Indian J pure Appl. Math. 12 (1981), 472-491.

[2] P. R. Khandekar, On a generalization of Rice's polyno01ial. I,proc. Nat. Acad. Sci. India Sect. A 34 \1904), 157-162.

[3] H. B. Mittal, Polynomials defined by generating relation,;, Trans. Amer. Math. Soc, 168 (1972), 73-84.

( 4] H. B. Mittal, Unusual· generating rtlations fur · polyno'm1al sets, J. Reine Angew. Math; 271 (1974), 122-IJ8.

[5] G. Polya and G. Szego: Aufgaben und Lehrs~ize aus der Analysis. J, Springer-Verlag, Berlin, 1964.

[6] E. D. Rainville, Special Functions, Macmillan, New York. 1960.

[7] H. M, Srivastava and R. G. Buschman, Some polynomials defined by generating relations, Trans. Amer.· Math. Soc. 205 (1975), 360-370. Addendum, ibid. 226 (1977), 393-394.

[8] H. M. Srivastava and H. L. Manocha, A Treatise on Generating Functions, Halsted Press (Ellis Horwood Limited, Chiche­ster), John Wiley and Sons, New York, 1984.

'!iv

~

Page 67: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

Jfiiinabha, Vol. 16, 1986

SOME LINEAR AND BILINEAR GENERATING RELATIONS

INVOLVING HYPERGEOMETRIC FUNCTIONS OF

THREE VARIABLES

By

M. B. SINGH

Department of Mathematics, Janta College,

Rewa - 486001, M. P. , India

and

B. M. L. Shrivastava

Department of Mathematics, Government Science College,

Rewa - 486 001, M· P. , India

(Received: July 12, 1984 ; Revised: February 3, 1986)

ABSTRACT

The aim of this paper is to establish several linear and bilinear,

generating relations involving hypergeometric functions of three

variables · Some specializations, relevant to the present discussion,

are also discussed .

1. INTRODUCTION

If we use the notation

(a )n = a ( a + I ) ( a + 2 ) .. '( a + n - 1 ) ; ( a )0 = 1,

where a is arbitrary and n a positive integer, then the generalized

Horn functions of three variables, defined by Pandey [ 5, p. ll5],

Dhawan ( [ 2, pp. 241 - 242] , [ 3, p, 43 ( 1. 1)]), and Sriva5tava

[ 9, p. 105 ( 3. 5 ) ] , are as follows :

Page 68: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

68 1

GA {a,~,.~'; y; x,y, z)

00

l: {a )n+p_m { ~ )m+P { ~' )n ( Y )n+P-m m! n! p!

xm yn zP, m,n,p=O

Gn ( IX, ~1> ~2' ~a; y; x, y. z )

00

~ m, n,p=O

( a )n+p_m ( ~1 )m ( ~2 )n ( ~3 )P ( y )n+p_m ml n!p!--

3GA<ll ( IX, ~l> y; x, y, z )

= ~ ( IX )n+p-m ( ~l )m+P .. xm yn zP, m,n,p=O ( Y )n+p_m m! n! p!

3GB<l> ( a, ~l• ~2; y; x, y, Z )

00

xm yn zP,

~ ( a )n+p_m ( ~1 )m ( ~2 )n

( Y )n+p_m m ! n ! p ! xm yn zP,

mn,p=O

Ge ( IX, 0:1, ~. ~1; y; x, y, z )

- ~ { a )p_m ( IX 1 )n ( ~ )m+P ( ~1 ),.

m,n,p=O { Y )n+p_m m ! n! p ! xm yn zP,

Ge* ( IX, ~. ~1; y; x, y, z )

~ ( IX )m+P ( ~ )m+n ( ~l )n p xm yn zP m,n,p=O (y)m+n-Pm!n!p! '

( I. I )

( 1.2)

(~:1.3)

{ 1.4 )

( 1,5)

( 1.6 )

For the precise regions of convergence of each of these triple

Gaussian hypergeometric series, see the latest work on the subject by

Srivastava and Karlsson ( [ 12 ] , p. 87, Section 3 .4 ) .

In the present investigation we also require the following relations

(See, e. g. Srivastava and Mariocha [ 13 ] ) :

jiY·

~

Page 69: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

[ 69 ..

p(<1.-m-n, ~-m-n) (x = (-a-~)m+n(!_-:-.})m+n (x+ 1)"' m+n ) (m+n)! 2 x-1

2 2F1(m-<1.-{)+n, -a; 7a-{); x+l ), (m, n=O, 1, 2,. .. ), (1.7)

~ (u-l)n p(a.-n, {)+n) (~+u) 2F1(-n, 8-y; 8; t) n=O n 1-u

-ut ) _ r(8) r(a+a.-y) t"' (1-u+ut)-P 2F1({); y; 8+<1.; 1-u+ut ' - rca+°'> rca-r) (LS)

(1-t)-1-0.. exp (-t(x+y)) oF1 (-;1+°';~) 1-t (l-t)2

~ n' ~-·- L"''> ( ) L<"'> n=O (I +a)n n x 11 (y) 111

,

00

(1.9)

p~"',a>(x) = (I~~),, 2F1(-n, l+oc+{)+n; l+a; l 2

x), {1.10)

2F1(a, b; c; z) = (1-z)"-a-b 2F1(c-a, c-b; c; z), (1.11)

GA(a, {)1, {)2; a.; vt, v(l-2t), v(l-2t))

= ;;" n! (v-1) p(-n, {)i+{)2+n) (l+v ) n=O ({)1 +{)2)11 n 1-v

p(~1+{)2-l. -{)2-n) (1-2t), n

GB(a, {)i, {)2, {)3; a; vt, v(2t-l), v(2t-1))

(I.12)

_ ;;" n! (v-l)np(-n, l-{)2-{)a+n) (. l+v) n=O (l-{)2-{)a)11 n · 1-v .

Page 70: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

70]

p(-!32-{33, !31 +!32+ {33..,.-l -n), {l-2t), n (1.13)

;; (,\)~ zn oF1 [-; -y] = (1-:z)->. oFJ-; .y(z-1)]. n=O n. 1-,\-n; Ll-,\;

i; (vb_ A+IFB(-n, (a); (b); x) ir~ n=O n!

= (f-t)-v A+lFB(-v, (a); (b); -~). t-I

where (I. 7), (1.8) are known results given by Srivastava

(I.14)

(1.15)

([IO, p. 92(6.4) J, [11, p. 28, (6.7) J ), l}.9), (1.10), (1.11) are given in

Rainville [6,p. 212,p. 254,p. 60], (1.12), (1.13), (1.14) are due to

'vV

Shrivastava [7,p. 154, (3.1), (3.2) J, [8,p. 131, (6. 3-37)), and (l.15) ~

is given by Chaundy [I, p. 62, (25) J. ,

2. BILINEAR GENERATING RELATIONS

We establish here the following bilinear generating relations :

~ (1-.:\)r GA ( >., a,.13; .:\ - r; xy (I -z) , r = 0 r!

x (1 - 2 y) ' x (I - 2 y) )~y 1-z 1- z

= (1 - z) .:\ - 1 ~ n! n = 0 (ix + !3)n (x - l)n Pn (-n, ix+{3+n)

( l + X ) Pn (a + 13 - I, - 13 - n) (1 - 2 y), (2.1) I+x

Page 71: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

~ (I->.), Gl3 ( "'.a, ~' n " - r ; x y ( l - z ) , r=O r!

x ( 2 y - 1 ) x ( 2 _Y · 1 ) ) z• 1-z ' 1-z

,\ - l oo n1 = ( 1 - Z) 1: ·--n ( X -1 )n

n=O (l-~-Y)

p .. (- n, l - ~ - y + n) (~) 1 - x

[ 7l

p,.< - ~-y, IX + ~ + Y - J-n) ( 1- 2 y ), ( 2.2 )

00 1 ~ ----- 3GA<l> (ex fl. ( r = O ( I + ~ )r r! ' - I-' - Y ; a ; 1 - X) ( 1 - t ),

- t ( x + y ) 1) ( yt )' l - t ' ( 1 - t )3

oo I = xl3(1 - t )1+213 ~ n. Ln<l31 ( x )£11<!3> ( y) 111 , ( 2.3)

n=oO+~)n

~ ( ~1 ?' 3GBCI> ( a, ~1 + r, ~2; a; xy, x ( 1-2 y ), x ) ( x (1-y) )1' r = 0 r. ·

00 1 =exp(x) 1: n. (x-I)np11(-n,~1+~2+n)

n = 0 ( ~1 + ~2 )n

( ~ ~: ) p 11( ~1 + ~2 - 1, ~ ~2 - n) ( 1- 2 y ), ( 2.4)

To prove ( 2.1 ), consider

Page 72: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

721

and

f:::. ~ ~ (1 - ,\), GA (,\· ct r.t· ,\ - r; x y (1 - z), ~ I ! ' I'• r=O r.

x (l - ? y) I - z

x (I - 2 Y) )z• 1 - z •

On expressing GA in series form, we have

00

6 = ~ (1- A)r r=O_r_!_

00

~ m, n,p = O

{ ,\ )n+P-"' ( ct )m+:P ( ~ )n ( .\ - r )n+:P-"' m ! n ! pi-

{ x y ( I - z ) }m ~ _x ( I - 2 y) }n+p l 1 - z -- zr.

Again using the results

(-_!_L, ( a )_k = ( 1 _ a )k

( " )r ( " + r )s = ( " )r+s = ( " )s ( " + s )r '

(1-x)-,\ = '; ~xt, i = 0 i!

(2.5)

(2.6)

(2.7)

we get

f:::. = ( ] - z ),\ - l ~ ( ,\ )n+i>_m {a )m+p { ~ )n (

0 ( 4 ) ml I I X yr m,n.p = n+P-m , n. p.

{ x ( 1 - 2 y) }":P Now applying the result ( I.I ), we obtain

,\- 1 ) 6 = ( 1-z) GA ( ,\, a, ~1 ,\, xy, x ( l - 2 y ), x ( 1 -- 2 y)

which, in light of ( l.12 ), provides ( 2.1 ).

Page 73: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

I 73

The proof of -the formula (2!f) would run parallel to what we have

obtained above in view of (1.2) and (1.13).

To prove (2.3), let

-r = l: I on> 00 ( r = O (l + ~)r r! 3 A a, - ~......, y; a; (1 - x) (1 - t) 1

_:t (x + y) t) (_J:!_- )' 1 - t • (1 - t)3

00

- ~ 1 r = 0 (1 + ~)r r!

00 ~ (-~-r)m+p

m, n,p=O m! n! p!

{ (l - x) (1 - t) } m f - t (x + y) }n t'P (_E__- .·)r 1 - t (1 - t)3 . ,

Now applying the formulae

00 ~ xi

i = o i! = exp (x) , (2.8)

and (2 5), we find that

-r =exp ( - t ( X + y) .. c; (- ~)-• (- ~ - r)m+'P .·

1-t m,p,r=O m!p!r!

m -.yt

1 ( )r

{ (1 --' x) (1 - t) tP (I _ t)3 •

Again, using the results (2.6), (2.7) and (2.5)

( .....; t (x + y)) 'i' · . ( - ~ )m

-r = {l - t)"' exp 1 _ t m;r..:.. 0 (1+ ~ -m), m!r!

Page 74: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

74 ]

( ')'' ,, , (i - x)ii, 0, yt t)2, , ,

= (1 - t)P exp (- 1 (x + y)) ~ (- l3)m (I - x)m I - t m=O m!

0F1 [ ~; ~ _ m; - yt 1 (I-t)" J

Now employing the result (l.14), we get

't' = xP (I - t)P exp (, -=' t'(~ + Y)) 0 p1 ['- ; xyt J I - t , I + ~; (I - t)2

which, in view of (l.9), yields (2.3) •

To prove (2A), put

q, = ~ J ~~ )r 3G~(a, ~1 tr, ~2; a; xy; ¥{1..,...2y), x){:x(1-,,-2y)V r = 0 r.

00 k ( ~l )r

r= O rl

( ~1 + r )m ( !32 )n m,n,p=O m!n!p! (xyr

00

k

{ x ( 1 - 2 y ) }n x" { x ( I ..:.;:; 2 y )}r'.

Now applying the results ( 2.6 ) and ( 2.8 ),

00

cp = exp ( X ) ~ J ~I )m+r ( ~2 )n ( X m , ~m n, ,' = O m ! n ! r ! Y )

{ X ( 1 - 2 y ) }n+r

00

=exp ( x) ~ Iii, n = 0

; lit )m+r ( fa )n_r ( x y r r=O m!(n~r)!r!

,'-.

{ X ( 1 - 2 y ) }n •

"-:--

~

Page 75: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

[ 75

Then;' on reversing the inner. summation, we get

oo n </> = exp ( x ) }:; }:;

m, n = 0 r = 0 ( ~1 )m+n_r (~2 )r ( X y )m m! r! ( n - r )!

{ x ( I - 2 y) }"

Now applying the relations ( 2.6 ), ( 2.5 ),

( n - k ) ! = ( - 1 )k n ! ( - n )k '

( 2A9 )

.and Exercise 4 of Rainville [ 6, p. 69 ] , we obtain

00

</; = exp ( x) ~ (~1)m+nJl - ~1 ·-~2 - m - n),, ( xy )m m, n = 0 ( l - ~1 - m - n ),, m ! n ! .

{ x (I - 2 y) }"

oo n = exp ( x ) ~ ~ ( ~1 )n ( I - ~1 - ~2 - n ) ,. m

n = 0 m = O ( I - ~1 - n )n_m m ! ( n - m ) !

( x y )"' { x ( I -.:. 2 y }"-m

which~ on reversing the inner summation and simplif yi:11g,

provides

oo n </> = exp ( x ) ~ ~ (}1 ),. ( - n )m ( 1 - ~l - ~2 -:-::- n )m ·

n = 0 m = 0 ( 1 - ~1 - n )m m ! n !--

( X y )"-m { X ( 2 y - 1 ) }m •

Expressing the inner series as a Jacobi polynomial, using the result

( 1.7) (with m = 0) and ( 1.11 ), one finds

</> = exp ( x) ~ <. ~1 +, ~2 )n 2F1(- n, ~2; ~1 + ~2; ( 1~ )) n = 0 n. x . .y

{ x ( 1 - y) }".

Page 76: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

76 J

Finally, in the light of the results ( 1.15 ) ( with A = B = 1 ) a_nd

( 1.8 ), ( 2.4 ) is obtained •

3. LINEAR GENERATING RELATIONS

In this section we establish the following.generating relations :

00

I: r = 0

( 1 ~ ,\ )r GA ( ix, ~. Y,' ,\ - r; x, y, z ) t' r.

= ( 1 - t l- l GA ( a, ~. Y . ; A ; x .-,y( 1 - t ), z( 1-t), (3.1) -t

~ ( I - ,\ )r GB (a A, y, o; ,\ -r,· x, y, z ) tr I , t' -

r = 0 .r.

= ( 1 - t ),\_:_1 cB( a,~, y, O,' ,\; 1 x t' y (1-t), z ( 1-t) ), ( 3.2)

'i' (I ~ .\)r 3G'.J> (a, ~; ,\ - r; X, y, zW r=O r.

= (l - t) ,\ - 1 3G1> ( ix, ~; ,\;

12--, y (1 - t), z (l - t)_}

- t ' '

(3.3)

~ (1 -, .\)r aG'J-> (ix, ~l> ~2; ,\ - r; x, y, z)tr r=O r.

= (1 -t) ,\ - I aG'J-> ((ix, ~h ~2; ..\; l x t ,y tl-t), z (l-t)),

(3.4)

'i' (1-:-1 .\), Ge (a, ixi. ~u ~2; ,\ - r; x, y, zW

r=O r.

-"'-

Page 77: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

[ 77'

= (1 - t) ,\ - 1 Ge (a, a1' ~h~2; l.;-x -.· , y ( 1-t), z (1-t) )• 1 - t .

~ (l-.~)r Ge* (a,~, y; ,\ - r; X, y, z. W r=O r!

. (3.5)

= (1 -- t) ,\ - I Ge *(a,~. y; >.; x (I -t), y (I-t), l \ )· (3.'5)

Derivation of (3.1) : consider

0= ~ ( l-,\), GA (a, ~. y; ,\ - r; x, y, z)t'. · r = 0 r!

On expressing G11 in series form, we get

0= 00

~ r = 0

(l-,\), -,.-!

~ (a)n+p_m (~)m+P (y)n xm Y" zP ir. m,n,p=O (A-y)n+P-mm!n!p!

Again using the results (2.5) and (2.6), we have

O = . ~ (c:)n+P-m (~)m+P (y)n (I-,\-n-p+m)r ;xfil yn zP tr. m,n,p, r=O (i\)n+P-m m! n! p! r!

Now applying (2.7), we find that

0 = (l-t)>..-1 ~ (a)n+P_m (~)m+P (y)n ( X )m m,n, p=O (i\)n+p_m ml n! pf -1-:f

{ y (1 - t) r { z (I - t) y which, in view of (I.I), provides (3.1).

Proceeding on similar lines as above results (3.2) to (3.6) can be

derived.

Page 78: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

78 1

4. SPECIAL CASES

(i) On taking ~= 0 in (2.1) and simplifying, we obtain

G1 (a,,\, 1-,\; -xy, x (2y-1))

00

~ n! n=O 1--;y,;- (x-1)" p~-n, a+n) ( _!±_x ) 1-x

P!a-1, -n) (1-2y), (4.1)

where G1 is Horn's function [ 4, p. 224 (IO) J •

(ii) In (2.1) putting y= 0, letting a= 0 and solving,

we find that

2F1 [ ,\, ~; x J = 'i;' (x - 1)" P~-n, ~+n) ( 1 +x ·)· (4.2) ,\; n=O 1-x

(iii) In (2.2) setting y=O, putting a=O, replacing -x by x and

simplifying, we get

00

F1 (.\, ~; y; x, x) = ~ n=O

(1 - x)n f,(-n, l-~-y+n) ( 1-x ) ' I+x '

where F1 is Appell's double hypergeometric function [5, p. 265J. ·

(iv) Changingy to y/~1 and letting ~1 ~ oo, (3.4) yields

oo ( 1-A)r 012> ~ 3 A ,.,

r=O . ( a, ~2; ,\-r; x, y, z )t'

(4.3)

= ( l-t )'\- l aG~1 (a, ~2; ,\; _x_, y ( l-t), z (1-t)). 1-t

(4.4)

Page 79: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

[ 79

where aGA!2> is given earlier ( 2, pp, 241-242] .

Acknowledgements

. Thanks are due to professor H. M. Srivastava ( University of

Victoria, Canada ) for suggesting a number of improvements in the

present paper .

REFERENCES

[ 1 ) T. W. Chaundy, An extension of hypergeometric functions ( I ), ··

Quart. J Math. (Oxford) 14 ( 1943 )s 55-78.

[ 2 ) G K. Dhawan, The confluent hypergeometric functions of three

variables, Proc. Nat. Acad. Sci. India Sect. A 39 ( 1969 ), 240-248.

( 3 ] G. K. Dhawan, Hypergeometric functions of three variables,

Proc. Nat. Acad. Sci. India Sect A 40 ( 1970 ), 43-48,

[ 4] A. Erdelyi, Higher Transcendental Functions, Vol. I, McGraw­

H ill, New York, 1953.

[ 5 J R. C. Pandey, On certain hypergeometric transformations,

J. Math. and Mech. 12 ( 1963 ), 113-118.

[ 6 ] E. D. Rainville, Special Functions, Macmillan, New York, 1960.

[ 7 ) B. M. Shrivastava, Bilinear generating relations for Jacobi and

Laguerre polynomials, Vidya B 20 ( 1977 ), 150-156 .

[8 ) B. M. Shrivastava, A Study of Special Functions of One and Two

Variables with Some Applications, Ph.D. thesis, A. P. S.

University, Rewa, India, 1795 .

( 9 ) H. M. Srivastava, A note on certain hypergeometric differential

equations, Mat. Vesnik 9 ( 24) ( 1972 ), 101-107.

Page 80: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

80]

[ 10 ] H. M. Srivastava, Certain formulas involving Appell functions,

Comment. Math. Univ. St. Paul. 21 ( 1972 ), 73-99 ,

[ II ] H. M. Srivastava and C. M. Joshi, Certain double Whittaker

transforms of generalized hypergeometric functions, Yokohama

Math. J. 15 ( 1967 ), 17-32 .

[ 12 J H. M. Srivastava and P. W. Karlsson, Multiple Gaussian

Hypergeometric Series, Halsted Press t John Wiley and Sons),

New York, 1985 .

[ 13 ] H. M. Srivastava and H. L. Manocha, A Treatise on Generating

Functions, Halsted Press (John Wiley and Sons), New York,

1984 .

~

~

Page 81: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

Jfianabha, Vol. 16, 1986

ON CERTAIN POLYNOMIALS ASSOCIATED WITH

THE MULTIVARIABLE l-1-FUNCTION

By

P. C. MUNOT and RENU MATHUR*

Department of Mathematics, and Statistics, University of Jodhpur,

Jodhpur - 342()01, Rajasthan , India

( Received : September 4, 1984 ; Revised: November 22, 1985)

ABSTRACT

In an attempt to unify various bilateral generating functions

obtained earlier by Srivastava and Panda [ 6 ], Raina [ 2 ], and

Srivastava and Raina [ 10 ], we study here a few new sets of polyno­

mials associated with the multivariable H-function of Srivastava and

Panda ( [ 6 ] ; see also [ 7 ] and [ 8 ] ), and give certain theorems

concerning the generating functions of these polynomials . In the

sequel we also show that these theorems can be applied to yield s~veral

bilateral generating functions for some polynomial sets .

1. INTRODUCTION AND PREREQUISITES

Foiconvenience, let ( ci, Yi )i. P and ( ai; ·ai',. , tX/•l )i.P abbrev­

iate the p member arrays ( ci. Y1 ), ••• ,( cp, YP) and (a1; a1', .. :,or.1<s1), ... ,

( ap; or.p' ,.;.,0tv<si ), p > 0 respectively . The array being empty if p = O,

Then we recall the definition of multivariab]e H-function. introduced

by Srivastava and Panda [ 6, p. 27 l, eq, ( 4 1 ) ] iri ti1e follo .ving

form: ,_..,. __

+Present address : Department of Mathematics, Government

College; Ajmer-30500 I, Rajasthan, India .

Page 82: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

82 ]

(1. 1) H<ll I : = H ! .

r. z1 J o. n: m'. n' ; ... ; m'·" n<·'[z1 I Lzs p, q: p', q'; ... ; p<•>, q<sl Zs

( . ' (•l) • (c ' y ') ' · · (c !sl y <•>) J aJ, a; , ••• ,a; l• 'P· ; , _; 1• P , •• ., ; , i 1,p<•l

(b . R' (.). (s)) • d , "' ') I • • (d (s)) "' (S)) j > t' i , ••. , t-J h Q• j ' Oj 1> Q , ••• ' j Oj 1, q!s)

'(21'~)" IL ··· J <I> (~1 ,. .. , ~.) . ~ ~ 0;(~;) z.~i d~, 1 Ls z=ll }·

where w = ¥-:=!, n s

(I. 2) <1>(~1 ,. •. , ~.) = TI r(I - a1 + ~ "/•> ~i) j= 1 i= 1

1 q. s p s J-1 ·j .TI r(l - b; + . ~ ~1 1 0 ~;) . TI P(a1 - . ~ a/t' ~1) L,.]=l l=l . ]=n+l l=l I

m<il n!'il (1. 3) 6;(~;) = TI r(d/i' - 8;<il ~1) TI r(l - c/il + y;<'> ~.)

j~l j=l

[

q!i)

• TI r(l - d/i> + 8/il ~t) . j=m1il+l

pW ~-1

• TI r(c/il - y/il ~;) J v i E {1 ,.. 's}, j=nw+ 1

an empty product is interpreted as unity, the coefficient

a;w, j= 1, 2, .. ., p; ~1w, j = 1, 2, ... , q; y/i>, j = I, 2, ... ,pw;

8J< 0 , j = 1, 2, .. , qw; i = 1, 2, ... , s are positive real numbers

and. n, p, q, mw, n<i>, p<i> and q<i> are integers such that

0 ~ n ~ p, 0 ~ m1il ~ q<il; q > 0, O ~ n<il ~ pli',

i = I, 2, .. , s. The multiple integral ( 1.1 ) converges absolutely if

I I 1 ( 1.4 ) U1 > 0 and are z; i < 27' u, ,

~

Page 83: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

where

(1.5) U; = p q ~

j=n+I rt./i) - ~ ~/il +

j=l

p<i)

I 83

n<i> ~ y/il -

j=l

qW ~ y/i> +

mW ~

j=l 3/i> - ~ o/n,

j=nW+l j=m<i>+1

i E { I, 2. . .. ' s } .

Again, for convenience, let

[

Z- I ·< t: .• "-·' µ-<•) >1 J 1 '-:i1 ' r-J ' ••• ' ' .., u -H :

• ' (s) Zs \ ( '/Ji, Vj , ... , v; )1,v

denote the multivariable H-function

0 + U• m· n'. . m<•l (s) r z I { !:' • -• • •. (si -) • , n . , , .. ., . , n I · .1 c,;, Jl-1 , .. ., µ, 1, u (1.6) H :

+ + . I '· • (s) q!s) L z ( · .' (s) ·) ' p u, q v. p , q' .. ., p • s 'fj;, v,' ... , 'lj . 1' v

( • .' .(S),) • ( c·' "I I) I, • (c·(S) y·(s)) (S) J a4, a, , .. ., rt., i. :v, i , it 1' p , .. ., 1 -, 1 1' p •

( b;; ~;', ... , ~i(s) )i, a; ( d;') o;' )1. q'; ... ; ( d/sl, o;<s> h. q(s)

In all the theorems discussed in this ;paper we shall assume. the

following:

(i) The restrictions on the parameters of the H-function and ·the

convergence (and existence) conditions corresponding appropriately to

the ones detailed above are satisfied by each of the various

H-functions involved.

(ii) a/s, ~;'s, y/s, At's, i=l, 2, ••. ,rare arbitrary complex numbers

independent of ni, .. , nr. Also n; > 0~ q, E N, where N is the set of

natural numbers, i=l, 2, .. ., r and cr;W > O,j=l, 2, .. ., s;

i=l,2, .. .,r.

Page 84: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

84 1

(iii) (nr) stands for the linear array n1, ... , n, with &imilar interpre­

tations for (ar ), (~r) etc.

2. Generating functions for a general class of polynomials

Let f [(z,)] be a function of several complex variables zi, z2,. .. , z,

defined formally by the power series

00

(2.1) f [(zr )] = ~ ki,. .. ,k. = 0

r C [(k, )] II

i = 1

kt z:_ '

ki !

where the coefficients C [(k;)], k1 ;> O, i = 1,2, ... ,r are arbitrary

constants real or complex .

Also let a class of polynomiuls

[(a,); (~r)] (2.2) Q [(Ar); (xr ); (ys)] l:::e defined by

(n, ); (q,)

[(cxr); (~r)] [(.\,); (xr); (ys)] = Q [ ni I qi l ~ [ nr..J. q,] C [(k,)]

(n,); (qr) ki = 0 k, = 0

~ ) ( - n; ) q; k; i = 1 l

k; } Xi

kd

[ ~I \ ( - ex; - ( ~i + I ) n;. - .\;kt: c;,', ... ,c;;<•i )1,r. J-. • H • . .

J's , ( - a; - ~i n; - ( .\; + qi ) k; : <Ji' , ••• ,cr,<s> ) J,r

Then our first multidimensional generating fun..::tion is given by

Theorem 1. With the function f [(Zr )] defined by (2.1 ), let

(2.3) 0 (( n,.), (qr); (u,), (~r), (Yr); (Ar), (x,), (ys)]

oo r ~ C [(kr )] II } y;

ki,•••,kr = 0 i = 1 l k;

Xi

kd

J.,

·~

Page 85: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

[ 85

.( n, + q; k, : Y• I ( ~1 + 1 ))-1 }

. H : ' [

J'l 1 (Yi -- 0t1 - A; k;; crt', ••• ,cr/•l )lo• J Yi J ( Yt - Uj + nt - Aik;'; cr/,. . .,crt(s) )1or .

and also let 00

(2.4) </> [(xr), (y.,); (v,)] = ~ 0 [(nr), (q,); (otr), (~r), (Yr), nh···onr = 0

( Ar); (Xr ), (ys )] 'i-J f _v~;J' i = I l nil

Then

oo r ( ) [(ar); (~r)] (2.5) ~ II YI Q [(Ar);(\'r),(Ys)]

n1,. • .,nr=0 i = 1 Yt + ( ~· + l ) n; (nr); (qr)

r n TI (~)

i = 1 nil

r a; r qi "-1 </> I X1 ( - V1) ( I + Vi) , ... , II ( 1 + V; )

i = l L

Xr ( - Vr )q' ( 1 + Vr ),\',

r cr;' r cr/•> Yi IT ( + Vi ) ,. ··, Js II ( 1 + V; )

i = I t = I

where Vt is a function oft; defined by

Vt = fi ( 1 + Vt ) ~i + l ,Vt( 0) = 0,

- V1

j + V1

- Vr J - ' ,. . ., } + Vr

Page 86: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

8{) J

(( ar) ;(~r )J Proof: On replacing Q [(Ar) ; (x, ), (ys)] by its equivalent

(nr), (qr)

series from its definition (2.2) with the H-funtcion expressed in terms

of its Mellin-Barnes contour integral representation ( 1.1 ) in the left

member of (2.5), changing the order of summation and integration

which is assumed to be permissible and then applying a result due to

Srivastava and Panda [ 9; Th. 3, p. 34 ], and finally interpreting the

iesulting expression by means of (LI), we immediately arrive at the

right member of (2.5).

3. Two more classes of general polynomials

((e<r); (~r)J ( i) The polynomials T ((Ar); (xr), (y,,)J:

(nr ; (qr)

Associated with the power series (2.1), we may define a new set of general polynomials in the form

[(e<r); (pr)] (3.1) T {(Ar); (xr), (ys)] =

(nr ); (q,)

[ ni I qi J ~

ki = 0

[ nr / q, J ~ c [(k,)]

kr = 0 ~ \ ( - n; )qi kt

i = I l • Xi

H : , [

y 1 ,, ( l -e<; - ( p; + 1 ) n; - 1\i k;; cr;',. . .,crJCs) )I,,} ys ( - a; - pt n; - ( 1\1 + q;) f·u; cr,',. . .,cr/s> )1,r •

The following theorem gives a generating function of type

(2.5) with Yi= a;, i = 1,2,. . ., r for this set of polynomials.

Theorem 2. If we let

00

(3.2) ~ [(xr), (ys)] = ~ ki,. . .,kr = 0

C((k,)), h. 5 x;k;} 1 = I l

k;}

I~

Page 87: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

[ 87

.H [ ~'1 I ( I - ai - { ~l + I ) q, k1 - .\, k;;cr/, ... ,cr/•l )i,r ]•

Ys ( - ix; - ( ~i + 1 )q; k; - .\; k,, cr/, ... ,cri<s> )i,r

ihen

00

~ [(otr); (~r)][(.\r); (xr), (Ys)] T r n ( t;n; )

(3.3) n1,. .. ,nr = 0 (nr); (qr) i = 1 -;;:;1

= . ~ ) ( 1 + V; )IX; l ~ ( X1 ( - V1 )q1 ( l + V1 ).\1,. .. ,

z = I l J

Xr ( - Vr )q' ( 1 + Vr ).\',

r , r cr;<•> Y1 Il ( I + v;)cr; ,. . .,y. Il ( 1 + v; ) ] ,

i=l i=l

The proof of Theorem 2 runs parallel to that of Theorem I.

[{ar); {~r)] {ii) The polynomials A [(.\r); (x,), (ys)] :

(n,); (µr)

Again with the meaning given earlier to C [(k, )], let us define

another class of more general polynomials

[(a,); (~r)] (3.4) A [\Ar);(xr),(ys)]=

(nr), (µ.r)

~ C [(kr)] Il Xi oo r { ~ 1 k1,. . .,k, = 0 i = I kd ( m + I ) w ki

[

Yl I ( - !Xi - ( ~; + I ) n; - .\; k;; cr;', .. .,cr;<s> )1,,J . • H : '

}'s ( - IX; - ~i n; - ( Ai - µ.i ) k;; <Ji 1 ,. • .,cr/sl)i,r

and

Page 88: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

88 1

[(ar); (~r)] (3.5) i\. [(,\r); (xr), (Ys)] )+..,

(-n,); (µ.)

00 00

~

ki ~ [ ni I µi 1 ~ c [(kr)]

kr )> [ nr / µ.r ]

r l k; } Il Xi

i = I k;! ( - n; + I ) µ; kt

.Tl r yf I: { - ~i + (. ~i. + I ) .n; - ,\; k;'.. <1i~: .. ., cr;«:: )t,r J LY• ( - Qf.i + ~' n, ( ,\, - µ1 ) k,, cr, , .. .,cr1 )t,r

By using the known result [ 9, Th, p. 38 ] , we can establish the

following theorem giving a Laurent series expansion involving these

polynomials .

Theorem 3. in terms of the coefficients C [(kr)], k; )> 0,

i = 1,2,. . .,r, given by (2. I), let 6 and rp be defined by equal ions (2.3)

and (2.4), respectively, with q; = -µ;, i = 1,. .. ,r. Then the polynomials

defined by (3.4) and (3.5) are generated by

(3.6) ~ II y; tl; oo r l } n11 ... ,nr = - oo i = 1 Y; + (~; + 1 )n; n; f

[{atr ); (M] l(.\r); (Xr), (Ys)l i\. (nr); (µr)

- .~ f ( l + Vi) Qf.; 1 rp r Xt Vt-µ 1 ( 1 + Vi / 11 ,. . .,x,. v,-p.r z=l ~

,\,. r cr;' ( I + \ .. ) . YI II ( 1 + Vi ) ' '

i = 1

~

Page 89: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

[ 89

Ys ~ ( 1 + '11 )cri<sl ' 1 :1 V1 •·:'.• I +V_r~,J i = I

4. SPECIAL CASES

(i) For r = l, all these theorems reduce to the results given earlier

by Srivastava and Raina [IO].

(ii) Theorem I, in its confluent case when Yi -+ oo, i = 1,2, ... ,r,

reduces to the result :

(4.1) 00 [( ar); (~r )] r ni

Q [(t\r); (xr), (ys)] . fl (_!L.) (nr); (qr) i = 1 nil

·~

ni.···· fir = 0

. ~ f ( 1 + V; )rJ.; + l (. f [ X1 ( - V1. )q1 ( 1 · + V1),\1

l = I I - ~i V; ~ .. •

.H<I>

r I Y1 I I I I Ys L

r II

i = 1

r II

i = 1

, .•. , Xr f - Vr )qr ( 1 + Vr )t\r J ·' l

( l + V; ) cr, I I. 1.

)cr/sl f (I + V; I

J

On making ,\;-+ 0, i = 1,2, . , r, the result (4)) gives another important result which, on takirig r = 1, a = p - i, ~ ,,;,, O,p = n

= q = O and cr1 = ... = crs = h, gives a known result of .Raina

[ 2; eq. (4.1), p. 303]. Moreover, each of Theorems I to 3 can be used

to derive bilateral· and multilateral generating functions . associated

with the multivariate H-functions by suitably specializing the coeffici _

ents C [(k,)] , k; ;> O,' i ~ I, 2; .. .,,.. Acknowledgments

The authors are thankful· to Professor H. M; Srivastava for his

suggestions leading to the present version of their work •

Page 90: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

90 I

REFERENCES

[ 1 ] H. W. Gould, A series transformation for finding convol­

ut1on identities, Duke Math. J. 28 (1961), 193-202.

[ 2 ] R. K. Raina, A formal extension of certain generating functios,

Proc. Nat. Acad. Sci. India Sect A 46 (1976), 300-304.

[ 3 ] R. K. Raina, Certain generating relations involving several

variables, J. Natur. Sci. and Math. 23 (1983), 33-42 .

[ 4 ) R. K. Raina, On some classes of generating relations involving

the H-functions, Acta Cien. Indica Math. 10 (1984), 32-36.

[ 5 J H. M. Srivastava and H. L. Manocha, A Treatise on Generating

Functions, Halsted Press (Ellis Horwood Limited, Chichester),

John Wiley and Sons, New York, 1984,

[ 6 ) H. M, Srivastava and R. Panda, Some bilateral generating

functions for a class of generalized hypergeometric polynomials,

J. Reine Angew. Math. 283/284 (1976), '265-274 .

[ 7 J H. M. Srivastava and R. Panda, E"<pansion theorems for the

fl-function of several complex variab!es. J. Rein~ Angew. Math.

288 {1976), 129-145 .

[ 8] H. M. Srivastava and R. Panda Some expansion theorems and

generating relations for the H function of several complex varia­

bles. I and II, Comment. Math. Univ. St. Paul. 24 (1975),

fasc. 2, 119-137; ibid. 25 (1976), fasc. 2, 167:__197 .

[ 9 ] H. M. Srivastava and R. Panda, New generating functions

involving several variables, Rend. Circ. Mat. Palermo \2) 29

( 1980), 23-41 .

[ 10 ] H. M. Srivastava and R. K. Raina, New generating functions

for certain polynomial systems associated with the fl-functions,

Hokkaido Math. J. 10 (1981), 34-45.

Ii.._

_t \

Page 91: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

Jfianabha, Vol. 16, 1986

ON SOME SELF - SUPERPOSABLE FLOWS IN CONICAL DUCTS

By

PRAMOD KUMAR MITTAL

Department of Mathematics, Government post - Graduate College,

Hamirpur - 210301, U. P., India

and

MOHD. IQBAL. KJI;\N

Department of Mathematics, Hindu College,

Moradabad - 244001, U. P., India

(Received: November 14, 1984; Revised :.November 25, 1985)

ABSTRACT

In finding out the exact analytic solutions of the basic equations

of fluid dynamics, the principle of self-super-posabilfty is of impor­

tant use . In the present paper an attempt has been made to find some

se~f-superposable motions of incomprerssible fluid in the conical ducts.

No stress has been, given on boundary ·conditions and the solutions

thus determined containing a set of constants. Pressure distribution of

some of such flows has also been discussed. The curves along which the

vorticity of· the flow becomes constant have also been attempted •

The aim of the paper is to introduce a method for solving the basic

equations of fluid dynamics in conical system of co-ordinates by

using the property of self-superp0sability .

J. INTRODUCTION

It was shown by Ballabh ( [2], [3] ) that when a flow with

velocity q satisfies the condition

curl ( q x curl q ) = 0 ••. ( 1 )

Page 92: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

92 J

it becomes self-superposability. In the present paper the authors have

attempted some fluid velocities for which ( q x curl q ) = p ( say)

can be represented as the gradient of a scalar quantity . As such the

flow will be self-superposable . Attention has been focussed on incom­

pressible fluids only . For such fluids flowing in conical ducts, some

velocities have been determined which satisfy the continuity condition

and for which p can be represented as the gradient of a scalar quantity

0 (say) . The solutions thus found must be of self-superp ,sable type .

Each will have a set of constants which can be determined by the

boundary conditions .

It has further been sh()wn by Ballabh [ ~J that if 'ii and q2 are

self-superposabJe'flows and qi ± q2 are also self-super-posable then

q 1 and q2 are mutually superposable. By using this property some more

self-superposable flows have also been determined pressure distribut­

ions for some of the flows have also been attempted . The curves along

which the vorticity of the· flow becomes constant have also been

found .

In this paper a method will be introduced to solve the basic equa­

tions of fluid dynamics in conical co-ordinates by using the property

of self-superposability , Mittal ([6],[7]), and Mittal, Tbapaliyal and

Agarwal [8] have recently solve the equations for different co-ore! in ate

systems·.

2. FORMULATION OF THE PROBLEM

Let q x curlq = p ... ( 2 )

For incompressible fluids we have

div q ~ 0 ... ( 3 ) fl'. .

. Now, if a solution of equation (3) be found in such a way that p

.~

Jr

Page 93: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

,­'

[L~H::

can,, be ,i:epresented ~s Jbe , gradiet\-t, ~"°f a $calar , gradient of a <scalar . . "'" ,. .. - . .. . '- .

quantity ( say 0 }i kti•·: :; .. •• -~, l: Ci_] p:-~(~

P =grade - ... ( 4) , ' (; i

it wil I give a self- superposable flow It ·has been shown-by f\.garwal ( ""'·.: . . ; \ .i - - - ' ,i :.. ~

[I] that such solutions will also satisfy the equation of inotion for a

steady-flow . For determin.ing a flow of liqµid ~n conical ~luct let us

consider the flow ill conical CO-"Ordinates ( U~ V, W )'[4] •, -·------;-( ~~.: l · . ·. i. L .

If qu, qv, qw be the comp~nents of q at any point ( u, v, w ) in con-

ical co ordinates then equation (3), will become.· · , ~ i" . :J ·;:, ·..1 )" c -- Ji· ......

I o u2 2ii' ( u 2 qu ) + ~ - b2 ) ( c.2 ..,... y2 ) ] ! ,, , u ( v2 "'" u2 ) . . . ,

1 _i_ [( v2 - w2) 2 qv]

(JV

,,'. ·- - I! j :.

~- /

. . f . . . '

) t..

i !, "' ' + [( b2 - w~) ( c2 - w2)] _j_ [( v2 _· w2)i qw] = o ... (5) u ( v2 - 11- 2 ) ow .,

, ' ' -· i I, \ {n Order tO make eqU~tlOri (5) integrable We;, Jilay COnSid~f tthe

following cases : !'. .... ~ -.r-. . t.;. ;) ".i ,J.: 'J\.,,;

C:'1se L: ,let. qu,,= 0. In .tbis<;ase_equ~tioi:r(.5)wiU be satisfied by· "'''""·'•'· '" - - . ;; ... • <, ., ~ . • : •• '

a solution ... (: . -~.) :: ~ .~ . .J'

qu = 0 l

"" -~',;,: q v: =::

\4 U(i;) ·w(w) ·; '"' l "·:, >' --·-- ~-:L<( ~2 •-~ .\.j~-)t:''<''\t.'i.~.-

1 ~,~ , ...

'' -~.~~ f6 f' ·., ·. :Jr~~1

"·'"f.''· .... , .. ,""

B U1 (u) ''v( v) I · 1 I

(- v2 _ w2 )2 J qw =

whe,r~ U (u), U1 (u) are tpe integrable fhrfutioll's df ~;:' V ( v) and W (w)

the :o i~tegrable functiorls b.f 'V,and w, rrespecth>.e}yJ and , A, B the

constants .

Page 94: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

94]

For this fluid ;yelocity; it caireasily be shown that p can be repre..:.

sented by the gradient of a scalar quantity 0 given by

fl·= [ A2W2U2 + B2V2Ui) + _A2

W2 f u2 du

2 ( v2 - w2 ) ( v2 - w2 ) J u

B2V2 + -

( v<1- w2 I [J2

-1

du + B2u2 J vv~. d u 1 ---( v2 - w2)

~AB [(b2-w2) (c2-w2)]! UU1W'

J Vdv .

( t2 - w2) [ ( v2 --b-2_)_( -c2 - v2)J!

+ A2U2 f WW' d~ - AB [ ( v2 - b2 ) ( c2 - v2 )}! UU1 V' j(v2-w2)

. Wdw

J

~

( v2 - w2 ) [ (-bi - w'! } ( c2 - w~ )]i J .. ( 7)

Here U ( u ), U1 ( u ), V ( v ) and W ( w) are represented by U,

U1, V and W, respectively, and U', U1 ', V', W' reprt>..sent the

differentials .

By cbosing different suitable sets of values of U, U1' V and W

we may get a number of self~superposable fluid velocities • One of

such velocities can be obtained by taking

U1 = U = u ) v = [ ( v2 - b2 ) ( c2 _ v2 )]! ~

W = [ ( b~ ·- w2 ) ( c2 - w2 )]!

A =B

I

j ... ( 8)

Jt

Page 95: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

the fluid velocity will become

q,.. = 0

qv =Au [

qw =Au [

·For this flow

) I

( b2 - w.:_L~ c2 - w2) ]! j (v2-w2) }-

I ( v2 -:-:-_ b__: ) ( c2 - ~) _ ]! I

( v2 ..;_ w2 ) J .

[ 95

... ( 9)

0 = A'l. u2 [ ~ {( b2 - w2 ) (c2 -- }112 ) + ( v2 - b2) ( c2 _ vz )} 2 (v2-w2)

+ 2 {( b2 + c2 ) - ( v2 + w2 ) } log ( v - w ) - ( v2 + w2 ) J. ··'( 10)

When U, Ui. V and W are constant quantities, then

qu = 0 l I

q. = C1 I i I

[(v2-w2)]2 }-

qw=~ [( v2 - w2 )]!

For this fluid velocity

0 = Ki ( v2 - w2 ) log u •

1 I I J .

... ( 11 )

. •. ( 12 )

Cass II : When q~ = 0. In this case the self-superposable flows

may be

Page 96: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

9()_ 1

(i) qu = AiV1 W1 lj2

c qv = 0

qw ~ B1U2V2 I . . ----· .l

' K v2 - w2 )]2 r ·.

1 --·' I I I ~

:I -- I

I -J \

. ; ~

... ( 13 )

and '-

(''

e ~ [ C ,, !__ w' l l Bi~ l u2u2 du + B1V! I : d~ ' ' v '

,, '•H";'\':-; .~;'\ '; :~J ."\.' . + A B r ( b - __ w H c :::::::-: w~>J v v "w I I U2 dul .. I 1 L ... ( 2 '> ) 1 2 1 3 .. - . v. - w~ u

: .t' ~·.... .. .• ). ·--· ( • .• ·_, _·--~ r tt .. :. ' . ~ .. ~ --- ( ~·. _.· ;., ~

.A1Wi

+ -ur f ViV1 '(/v . ·•··

j !C 112-:::- w2,)Jf , ----- •• ·-. •>' ,,. --

< - ~- - -- ',

2 - .l J . ViiV;' - dv

+ B~U2 [(v2- w2)]2 -f: AiV~ f ... W1W1' dw t ij4 j ,· [( v~ - w2)]l

'' 1: \ ~' /

(ii)

A1B1 ( U2 + U2' ) V1V2 u2 I

• .. _ W1 dw . J [( q~_-'w~')(c2-"-'W~ f ... (14)

>v:':!'- ... i .:: ~;_·_--·';,~::~tr ·c·:./'.J

qu = A1 V [(b2 _ w2) (c2 _ w2)]! 11 u2

''; 'J .. qi!= 0

, I J l •.. , -J : •• fts)·

~

lf.w: ... ,,r , .... 11, :u.~ ~l; : ·:'.: :: ~:_ J ~ : _·,.: I · [( v2 __:_ w2>J - J

,". ~·I_,'. i"I .'

·i .· ~- :_..;:·.~ - _}

"'.J...: ,fL~'J

"

-~

Page 97: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

(iii)

97 ]

e = A2 [--u2v2 -~~ ) u + l _ u ( 2 w2 - b2 - c2) } 1 ( v2 - w2 ) u2 l ( v2 - w2 ) 3 / 2

+ ( v2 + w2) z ( b2 - w2 ) ( c2 - w2 ) + - v2 ( v2 - w2 ) 1 { 2 u4 3

- ( 2 v2 - b2 - c2 ) + u61 J

qu = _C2 u2-

qv =:= 0

qw = D2 ------( v2 - w2 )t

I I I I ?­I 1 I

j

... { 16)

••• ( 17 )

Case HI : When qw = O, some self - superposable flows may be

( i)

e =[(

· A2VsW2 _ qu =

u2

B2U3W3 qv = 1

( 112 _ w2 )2

qw = 0

B~W§ .. f -. --2. ) )

u

I I I I ?-I I I J

+ 1 B2W2

2 3

( v2 - w2)

.. { 18 )

J UsUs' du

[ ( v2 - b2 ) ( c2 - v2 )]t , ~ U3 du - AzB2 .-· - Vs W2 Ws --( 112 _ w2 ) 3/2 u3

Page 98: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

98 ]

(ii)

A~W~I +tf!

VsVs' dv .l ( v2 _ w2 ) 2

AzB2Us'W2Ws -- u2 f

Vs dv

[ ( v2 -b2 ) ( c2 _ v2 )]fr

AzB2Us' W2 Ws J Vs dv - 1. u [ ( v2 - b2 ) ( c2 _ v2 ) p

A~ V§J + U4

W2W2' dw .l ( v2 _ w2) 2

+ B~ U~ f WsWs' dw ] ... (1 9) j ( v2 - w2)

qu = 42w [( v2 -b2) (c2 - v2 )]! \ u2 I

A2u ~ -.1

qv = (v2 - w2)2

qw = 0

I ~ I I I

J

0 = A2 r -z;2w - lu2 log ( v2 - w2 ) 2 L< ., ) 2 V2- w~

+ : 2v { __ b2 ± c2

32 ~-- 1 }

( v2 _ w2) / l

+

+

( v2 - w2 ) l { ( v2 _ b2 ) ( c2 - v2 ) u4

1 3

w4 ( b2 + c2 _ 2 v2 ) } J

... ( 20)

... ( 21 )

""

Page 99: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

[ 9-9

( iii ) _ C3 l

qu- ---- I u2 I

I Ds ?- ... ( 22)

qv = ( Q _l

I v~ - w2 )2 I

I I

q,v = 0 J

Case IV : When qu = q" = 0 . In this case the possible solution

to the equation (5) may be

q,, = 0 I I

qv = 0 I ?-

... ( 23)

qw = B3U4V4 I ( v2 -- w2) i I

J

Case V : When qv = qw = 0, then a self-superposable flow may be

I AsV5W4 I qu = -u<i I ?-

qv = 0 I I

qw = 0 J Case VI: Wh~n qu = qw = 0. In this case a flow may be

q,, = 0

qv =

q,,, = 0

A4U5W5 1

( v2 - w2 )2

I I I ?­I I J

.. ( 24)

... ( 25)

In all the above cases Un, V,,, W,, ( n = 1, 2, 3, ... ) are the

integrable functions of u, v and w respectively and A,,, B,., Cn, D,,

( n = 1, 2, 3 ... ) are the constants which may be determined by

boundary conditions .

Page 100: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

100]

3. SUPERPOSABLE FLUID MOTIONS

It has already been shown that the hydrodynamic flows given by

equations (6) and (24) are self-superposable. By the method discussed

in preceding pages it can easily be shown that if q 1 aud q 2 be the

two flows (6) and (24) then p for q 1 + q 2 can also be represented by.

the gradient of a scalar quantity. Thus, according to Ba!labh [3 J, C(1

and q 2 will be mutually superposable and a flow

qu =

qv

qw =

AV(v)W(w) u2

BU ( u) W ( w) .l

{ v2 - w2 )2

CU(u)V(v) - .l ( v2 _ w2 )2

I I r I ! >­I l I I J

... ( 26 )

is possible. The same flow can be determined by mutually superposing

the flows (13), (25) and (18), (23) .

4. PRESSURE DISTRIBUTION

It will be interesting to note that 0 is nothing but be rnoulli function [I] given by

e = __ <]_ + h + .l!._ 2g g

... ( 27)

where q, g, h and p denote velocity, acceleration due to gravity, height

above some horizontal plane of reference and the pressure head .

It is a well known fact for an incompressible fluid the pressure

head Pis given by [5]

p = P I po + constant, ... ( 28 )

where p is the pressure distribution .

,k_

~.

Page 101: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

[ 101

Also, if the motion of the fluid .be stea:dy and ,slow then value of h can

be taken, without much loss of generality, as u for the flows (6),(9),

(1 ij,; as ~ f~; the fl~ws (13)' (l sj, (17) _and .w fo: (18), (20), c'22)' .'. . ' •. ' f :. . '- . . . . -·. . ( ·~.. ~ t

T~us for the flo .v (9) pressure ,distrihµtion can be determined as . - - -· .. - - ,_ - " '- ~ -

P = r K0u2 ( b2 + c2 - v2 - w2) + K1u2 ( v2 + 112) log ( v - w) :...

+ K<;.u2 + Kau + K4 ]

where Ko, K1, K~, Ka and K4 ae constants.

Similarly, for flow (11), taking C1 = D1 we have

p = l- _(Ko'_+ Ki' lo~ + K2'u +Ka'] ( v2 - w2)

·Here K0 ', Ki', K2 ', and Ka' are constants.

..• ( 29 }

Uo (30)

Similarly, the pressure distribution for the flows (6),, (13), {15),

(17), (18), (20) and (22) can easily ,be determined.

5. VORTICIT.Y OF THE FLOW .. It was shown by Ballabh [J] that foi: a. self .,..superposable flow,

vorticity is constant along its stream lines . If.T is a unit tangent,along

a stream line then Txq=O ••• ! ( 31 )

By eq~ations (17) atld (31) it can readily be'shown be that

' T == I ' '• ' 0 ' ' •. : ' ' 1 ... ( 32 ) r( v2 - w2 )i;2 u J

. L u2 + ~2 - w2 . [u2 + v2 _ w2]2 · '

Hence .the vorticity of the flow ( 17) is . c:onstant alon_g the curves

represented by equation (32) . Similarly the curves of constant vorticity

can also be found for other. flows .

Page 102: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

102 1

Acluiowledgme~ts

The aathors take this o,pportunity to expi'ess·their cordial thanks

to Dr. R, N. Gupta for his inspiration and help in preparing this

paper . Thanks are due also to refereefor'his valuable sugg~Stibfis .

REFERENCES

[ I ] G. K. Agarwal, Some Studies in Non-Newtonian Fluids, Ph. D.

th'esis, Garhwal University, 1984 .

[ 2 1 R. Ballabh, Superposable fluid motiOns, Proc. Benares A-lath.

Soc. (N. S.) 2 (1940}, 69-79 .

[ 3 J R. Ballabh, On superposability J. Indian Math . Soc . 6 (1942),

33-40.

[ 4 J F. A. Hinchey, Vectors and Tensors for Engineers and Scientists,

Wiley Eastern, New Delhi 'f976 .

[ 5 ] R.. V. 'miSes, Maihemat°icai Theory of'Compressible ·Pfuid"Flow,

Academic Press, New York, }9 58 .

[ 6 ] P. K. Mittal, Lorentz force as the gradient of a scalar quantity

aricPt'h'e 'Nf-HD;ft6'w :un(ter ;forte .... ft~e1:in~fgnetic ~fieldin ;elHptic

'cylinder 'co..::ordinate.s &y.Sfein, '.Bull. Cl#eutra,Math . Soc . .r73 /

(1981), 213-2 7 .

[ 7] P. K. MHtal, On some magneto-hydrostatic configurations in

parabolic co-ordinates . Bull. Calcutta Math • Soc. (to appear).

[f8'] JP. K iMittal, P. S. Thapaliyal a11.d G. X. ·Agarwal, !A note on

some'self-superposable fluid motions in cylindrical du~ts having

'·e!Hptfc1cr0ss1'sect1on, 'J.'Math .iamf!Phys .-Sci .~,(to;appear).

[ 9] M. "R.. Spiegal, Mathematical Hand-Book of Formuals and

Tables, McGraw-Hill, New York, -1968 .

-~

-~

Page 103: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

Jfiiiniibha, Vol. 16, 1986

THE GENERALIZED PROLATE SPHEROIDAL WA VE

FUNCTION AND ITS APPUCATJONS

/Jy

V.G. GUPTA

Department of Mathematics, University of Rajasthan,

Jaipur - 302004, 'Rajasthan, India

( Received·: January 17, 1985 ; Revised: September 13, 1985)

ABSTRACT

Here we employ the generalized p:i:pla,te s.ph~roidaJ \\\llYe,Jqpqt~on . . . . ' ' -

in obtaining the formal solution of the partial differential equation

related to a problem of heat conduction in ,an anisotropic material •

This type of problems occur mainly in wood teclinology, soil

mecban ics, and the mechanics of solids of fibrous stru<:ture. The

solution of the problem when the arbitrary function F(x) is giv.en in

tetms of Srivastava-Panda's multivariable H-function has also been

obtained . The results of this paper unify and extend a large number

of remits e:;tablished by various earlier .workers .

1. INTRODUCTION

The solution oflhefoHowing differential equation

( I - x2 ) -~~~, + [ \ ~ - ex) - ( ex + ~ + 2 ) x ) -~Y_ dx2 dx

+ [ i; ( s) + s2x2) y-·O ... ( l I )

is the generalized prolate spheroidal wave function ( .. see, e.g., Gupta

[ 3 ], p. 107 eqn. ( 2. l l ) ) which has been denoted as

a,~ oo ex,~ { ex,~ ) "' ( s,x) + ~

n p=O R (s)P (x) p,n p + n

... ( 1.2 )

Page 104: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

104 ]

provided thats = O, ~ (0 ) = ( n t p )( 0t + {3 + n+ p + 1 ), p > 0.

Recently, Srivastava and Panda [7] have introduced and studied

the H-function of several complex variables by means of the multiple

Mellin-Barnes integral ( see also Srivastava, Gupta and Goyal [ 6 ],

p. 251 )

0, e : ( w' v' ) ; .. ; ( u<rl ' v<r>) ([ (a ) : 0' , ... , e<r> ] : H [ z1,. • .,zr ] = H

. .. A,C: ( B",D') ; ... ; ( B<r>' D<rl) [ ( c) .: ~' .... , ijJ<r>]:

[(b'):rp']; ... ;[(b<r>):rp<r>]; )

; [(d' j: 3' f;.:.; [ ( d<ri ): 3<r>]; z1, .. .,z,

= (2mo )7 r ... r U1(s1) ... Ur (Sr) v (s1, ... ,s. ) j Li . JL,

S1 Sr .y-Z1 ••• Zr ds1 ... dsr, where w = - 1,

u<o n r [ d/i> ,....... 3;<i> Si 1

j = I .

U; (SI)=----------DW n r[l-d;<i>+3/i>s;J

j = I + u(i)

vw n r [ 1 - b/i> + rfo,(i> s, 1

j = 1

B(i) n r [ b/il - rfo/i> s; 1

j = vW + 1

... ( 1.3 )

, i=:= I ··~·· r

)..__

Page 105: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

[ iOS

V(si.····Sr) =

e r II r [ 1 - a; + ~ 0;<il s; J

j=l i=l

A r C r II. r [a;,- ~ ~/il Si] II r [I - c;+ ~- 'P'/il Si]

J=e+l i=l j=l i=l·

and, for convergence,

I arg z; I < ! Trrr., i, ... ,r ... (1.4)

where

A vii> B(i) T; = - ~ 0;(i) + ~ 01w - ~ 0;( 0

j = c: + I j = l j = v<i> + I

C u<il D(i) ~ 'f/O + ~ a;u1 -,... ~ a/ i)

j=l j=l j = u(il + l ·

> O,i=l, ... ,r ... ( 1.5)

We require the following result due to Chaurasia and G1._1pta

( [ 1 ], p. 82, eqn. ( 13 ) ) in our investigation :

rl a,~ h ( l - x )p ( l + x )a cf> ( s, x ) H [ z1 () - X ) 1 .

n

( I + x / 1 , ... , ~r ( 1, ---:- xl• ( x+l )"• J dx. ',;

oo a,~ p + a + ~ R (s)2

p = 0 p,n

n + P ( ~ ( - n-=p_)~+ ~ + n + p + l )m m ,,;,, 0 ( ot + 1 )m m !

Page 106: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

106 J

H * [ ZJ 2 h1 + k1 ,. . ., Zr 2hr + kr J ... ( J.6 ) m

where

* 0, L\: + 2 : ( u', v,) , •••• ( u<r>, v<r> ) H [ Z1 , •• ., Zr J = H m A+ 2, C + 1; ( B', D' ), ... ,(BCrl, DCrl)

(

. [ - a : ki , .. ., kr J ,

[ { C ) ; 'Y' , ... , qr<r> J '

'[ - m - p: hi, ... , hr J' [(a): 0' , ... , e<•l J: [ ( b' .) : cf/ J j ... ;

[ - I -m - p - a : hi + ki ; .. ., h, + kr] : [ (d'): 8'] ; ... ;

[ ( bM ) : q,cr> ] ; h1 + kl r 2 hr + kr ) z12 , .. ' z

[ < d"> > : a<•l 1 :

The integral ( I. 6 ) is valid for

r Re ( p + ~ h; #'> / 8/i> ) > - I ,

i = I

r Re ( a + . ~ k, d/i! I aj(i) > - I '

i =I

... (1.7)

h, > 0 , ks > 0 and, of course, T1 > 0 , I arg z, l < ! 7tT; ,

Re (a) > - 1, Re ((3) > - 1, i = I , ... , r; J = I , .•. , u(i)

The orthogonality property of the generalized prolate spheroidal

wave function (Gupta [3], p, 107, eqn. (3.I) ) is recalled in the

following form :

11 cx,(3 a,(3

( I - x )"' ( 1 t x )a cf> ( s, x ) tfo ( s,x) dx -1 n t

a,(3 == N 8nt .... ( 1.8)

n,t

A

Page 107: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

c·rn1

where

ct,~ 00 ct,~ .N = }.; ( R (s) )2 • n,t p=O p,n

2"'+P+l r ( n + a + p + 1 r ( n + ~+ p + 1 ) -------(2n +2p + « + ~ + 1) r (n+ p + 1) r ( n + p +a + ~ + 1)

and 8nt is the Kronecker delta .

2. FORMULATION AND SOLUTION OF THE PROBLEM

The partial differential equation related to' a problem of heat

conduction in an a:.nisotropic material has been obtained by Saxena

and Nageria [5] and is given below :

~- [ ( l -x2) ]!!__] - pc" ~ + qj_x)= pc Jl!__ ... (2.1) ox ox A ox A A ct

With the law of conductivity K = ..\ ( 1 - x2 ) , Q ( x ) is the intensity

of a continuous source of heat situated inside this solid • Let the

Initial temperature of the rod be given by

u ( x,O) = F ( x)

If we take

... (2.2)

a-~ ou pc " = - , Q ( x ) = - ( ct + ~ ) .\ x _ - s2xll >.u, q = _ q ox ,\

then the solution of (2.1) can be written in the form

oo -Bi.t «.~ u ( x,t ) = }.; Ai e

l = 0 cf> ( s,x)

I

Substituting this into equation ( 2.1 ) , we have

B1

= (! +P ) ( l + P + « + ~ + 1 ) q

... ( 2 3)

Page 108: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

10s I

In order to find the value of Ai , we make use of the initial conditi.on

(2.2) . This gives

oo a,(3 F ( x ) = ~ Ai </> ( s,x )

I= 0 I

Multiplying both sides of (2.4) by

a;() ( 1 - x) °' ( 1 + x )a rp (s,x)

I

... ( 2.4)

a11d i~tegrating with respect to. x from. -I to 1, we obt~in .the

result Ai= Gi

a,(3 Ni,i

·1 I a,(3 where Gi = ( 1 - x r ( 1 + x )a rp ( s,x ) F ( x ) dx -1 I

... { 2.5)

... (2 6)

This is because the generalized prolate spheroidal wave function

possesses the orthogonality property (1.8) •

Hen'd: the solution of the problem may be expressed as

u ( x~·t) 00 cx,(3:- l

~ ~ Gi ( N exp [ _(./ +P) (I+ P +a + (3 +I) t] I= 0 /,I q

a (3 </> ( s,x) I

... ( 2.7)

If we takes= 0 in (2.7) , we get the. solution of the problem in

terms of the Jacobi polypo,mials given eadier by Saxena and. Nageria .. - r• - - • • •

( [5 ), pp. 1-6 ) . Again, setting a = (3 = 0 and s = 0 in (2. 7) , we get

the solution of the problem ip terms' of L_eg~ndre ·functions given by

Churchill ( [2], p. 224 ) .

.~

Page 109: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

[ IQ9.

3 •. •EXAMPLES

Let

F( x) = ( 1 - x )P - ex ( 1 + x )cr - ~

H [ Z1 ( 1 - X )h1 ( l + X fi , ... , Zr ( 1 ~ X lr ( 1 + X lr]

then by ( 2.4) we have formally that

( l - x l - ex ( 1 + x )cr - ~

H [ Z1 { l - X )h1 { l + X ll , .. , Zr { 1 ""'"'.'" X ) hr ( I + X }k' ]

oo ex,~ ~ Ai cp ( s , x) ... ( 3.1 )

l = 0 l

Equation (3. l) is valid since F ( x ) is continuous and of bounded

variation in the open interval ( - 1,1 ) .

Now multiplying both sides of (3.1) by ( 1 - x )°' ( 1 + x )Ii

ex,~ cp ( s,x ), a > -'1, .. ~ > -1 and i11tegrating with respect to x from n

-1 tu l, change the order of integration and summation (which is

permissible) oh the right, we obtain

I 1 a,~

. ( 1 - x) P ( 1 + x )cr <P. ( s,x) -1 n

· H [ Z1 ( 1 - X )h1 ( l + X )k1 , ... , Zr ( 1 - X )hr ( 1 + x, )kr )dx

Page 110: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

110].

oo I 1 "' a ot,~ a,~ = ~ A1 ( 1 - x) ( I + x) rjJ ( s, x ) rjJ ( s , x) dx

I = 0 -1 I n '·'

... ( 3.2)

Using the orthogonality property of the generalized prolate sphe­

roid~l w,ave func~ion (1.8) on ~he right-h~nd side and the result ( • .6)

on the left hand side of (3 2), we obtain

00 (!'~ Ai = L R (s) 2P + cr +

p = 0 p,n

r ~ ( . - n - P Jm (·a + ~- + n + p + I )'.~'. n~p( { m = O ( a + 1 )m m !

i *. ii [ z1 2h1 + ki , ••. , Zr 2hr + k, ] m

. '*

()( ~ N · t ,I

rl .J

... ( 3. 3)

where H function is defined by ( 1.7) on supstituting the value m ,' .... : : ;-.~- · - .... ;

of Ai from (3.3)in (2.3) and using the lemma ( [4], p.57, eqn (2)),

we a~'rive at the solution of the problem (2.3) as

u ( x, t )= 00. p p 1; ~ L 2P + cr + I

p=O 1=0 m=O

ot,~ R (.~)

p - I, I { . ~ '} ·1 ( - P )m ( ot + ~ + P + l )m · Na• '. - .

( a + l )m m ! /, I

' / . - : . .

H* [ 21

2h1 + k1 , .. , Zr 2hr + krq'e-('pjq') ( jJ +·a -F ~ +. l/)t m , .

. . ,. a-,(3c; ·.. " ?> . ( s,x ) l

,, ., .. [. J \. I / .• :: ( 3.4)

.-~

~

Page 111: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

[ Ill

valid under the condition mentioned with (I 6) .

We :notitb that th~ multivariable- Ji_:_function involved in our result·

(3 4)is quite general !n character; Jndeed, by: suitably~_sp.e~ializing the

parameters of this ft..nction we_,can t".asily .obtain solution of the '-.·.,· l :' ' . -

problem in terms of a large number of elementary functions of one

or more variables ( or produqt of several such functions ) : .

Acknowledgements

, ... i . .,

The author is highly thankful to Professor M. C. Gupta and

Dr. S. P. Goyal ( University of Raj::l:sthan; Jaipur:) for their keen • • . • . • .. :~ .•• ' • L· ··;· • . ' ·~ • • ' •

interest and useful suggestions in the prepal.'ation fo thi's 'paper ;;He is

also tl1ankful to Pr~fessor ~l. M.;· Srivastava fo.f"· t"h~ var;fous impr"ove­

rnents in this paper .

REFERENCES

[ l ] V. B L. Chaurasia and V. G. Gupta . Some results on the

H functkn of several complex variables involving the

generalized hypergeometric function and the generalized prolate

spheroidal wave function, JD.anabha 13 (1983), 73-85.

[ 2 ] R. V. Churchill, Fourier Series and Boundary Values Problems,

McGraw-Hill, New York, 1942.

[ 3 ] R. K. Gupta, Generalized prolate spheroidal wave function,

Proc . Indian Acad. Sci. Sect . A 85 (19771, 104-114 .

[ 4] E. D. Rainville, Special Functions, Macmillan, New York,

1960.

Page 112: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

112 1'

[ 5] V. P. Saxena and A. R. Nageria, Linear flow of heat in an

anisotropiC finite' solid moving in a conducting medium·,

Jfi~~·~bh~·s~ct . A.' 4 (1974); f:-6 .

[ 6 J H M. Srivastava, it. c. Gupfa a~d s. P. Goyal, The H-Funci­

ions of One and Two Variables with Applications, South Asian

Publishers, New Delhi and Madras, 1982 .

[ 7] H. M. Srivastava and R. Panda, Some bilateral generating func­

tions for a class of generalized hypergeometric polynomials

J. Reine Angew . Math . 283/284 {1976), 265-274 •

"~

Page 113: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

J.iianabha, Vol. 16, 1986

ON A GENERALIZED MULTIPLE TRANSFORM. I

By

K. N. Bhatt and S. P. Goyal

Department of Mathematics, University of .Rajasthan,

Jaipur - 302004, Rajasthan, India

( Received: February 25, 1985; ReviseJ [Final]: February 3, 1986)

ABSTRACT

In the present paper we study a general multip1~;httegraltra:nsform

in which the kernel is the product of Fox's H- functions and the

JI- function of several variables which was introduced by H. M. Sriva­

stava and R. Panda Our transform provides interesting extensions of

various classes of known integral transforms of many variables whose

kernels are expressible in terms of E, G and H- functions of one and

more variables. Several special cases of this transform have been discu­

ssed briefly. we lastly give certain elementary and useful properties

for our transform.

1. DEFINifION

we study the multiple H- function tranform defined by

rfo{ S1 ,. •• ,Sr)= Hr { f: s1, .. .,s,} (1)

Joo I oo r l u; , O r I ~(s1 , •. .,s,) .... rr H i t;s;x;I Q Q l = l Vt , Wi ._.

(k/il, p/il)l ,Vi

(h,<" • .,w)l • "" JJ 0 '0 : m1 • ni; ... ; mr 'nr

H P • q ; Pl ' ql ; ... ;Pr' qr [~1 S1 X1

Ar Sr Xr

Page 114: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

114]

( a1 ; a;' ,. .. , a/rl )v:i> :

( b1 ; ~/ , ••• , ~/rl )t>a :

·<rl (c ' y·') •• (c· y-<n>) 1 •

3 l, p1 ' ... ' ' ' ' 1, Pr I

(r) (rl

I I if ( X1 , ... , Xr) dx1 ... dxr. I

( d;', a;' )1, ql; ... ; ( d; ' a; )1, qr I

.J

The H-function of one variable appearing in (1.1) was first intro­

duced by Fox [3] . The details of this function can be found in a

recent monograph by Srivastava, Gupta and Goyal [8] . On the other

hand, the multivariable H-function :

0, 0: m1' ni ; ... ; mr, nr (1.2) H

p, q; Pl' ql ; ... ;pr, qr [

z1 I ( llJ ; a;', .. , ot/r> )J,p :

~r ( b; ; ~( , ... , ~;<rJ )J>q :

( / ' ) . . (c (rl y (r) ) J C;,y; l.p1•···• i 'i l,pr = H1 [ z1 , ... , Zr ]

. ' ,1

• • .(r) Cr> ca,,a, )1 , ... , (d, , a1 ,)1 • ql , qr

. '

( 2rr;l w )-:;:- J L1 ... I Lr rp (s1 , ... , Sr ) 01 ( S1 ) ... 0, ( Sr) z/1 ... z/'

. ds1 ... ds,, w = v-1,

is a particular case of the H· function of several complex variables

( or the multi variable H. function ) which was introduced and studied

by Srivastava and Panda in a series of papers ( [5], [6] and [7]; See also

[8], p . 251, Eq. (C.l)).

The multiple integral on the right-hand side of ( l. I) exists and

defines the; multiple H-function transformation of a given function

f ( x1 , ... , xr ) under the following sufficient conditions :

.-~.

..1

Page 115: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

Wi Vi

( i ) Ti = ~ cr;w - ~ p/i> < O ; j=l j=l

Ui WI Vi

(ii) Si = ~ j = 1

cr/il _ ~ cr;W _ ~ p/il > O, j = u;+ 1 j = 1

I arg t; St I < ( I /2 ) S1 l't;

( iii ) L\; > 0 , I arg A.;s; I < ( 1/2) L\t 'It , where

p L\; = _ ~ a/ii

j=l

q

ni

+ ~ j = 1

'

nu

Pt '(j(i) - ~

j~n1+l

q;

[ 115

yii)

~ ~;(O + ~ o/i> _ ~ Oj(i). > 0 , j = 1 j = 1 j =mi+ 1

\f i E { l , ... , Y } ;

( iv ) f ( x1 , ... , Xr) is a real-or complex-valued function of r varia­

bles X1 ' •• , Xr defined on R : O< X1 < 00 , ••• , o~ Xr < 00 and

such that the product

r l ~. + n1 J . I1 Xi f ( X1 , .•. , x, ) is integrable ( in the sense of l = 1

Leb:!sgue ) over R ( Ri. R2 , ••• ,Rn ) : 0 < x; < R1; R; > 0,

where

~i = Re ( h;c n / cri< 0 ) and min l } 1 < j <ui

. .

min ·1 ' . } . . • - . (i) .. (i) . . • . .. . • -'i• - . Re ( d, t_a,, ) v 1 E {. 1, ... , 1 }.,

1 < j < mt •' . - .

Page 116: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

116 I

and

( v) the limit of the finite form of the multiple integral in (1.1) with

f 00 Joo t Ri JR" j 0

,.; Q repJa-0ed by ) Q ••· Q exists at the point ( St , ... ,Sr )

when Rt , .. ., R, --+ oo . 2. SPECIAL CASES OF THE INTEGRAL TRANSFORM

DEFINED BY (1 l)

The integral transform (l.l) is quite general in character; indeed

its various specialized ·and confluent forms can be suitably related to

the several classes of known integral transforms of one, two and more

variables considered in the literature from time to time by various

research workers . Some interesting connections t of this transform

with the known integral transforms are mentioned below :

If we take u; = w, = I, w = 0. cr1<i) = I, h1<i> = 0 in (I.I) and,

using a known result [ 8, p. 18, Eq .·(2.6.2) ], we get

(2.1) </; (s1,. .. ,sr)=(s1···Sr) J00

••. f00

exp {- .~ (s;l;X;)} 0 0 l = 1

Hi [At s1 Xi, .•• ' Ar Sr Xr ] f ( X1 , •. 'Xr) dx1 dxr

provided that the multiple integral involved in (2.1) is absolutely

convergent •

t Similar multiple fl-function tr~nsformations have been studied .. by Y. N. Brasad and K. Nath [Istanbul Tek. Univ. Bu!. 36 (1983),

361-371 ; Vijnana Parishad Anusandhan Patrika 27 (1984), 23-43].

~

4

Page 117: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

[ 117

The integral transform (2 1) is clearly related to the transform

studied earlier by Srivastava and Panda [7, p. 119, Eq. {I.I)] ..

Further, if we let t; - 0 ( i = 1 ,. . ., r ) , the integral transform (2.1)

will reduce to another integral transform studied by Srivastava and

Panda [ 7, p. 121, Eq. (l.15)].

(2.2) rP ( S1 ,. • ., Sr)= ( S1 ... Sr) r= .. (00

H1 [ ,.\1 S1 X1 ,. .. ,Ar SrXr] Jo Jo

. f ( X1 , ••• , Xr ) dx1 ... dxr ,

provided that the multiple integral in (2.2) converges absolutely.

Again, if we take r = 2 in (I.I), we shall obtain the following

double integral transform introduced and studied by Agarwal

[ I, p. 131] :

Ioo i= U1, 0 r I (k/, p/)1 v ] (2.3) di (sh s2 ) = s1 s2 H Lti s1 X1 ( h;', cr/ )

1

1

0 Q Vi, W1 · , W1

[

k II II ) J u2, 0 j ' p; I v . H t2 s2 x2 / h~ , ' ' a; ,, ) ' ,2

V2, W2 1, 142

H1 ( ..\1 s1 Xi. ..\2 s2 x2 J f ( x1. x 2 ) dx1 dx2 ,

provided that double integral (2.3) converges absolutely •

In (2.3), H 1 [ x,y ] stands for. the fl-function of two variables ( with n = 0) studied earlier by Mittal and Gupta ( [4] ; see also [8] ).

We should mention that the aforementioned transforms (2. l) and

(2.3) are quite general in nature and include a large number of other

well-known integral transforms of one, two and several variables .

For details, refer to the works by Srivastava and Panda [7], and also

by Agrawal [2] •

Page 118: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

118 ]

3. ELEMENTARY PROP.ERTIES

Property I.

(3.1) J~··· J~ g ( S1 , ... ,Sr) H, { f: S1 , ... ,Sr 1 ~:1_ dsr S1·

=J~· .. J~f(s1, ... ,sr)Hr{g:s1 , ... ,s,} ~s1 ds., Sr

provided the multiple integrals converge absolutely .

Property II.

If the multidimensional H ,-integral transform of j ( x1 , ... , x, )

defined by (I. I) exists; then

(3.2) Hr{ J ( fl-1 -'t , ... , p.r Xr); S1 , ... ,Sr}

~ Hr {· f ( X1 , .. , Xr ) : ~ , .. , !~ } µl µr

provided that µ 1 , ... , µ.r > 0 .

Evidently, this property may be called similarity rule for the

multiple H,-transform defined ~y (I. I)

Property III.

If the multidimensional H,-transform of f ( x1 , ... , x, ) defined

by ( I. I) exi&ts, then

(3.3) . ~ /'::..; H, f f1: S1 , ... ,Sr }

J = 1 l . .~ H,. {61/i :s1 , .. ., Sr l, j=l j

where 6. 1 , ... , f'::..N are constants . This property may be looked upon as linearity rule for the multiple H,-integral transfurm .

-~-

Page 119: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

[ 119

In our next communication we shall give an inversion formula

and study some other important properties of the transform ( 1.1 ).

Acknowledgements

Tbe second author is thankful to the University Grants

Commission for providing financial assistance for the present, work.

· The authors are also thankful to Prof. M. C. Gupta, Prof. K. C. Gupta

and Prof. H. M. Srivastava ( Canada ) for making some very useful

suggestions and encouragement in the preparation of this paper.

REFERENCES

[ 1 ] R. K. Agarwal, On a two-dimensional H-H integral trans-

form. II, Kyungpook Math J. 22 (1982), 131-140.

[ 2 ] R. K. Agrawal, A Study vf Two-Dimensional Integral

Transform and Special Functions Involving one or More

Variables, Ph. D. Thesis, University of Rajasthan,

India, 1980.

L 3 ] C. Fox, The G and H functions as symmetrical Fourier

kernels. Trans. Amer. Math. Soc. 98 (1961), 395-429.

[ 4] P. K. Mittal and K. C. Gupta, An integral involving genera-

lized function of two variables, Proc. Indian Acad. Sci.

Sect. A, 75, (1972), I 17-123.

[ 5] H. M. Srivastava and R. Panda, Some bilateral generating

functions for a class of generalized hypergeometric

polynomials, J. Reine Angew. Math., 283/284 (1976).

265-274.

Page 120: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

120 1

[ 6 ] H M. Srivastava and R Panda, Expansion theorems for the

H-function of several complex variables, J. Reine !"', Angew.Math. 288 ( 1976) 129-145.

[ 7] H. M. Srivastava and R. Panda, Certain multidimensional integral transformations. I and II, Nederl. Akad.

Wetensch. Proc. Ser. A 81= lndag. Math, 40 (1978) ,

118-131 and 132-144.

[ 8 ) H. M. Srivastava, K. C. Gupta and S.P. Goyal, The fl-Funct-

ions of One and Two Variables with Applications,

South Asian Publishers, New Delhi and Madras, 1982.

~

Page 121: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

,.

Jnanabha, Vol. 16, 1986

AN EXPANSION FORMULA FOR THE H-FUNCTION OF

SEVERAL VARIABLES

By

GEETA ANEJA

Department of Mathematics, University of Rajasthan,

Jaipur - 302004, Rajasthan, India

( Received : March 8, 1985; Revised : August 12, 1985)

ABSTRACT

The aim of the pre sent paper is to establish a general expansion

formula for H-function of several variables which was introduced and

studied in a series of papers by H. M. Srivastava and R. Panda (see,

for example, [4] and [5]). lt !S significant to observe that a large

number of finite and infinite series for this function can be easily

summed up by using the well-known summation theorems for ordinary

h) perf:rnmttric series in the main result . Also, by appropriately ·

si;::ecializing H.e parameters of the H-function of several variables, one

can easily obtain expansion formulas for simpler special functions of

one aLd more variables .

1. INTRODUCTION

We begin by recalling the definition of the H-function of several

variables introduced and studied by Srivastava and Panda ( (4] and

l5] ; see also Srivastava. Gupta and Goyal (3 .p. 251, Eq. (C.l)]):

H ( Z1 ,. •• , Zr ) 0, n: mi, n1 ; ... ; mr,nr l- z1

H ; p, q; Pl> ql ; ... ;Pr, q, Zr

Page 122: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

122 l

( a . ,. 1 ,., (r) ) • ( C ' y.' ) . . ( C .(r) y r) ) ; ' ... ; , ••• , ""1 l,p " ; ' ' 1,pl , ... , 3 ' 1 l,pr J

( b . r:>. 1 r:>..lr)) • ( -"' "'-') •• I d-lr) "'.(r)) ; , l-'1 ,. •. , l-'' I q . u; , 01 I q , ···, \ ' , o, I q

• • 1 , r

= ( 2n:~ Y JL1··· f L' r/>1 ( ~1) ... rpr ( ~r) \}!' ( ~1 , ... , ~.)

~1 ~,. • Z1 ••• Zr d~l d~1

( 1. l)

where w = ..; -1 ,

rpi ( ~· )

and

m; n; 11 r ( J;<il - 8,W i )

j =I TI r ( I - c/-n + y/i1 ~; )

J=1

q; P• 11 I' ( 1-d/il+ 8/il ~; ) Il r ( c/i1 - y/i' ~1 )

j = m; + I j=n;+ I

i€ {I , ... ,r} ( I 2 )

n r 11 r ( I - a; + L ix;1

i) ~i )

j = I j=l

'Y ( ~1 , ... ' ~. )

p 11

j=n+l

r r (a; - L

i= I

q a/ 1> ~; ) II

j=l

r r ( 1 - b; + L ~;Ii> ~; )

i= I ( 1.3 )

The nature of the contours in ( I. I ) , the asymptotic expansions,

conditions of convergence of{ 1.l) and particular cases of the multi var­

iable H-function can be found in the papers [4] and [5] . See also the

book by Srivastava, Gupta and Goyal [3, p 25 I] •

.~

Page 123: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

2. MAIN RESULT

A II (a/ )k zk

co j =I ~ B

k = 0 II ( b; I )k k ! j = 1

m1 + F1, n1 + G1

0, n + C H

p + C + D, q + E:

, ... ;m, + F,, n, + Gr

I 123

Pl + G1 -t- H1, ql + Fi + /1 ; .. ;pr + Gr + Hr, q, + Fr + Ir

I :1 ,- 'J , ... i..., l,C' ,, ', ... ,~, l,p' r z I ( u· k• p·' . ,,.<r) ) (a·. a·' N (r))

'--Zr ( b;; ~/ , ... , ~/rl )1, q' ( W; - k; e:;' , ... , €/rl )l, E

( v; + k; a/ , ... , a/' 1 ) 1 D: ( g;· -k, YJ; )1 G • ' l•

: ( i;' + k, µ.;')I F, ( d1', 8;' )1 , ( !;' - k, 11;' ) 1 I ; ' l ,ql ' 1

( c;', y/ )1 p, ( h;' + k, !;;') 1 H ; ' 1 < ' 1

• ( i-c•> + k, µ/'> >1 F ' ••· ' ' ' r

• ( g;<r)_ k 'Yl.(r)) . ( c.(r) y·<rl ) ( h·<rl + k l:';(r)) J ·· ' '.,, l,Gr' ' ' ' l,p,' ' '"' l,H,

( dj{r) "'.{r) ) ( /.{r) k V .(r) ) '

03 1,qr • 3 - '

3 1,lr

= ! w )' 1 L1 ••• tr cfo1 ( ~l ) ... cpr ( ~r ) '¥ ( ~l ... ~r }

[

A1 ( ~1 , ••• , !;r ) l F f' A+ p

B1 ( ~t , ... , ~. ) j [

( a A ) , Ai ( i;1 , ••• , ~r ) J B+Q

( bn') , B1 ( ~l , •.• ; ~r )

~l .;. • Z1 ... Zr d .i;l ••• d ~r , (2.1)

v.bere

Page 124: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

124 J

Ai ( ~1 , .. , ~' ) stands for

r ( I - u1 + ~ p/il ~;)IC' ( I - g/ + 'Y);' ~1 )1 G , ... ,

i = I ' ' 1

(I - g/r) + 'Y)/rl ~r )J. Gr ' ( jj - µ/ ~l ) I.Fi ' . ' ( i;\rl - µ;(r) ~r ) J.Fr

B1 ( ~1 ,. •• , ~' ) stands for

r r ( V; - ~ cr/il ~; ) I D ' ( I - w; + ~ e:,(i) ~; ) I E '

i=l ' i=l '

( h/ - ~/ ~1 )J,Jll , .. ,( h,frl - ~;(r) ~r )I.Hr'

I I - !·' + v·';: ) ( I - /.(r) + v1<r) i: ) ' ' ' -,1 l ,/1 , ... , ' ..,, I J,

Formula {2.1) bolds if any one of the following sets of conditions is

satisfied

(i) A+P<B+Q+ I

( ii ) A + p = B + Q + 1' I z I < I

( iii ) A + P = B + Q + I , Re ( 0 ) > 0 , z = I

( iv ) A + P = B + Q + I , Re ( 0 + l ) > 0 , z = - I

where

r P = C + ~ ( G; + F, )

i = 1

r Q = D + E + ~ ( H; t /;)

i = 1

.~

Page 125: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

0 = B ~

j=I

/; + ~ /j(r)

j= l

A b/ - ~ a;'

j = 1

G, ·~ g/r>

j=I

{ i ~ F

( ~ 1 j ...:=

i/1>

H1 E C D J . ~ h/1

) ) + . ~ Wj - . ~ U; - . ~ V;

J=l 1=1 J=I J=l

r + E - C + ~ ( f, - Gi )

i =

[ 125

Derivation of (2.1). To evaluate (2.1), we first replace fl-function

of several variables, occurring on the left-hand side of (2.1) by the

contour integral in (I.I) , and change the order of integration and

summation [which is justified under the conditions mentioned with

(1.1)] ; then we get the required result (2.1) on using the definition of

the generalized hypergeometric function (see, e g., (2] , p. 40; [3J ,

p. 2 ) . The routine details may be omitted .

3. PARTICULAR CASES

( i ) lf in l2.l) A = 2, B = 0, P = 0, Q = l ( E = l ) z = 1, using

the Gauss theorem [ 2,p 243 ( III. 3) ] , we get the following

summation formula :

00

~ k=O

( a 1 ' )1. ( a21 h

- k !

f"z1\ (a1;a;', ... ,1X;<•>) 1 H, . ,p i ; . ' (r) :.... - r ( W1 - k , e1 , •• ., <:1 ), { b4 ' P. (rJ ) ~j , •• ., tJJ l,q

Page 126: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

( 127

(r) ) -; ... ; c;<r>, Y1 I, Pr I ; ... ;(d/•>,8/<>)1,q, ..J (3.2)

It is thus seen that a large number of summation formulas can be

obtained from our main result (2.1) . Hence our main result may <ie

regarded as the key formula for the summation of series involving the

H-function of several variables . It is not out of place to mention that

the results obtained by Vashishta and Goyal [6] , Verma l7] , Parihar

[l] , and others, can be easily obtained as special cases of main result

(2.l) '

Acknowledgements

The autl-.or is thankful to Prof . M. C. Gupta and Dr. G. K.

Goyal for their valuable suggestions, and also to Dr. S. P. Goyal

for his help and guidance during the preparation of the paper .

REFERENCES

[ l ] C. L. Parihar, General expansion involving S-functions, Math.

Education 8 (1974), A 29 - 46.

l 2] L. J. Slater, Generalized Hypergeometric Functions , Cambridge

University Press, Cambridge and London, 1966 .

[ 3 ] H. M. Srivastava, K. C. Gupta and S. P. Goyal, The H-Funct­

ions of One and Two Variables with Applications, South Asian

Publishers, New Delhi and Madras, 1982 .

Page 127: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

128 J

[ 4] H. M. Srivastava and R. Panda Some bi!ateral·generating func­

tiuns for a class of generalized hypergeometric polynomials

J. Reine Ar;gew . Math . 283/ 284 ( 1976 ), 265-274 .

[ 5 ] H M. Srivastava and R. Panda, Expansion theorems for the

H-function of several complex variables, J. Reine Angew.

Math. 28S ( 1976 ), 129-145.

[ 6 ) S. K. Vasbistha and S. P. Goyal, An·expansion formula for the

fl-function of two variables . Vijnana Pari:,/wd Anusa;1dhan

Patrika 21 (1978) , 237 - 246 .

[ 7] A. \'erma, General expanskns involving £-furctivns, Math

Ze itschr , 83 (1964 ), 29 - 36 .

~

·Iii<

Page 128: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

Jfianabha, Vol. 16, 1986

SOME THEOREMS FOR A DISTRIBUTIONAL GENERALIZED

LAPLACE TRANSFORM

By

S. K. Akhaury

Department of Mathematics, Ranchi College,

Ranchi - 834008, Bihar, India

(Received: September 23, 1981; Revised [Final] March 2, 1984)

ABSTRACT

A generalization of the Laplace transform was given by professor

H. M. Srivastava in the year 1968. For this general integral transform

S. K. Sinha (1981) gave complex imersion and Tauberian theorems,

and A. K. Ti~ari and A. Ko 0982) gave several further properties in

the distributional sense including complex inversion and Abelian theo­

rems . We extend this generalization to distributions and obtain similar

Abelian theorems of the initial and final value types [ see,also rhe

relent work of V. G. Joshi and R.K. Saxena (1931) involving an analo­

gous study of a substantially more general fl-transform ] .

1. lntcoduction and Definitions

A gene1 alization of the Laplace transform

L(f(t) :p] = J~e-pt f(t)dt ,Rep>O. (I)

was given by Srivastava [5] in the form {see also [ 6] ) :

Page 129: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

130 J

(p,cr) s [f(t):pJ

q, k, m

1: (pt )O" - 1/2 e -qpt/2 W1r,m ( ppt )f( t) dt (2)

where W1r,m (z) denotes the Whittaker function ( Whittaker and

Watson [8, p 339 ] ) . By analogy with Srivastava's definition (2), we

define the generalized Laplace transform of a distribution f (t), whose

support is bounded on the left , by (see also (3] and [7J )

( p,cr ) F(p)=S [f(t):p]

q,k,m

= <f(t), e-qpt/2 (pt)cr-l/2 W1;m (ppt) > (3)

In this paper we prove Abelian theorems of the initial and final

value types for the distributional (Srivastava 's) generalized Laplace

transform (3). For an analogous study of a substantially more general

H-tramform, see a recent work [2] .

Let us assume that th ere exists a real number c for which e -ct f(t)

is a distribution of slow growth . We may c )nvert (3) into

( p, O" ) F( p) = S [l (1): p ]

q,k,m

<e-ct j(t), .\(t)e-(qp- 2c)t/2(pt)cr-l/2 vv,,,m (ppl) >

(4)

where.\ ( t) is any infinitely smooth function (with support bounde.d

on the left ) which equals one ove1 a neighbourhood of support of

f ( t ) •

.~

~

Page 130: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

,,,,

131 J

The definition ( 4) possesses a sense since

{ A (1) e - ( qp - 2c) t/2 (pt) cr - 1/2 ~·h,m ( ppt) }

is a testing function in St , which denotes the space of testing functions

of rapid descent .

Z. Abelian Theorems of the Initial Value Type

We relate here the asymptotic behaviour of f (t) as t-+ o+ to

the asymptotic behaviour of F(p) asp -+ oo • Let m assume that f (t)

is a locally integrable function and satisfies Condition A, that is,

( i ) f (t) = 0 for - oo < t < T, and

( ii ) there exists a real number c such that l is absolutely integrable over - oo < t < oo •

-ct e f (t)}

Theorem I t cf. [ 7, p. 3.'.-2, Theorem 4.1]) . If the locally inte­

gruble function f ( t ) satisfies Condition A ·with T = 0 (that is,

the support of fl t) is in 0 < t < oo ) , and if there exist a complex

number a and a real number Y1 l .,, > - l ) such that

lim ) J~ l _ t _,. o+ l ,.. ~ - a,

(5)

then

{ pYJ + l F (p ) }

p -+ oo ~ ( "' m, k, p, cr, q)

lim a

(6)

where

Page 131: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

132 I

and

~ ( °fJ· m, k, p; cr, q) =

r ( "fJ + m + (J + 1 ) r ( "fJ + (J - m + 1 ) pm+l/2 -------

r ( ri + cr - k + 3/2 ) [ ~ ( q + P ) 1 m + ri + cr + I

. 2F1 ( 'rJ + m + cr + 1 , m - k + 1/2, ''l + cr - k + 3/2/ - P ) q +P

Joo -qpt/2 cr - 1/2 (

Fl p ) = O e (pt ) W",m p pt) f ( t ) dt (7)

Proof. We first note that for 'rJ > -- l and p > O .

J~ r'fJ e -qpt/2 (pt )a- 1/2 Wk,m ( p pt ) dt

____ ~ ( 'r), m, k, p, cr, q) (8) p"'+l

provided that ''l + cr ± m + I > 0 and q -+ p > o (see Erddyi et al .

[ I, p 216 Eq. ( 16)] ) . By using this result and assuming that p > O

and y > 0 . we may write

'rJ + 1 Ip F(p)-tx~(·f),m,k,p,cr,q)j

= I p'IJ + 1 J~ e-qpt/l (pt)(] - 112 wk,.n ( ppt) {f(t) --a In }dt I

'1J + If Y - tj> - 1/2 < IP O e qp - (pt )cr W1c.m ( p pt) { f(t) - tx t"fJ } dt I

~

Page 132: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

[ 133.

+ I p"fJ + I J~ e- qpt/2 (pt) cr - I/2 Wk,m (ppt) { f (t) - IX tn } dt I

=Ii+ h

Let us first consider Ii of (9)

11 = I p.,, + I f y t.,, e -qpt/2 (pt)a - 1/2 W1,,m ( FPt ) .o

{-·~~t) _ 1X 1 dt I

(9)

i f (t) ~ sup . --- a I . ~ { 11 , m, k, p, a, q) I l"' 0 ~l ~y

(IO)

Now for /2 , we note from the second part of Condittion A and

the assumption c > 0, that e-•t If (t) - at"' I is absolutely integrable

overO < t <=.So, for p > 2c q

1 _ I "') + I I 00

{ -qpt /2 ( t)cr -- I /2 W ( 1 ) ct } 2. - P e P 1'"" FP e

y •

- Cl r n r } e : l J (t) - IX f dt j

Now since the function

e- ( qp - 2c) t;2(pt )cr - 1/2 wk,m ( ppt)

is bounded in ( Y. oo ) , so it must have an upper bound . Let the /

upper bound of the function be attained at the point t = ~. Then

Page 133: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

134 )

12 < p"' + 1 I e- ( qp- 2c ) ~/2 ( p~ ) (J -1 /2 wk,m ( PP~ ) I .

J~e-ct I f(t) ~at"' I dt

<KP "tJ+ l e- (qp - 2c) ~/2 (p~) cr - l/2 Wk,m (pp~) {l l) ;

where 100

-ct K = y e I f (t J - at"' I dt .

Now let e:> 0 . From relation (5) it is clear that y can be chosen

so small that the right-band side of ( 10), which is independent ofp,

becomes less than e: • By fixing y in this way , we can choose p very

large so that the right-hand side of ( l l) becomes less than e: Since e:

is arbitrary, combining the results of ti 0) and (l l ), we find that the

left hand side of (6) can be made arbitrarily small for large p . This

proves (6) . Thus

or

"'+ 1 IP F (p) - ex.~ ( "f),m,k,p,cr, q ) I < e: for p > ~c

q

p "'+1 F( p) ·---- --.;. ex. as p _,. oo •

~ ( "f),m,k, p, cr, q )

which proves the theorem .

Now weextend this theorem to a distribution w;1ich, in some neigh­

bourhood of the origin, corresponds to an ordinary function . ln order

to make this extension , we shall need the following

~

~

~!

Page 134: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

[ 135

Lemma. Let f (t) be a generalized Laplace transformable distrtbution

with support in y .;;;;; t < oo, where y > 0 . Let the real number c

be such that e-ot f (t) is in S', which denotes the space of all distrib­

utions of slow growth . Then, for ( 1 +2c )/q < p < oo,

I F(p) I ,;;;;; M e-qp-r/2

where M is a constant and -r is any real number satsfying 0 < -r < y.

Proof. For p > 2c/q,

F(p) = < e-ct f(t)' .\(t) e-( qp- 2c )t/2 (pt)a-1/2 W,,,,}PPt)>

where .\(t) is an infinitely smooth function whose support in x.;;;;;t < oo •

Here x is a fixed number satisfying 0 < x < y • Again distribution

of slow growth satisfies a boundedness condition of the t) pe

I < f, <P > I ~ c Sup \ ( l + t2 y <P('> (t) I t

for given fin S and for q, in S, where the constant c and the nonne­

gative intege1 r depend only on f.

Thus

I F(p) I= I < e-ct f(t), .\(t) le-{ qp-2c) t/2 (pt)cr-1/2

wk'm ( ppt )> I

.;;;;;c Sup I ( 1 +t2 )~ [ .\(t) e -(l,p--2c) t,2(pt) cr-1/2 X < t < oo dtn

• Wk,m ( ppl ) ] \

= c Sup I (I + t2 )" ~ 1.(t) = ~ ( - I)n. n (n) (n-r) r ( r )

x .;;;;; t < oo r = 0 r v= 0 v

Page 135: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

136 J

~ I l' - v l-i--(q-p)p-c~ e-(qp-2c)t/2 P-m+l/2

~ (~_- m) ! v ( v ) u = o u ca - m -=--v+-uY!-- < -1 rcpt )a-v + <u-1)12

pv pm+(u-1)/2

Wk+u'2 , m_u ·2 ( ppt ) I , cr ;;;;. m + v ( see Slater [ 4, p . 25 J ) • ( 12 )

\\'here the constant c and the integer n < m depend only on f. Let

us consider

cf> ( ppt) =(pt )a - v + ( u-l )/2

wk+u/2, m-u/2 (pp!).

Here we see that the function <ji(ppt) is finite at zero and at

infinity. The function cf> ( ppt ) is continuous within the interval {O,oo ).

So the function </; ( ppt ) is bounded for all positive t.

Hence

I (pt )cr-v + (u-1 )/2 wk+u/2, m-u/2 ( ppt) I <,1H1

for all positive t •

Thus ([2) becorr.es

i F ( P ) I <cM1 Sup [ ( I + t2 )n 2 ( n ) x ~ t < oo r= 0 r

(n-r) ,\ ( t)

r 1;

v=O ( : ) ( -1 )'-v

~

~'

Page 136: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

[ 137

- ( q-p )p-c ~ cr - m . (-l)u pv l l Jr-v 'V ( v ) ( } 1

2 u=O u ( cr-m- v + u )!

m + ( u-1 )/2 -( qp-2c) ( t-x )/2. p . e

e-( qp-2c) x/2 I • cr ;;;:;. m + v ;;;:;. O (13)

Now if -r is a fixed number such that 0 < -r < x, then

} I {r--v l 2 ( q-p) p-c ~ pv pm+ ( u-I )/2 e-( qp-2c) x/2

~A' e-< qp-2c )-r/2

for p > 2c/q • A' being a constant

Again, for p > ( 2c + I )/q ,

- ( pq-2c) ( t-x )/2 - ( t--x )/2 e ~ e fort ;;;:;. x .

So the right-hand side of (13) is dominated by

c A' M1 e-( pq- 2c) -r/2 Sup \ ( l+t2 )1' r~O ( : ) x~t<oo

(n-r) , ,\ (t) ~ . . ( r ) ( - I y-.,

=0 'V

~ ( cr - m) ! l u -( t-x )/2 'V I 'V )

u=O ( u ( cr - m - v + u) ! ( - ) e l ,cr;;;;.m+v.

But the function of t inside the Sup symbol is bounded for all

t ;;;:;. x , Consequently , the last expression is less than Me -qp-r/2 ,

where M is a sufficiently large positive constant .

Page 137: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

138 I

Hence I F (p) I <Me -qpT/2

for ( 1 + 2c ) / q < p < oo •

Theorem 2 ( cf. [ 7, p. 354. Theorem 4.2 J ) . Letf (t) be a genera-

lized Laplace transformable distribution having its support · in

0 < t < oo and let us assume that, over some neighbourhood of the

origin , J(t) is a regular distrtbution corresponding to a (Lebesgue)

integrable function h (t) . Assume that there exist a complex number IX

and a real number ri > - l such that

fim { h (t) } = IX t~ o+ tn (14)

Then

lim ) p-+ool

p~.~1 F (p) } = .a

~ ( n, m, k, p, a, q) {b)

where ~ ( 'IJ, m, k, p, a, q) and F lp) are defined in Theorem I

Proof . Let the neighbourhood over which f(!) is a regular distri b­

ution be - oo < t < T ( T > 0 ) and let 0 < y < T. Then f(t)

can be decomposed into /(t) = /1 (t) + f 2 (t) , where the support

of / 1 (t) is contained in the interval 0 < t < y and the support of

f2 (t) is contained in the interval y < t < oo •

Now it is clear that./1 (t) is a regular distribution that corresponds

to h(t) for 0 < t < y • Let us suppose that

( p, a ) ( p, a ) F1 (p) = S [Ji (t) : p] and F2 (p) S=

q, k, m q, k, m [ 12 (t) : p ]

_}..

\:

Page 138: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

I 139

and

p ... +1 F(p) {3 ( 'IJ, m, k, p, a, q)

p ... +1 F 1 (p) ---

{3 ( 'tJ m, k, p, a, q )

P"'+l F2 (p) + - ---·-------{3 ( 'I), m. k, p, a, q )

( 16)

So, by the above lemma,

lim ~ p ... +i F2 (p) } - O P ~ 00 l {3 { "IJ, m, k, p, a, q )

(l 7)

Again we know that the ordinary generalized Laplace transform

is identical to the distributional generalized Laplace transform of the

corresponding regular distribu1ion . So. from Theorem I,

Ii m { P"' ' 1 F, (p) } - a p -;.oo {3 ( ·r,, m, k, p. cr, q )

(l 8)

l\ow frcm (16), (17). and (18) we have

lim \ yr.+I F(p) } = rx. P -+ 00 l ·~ ( ·1j. m, k, p, a, q )

3. A Final Value Theorem

l-!e1e v.e shall 1elate the behaviour off (t) as t ~ oo to the behaviour

of F (pl asp ~ 0-t- as in

Theorem 3 ( cf. [ 7. p 355, Theorem 5.1 ] ) . If a locally integrable

function f(r) satisfies Condition A, and if there exist a number rx. and

a real number ·r; ( 'tJ > - l ) such that

Page 139: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

140 ]

lim ~ _j_Jf)_} t-+ 00 l t"' a ' (19)

then

I im f P"'+ 1 F_(..:.:_p_) __ x -+ o+ l ~ ( 'Y), m, k, p, a, q ) }=a (20)

where ~ ( 'YJ, m, k, p. a, q ) and F (p) are already defined above .

Proof. From the relation ( 19) it is clear that f(t) is a function

of slow growth and so its generalized Laplace transform has a region

of convergence that contains at least the half plane Rep> O • Now

let us assume that the support of f (t) is bounded on the left at t = r when T > 0.

Now, using the known result (g) • we have

I p .. +1 F (p) - ex ~ ( "IJ, m, k, p, cr, q) I

< P"'+I J~ e -qpt/2 (pt)a - 1/2

Wk,m ( pp! ) I f (t) - a I'" I dt

< p .. +1 J~ e-qptf2(pt)a -

112 w,,,m c ppt) if(t)- at"' I dt

+ P"'+l J7 e- qpt/2

(pt) a - l/2 w,,,,,, (pp!) I f(t)-a t" J dt

= Ii + /2 ' say . (21)

Now let us first consider /2 ,

~

\c;

Page 140: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

141 ]

12 = p'"+l [00

e-qpt/2 (pt)(J - 1/2. w ]y ~m

( rPt) t.,., I Jtt)_(I. I dt

Sup ~y~t<w f(t) -ci I p'"+1 1--r;-

t'" e-qpt/. (pt) - Wk,m (ppt) dt J

oo '2 cr-1 /? .0

·~ Sup f(t) . y ~ _t < 00 I /-:0 - a; I p'"+l

!~ t'" e -qpt/ 2 (pt )(J - 112 wk,m ( ppt ) dt

= ~ l r,, m, k, p, cr, q ) Sup

Y~t<_oo I _((!l _ci I . f"

t'"

(22)

Let e: be a fixed arbitrary positive number. From relation (l9) it

is clear that we ean choose y so large that the right hand side of (22),

which is independent of P, can be made less than e: •

Now - p'"+l f Y

Ii- Jo e-qpt/2 (pl)cr - l/2 W1c,m (ppt) lf(t)-a t'" I dt

Having fixed y , we can choose p so small that integral Ii becomes

less than e: _ Hence

J p'"+l F (p) - a~ (ri, m, k, p, cr, q) I ~ e:.

This proves (20) for all cases when T > O .

If T < 0 , then the additional term''

Page 141: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

142 ]

[3 = I p"l+l I~ e -qpt/2 (pt)(j - 112 wk,m ( ppt) /(t) dt I

occurs on the right-hand side of (21) . Putting

-qpt/2 (j - 1 /2 G (pt) = e (pt) Wk,m (ppt) •

We see that the function G (pt) has a fixed value at T and is also

finite at zero form > 0. The function G (pt) is continuous within

this interval . Hence the function G (pt) must be bounded in the inte­

rval {T,O), T < 0. So let G (pt) attain its maximum in the interval

(TO) at the point t = ~ .

Thus

/ 3 = I p"l+l e -qp (,Ji (p~) - I /2 W11,m (pp~) I J; / f (t) / dt

Now /3 approaches zero asp ~ 0 + , so that

I p"+l F(p) - a~ ( 'YJ• m, k, p, cr, q) I ,,;;;; e:

for all values of T . Theorem 3 is thus proved .

Now we extend Theorem 3 to certain distributions . and we have

Theorem 4 ( cf. [7, p. 357, Theorem 5.2 J ) • Let f (t) be a gene-

' ralized Laplace transformable distrif;ution in DR and let us assu,ne

that, ove1 some semi-infinite interval -. < t < oo • j (t) is a regular

distribution corresponding to a locally integrable function h (t) that

satisfies the second part OJ Condition A. Also let us assume that there

exist a complex number a and a real number 'IJ ( 17> -1 ) such that

lim { h (t) 1 = a t ~ 00 /"I (23)

'k

~-

Page 142: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

f 143

Then

lim \ -· p_"'+l F (p) {_ a p _,,.o+ l ~ ( '1), m, k, p, cr, q ) 5 - (24)

where F (p) and~ ( ·fJ, m, k, p, cr, q) are defined as before (p is real) .

Proof . Here f (t) can be decomposed into

f (t) = f1 (t) + h (t) '

where h (t) has its support contained in y ~ t < oo ( y > t" ) and ,.<>('

f 1 (t) has a bour.<led support that does not extend to the right of t= y.

Thus

( p, cr ) F1 (p) = s U1 (t) : p ]

q, k, m

in an entire function of p, so that

lim ) P "tJ + I F1

(p) l = 0 , p_,,. o+ l 5

Therefore, we have

lim { "tJ +I } p_,.0+ p F (p) lim f ri+ l } P_,,. 0 + l p F2(P)

1\ow from Theorem 3 the right-hand side of (25) equals to

a~ ( '1), m, k, p, cr, q ) . That is,

/im { pri+l F(p)} = ot~( 'I), m, k, p, cr, q} , P_,,. o+

(25)

Page 143: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

144 ]'

so that

lim ~ p'fl + I F (p) t P ~o+ l ~ < ri.m,k,p:~ .~

which proves the theorem .

REFERENCES

Ot

[I] A. Erdelyi, W. Magnus, F. Oberhettinger and F. G. Tricomi,

Tables of Integral Transforms, Vol. I, McGraw'--Hill, New York

London and Toronto, 1954.

[2] V. G, Joshi and R. K Saxena. Abeliaa theorelll.S . f.or distributi­

onal H-transform, Math Ann . 256 (1931). 311-321 .

[3] S. K. Sinha, A complex inversion formula and a Tauberian

theorem for the generalized Whittaker transform .Jiianabha 11

(1981) ' 31-39 .

[4] L. J, Slater, Confluent Hypergeometric Functions, Cambridge

Univ. Press, Cambridge, ~ondon and New York, 1960.

[5] H. M. Srivastava, Certain Properties of a generalized Whittaker

transform, Mathematica (Cluj) 10 (3~). (1968), 385-390 .

[6] H. M. Sriva~tava and 0. D. Vyas, A theorem relating generalized Hankel a11d Whittaker transform, Nederl. Akad. Wetensch. Proc. Ser. A 72=/ndag. Math. 31(1969),140-144.

[7] A. K. Tiwari and A. Ko Certain properties of a distrti butional

generalized Whitteker transform, Jndhn J. Pure Appl . Math . 12

(h 82), 348-361 .

f8] E.T. Whittaker and G. N. WatsJn, A Coune of Modern Analysis.

Fourth ed . , Cambridge Univ. Press, Cambridge, London and

New York, 1946 .

.~

Page 144: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

Jnanabha, Vol, 16, 1986

ON ( -1,l ) RINGS WITH COMMUTATORS IN THE LEFT NUCLEUS

By

Y ASH PAUL and S. SHARADHA

Department of Mathematics, Indian Institute of Technology,

Hanz Khas, New Delhi - 110016, India

( Receil'ed : June 30, 1985; Revised : April 28, 1986)

ABSTRACT

In thio; paper we show that a left primitive ( -1,1 ) ring with

commutators in left nucleus is either associative or simple with right

identitiy element .

l. INTRODUCTION

A ( - I, l ) ring R is a non-associative ring in which the following

iclent ities hold :

( l ) ( x, v,z ) + ( x,z y ) = 0

( 2) t x.y,z) + ( y,:-,x ) + ( z,x,y) = 0

for all x,y,z belonging to R where ( x,y,z) = ( xy ) z - x ( yz ) .

The left nucleus LN is defined as the set :

LN = { x E R : ( x,y,z ) = 0 for all y,z E R} .

Throughout th is paper, we assume R to be a ( -1, I) ring of character­

istic#- 2, #- 3 such that ( ( x,y), z,w) = 0 for all x,y,z,w E R where

the commutator ( x,y) = xy-yx.

That is, ( R,R) C LN •

Page 145: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

146 J

Let U = { u E R : ( u,x) = o for all x E R} • Then by virtue

of ( ( R, R ) , x,y ) = 0 for all x, y E R we have

( 3) (R,R,R) C: U

where (R,R,R) is the set of all finite sums of elements of the form

(x,y,z). This is equation (II) in [4] .

The following identity given in [I] holds in a (-1,1) ring of

characteristic ::F 2 , ::F 3 •

( 4 ) (w,xy,z) + (w,zy,x) - (w,y,z) x - (w,y,x) z = 0

for all w,x,y,z E R .

2. CONSTRUCTION OF IDEALS

Lemma t. For any ring R, (R,R,R) + R (R,R,R) is a two - sided

ideal of R .

This is proved in l3]

Lemma 2. Let A be a left idqal of R. Then

(a) S = { s e A : sR C A } is a two - sided ideal of R,

( b ) (R,A,R) C: S .

Proof. (a) For any s E S and x,y e: R

(sx) y = (s,x,y) + s (xy)

= - (x,y,s) - ly,s,x) + s (xy) (using (2))

= - (,..,y,s) + (y,x,s) + s (xy) (using (I))

A is a left ideal and s " S implies

t

Page 146: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

[ 147

- (x.y,s) + (y,x,s) + s (xy) <:A . Hence (sx) ye A . Also sR C A

implies sx e A . Hence sx e S. Now,

(xs) y = (x,s,y) + x (sy)

= - (x.y,s) + x(sy) (using (I))

Again, using the fact that A is a left ideal and s e S in the above

equation, we get (xs) ye A • Hence xs e S . So S is a two-sided ideal

of R.

( b ) Let x,w,z e Rand a e A . Then

(w,a,x) z = - (w,x,a) z (using (I) )

= -- z (w;x,a) (using (3))

Again, since A is a left ideal, - z (w, x, a) E A . Therefote,

(w, a, x) z E A, Hence (R,R,R) C S.

Theorem 1. If R has a maximal leji ideal A=F (0) which contains no

two-sided ideal of R other than (0) , then R is associative •

Proof. By .Lemma 2, S is a two-sided ideal of R contained in A.

Hence S = (0) . Since (R.A,R) C S , we have (R,A,R) = (0) . On the

other hand it is easy to verify that A +AR is a two-sided ideal of R .

Since A C A+AR we must have A +AR= R. Bence

(R,R,R) =(A +AR,R,R)

C (A,R,R) + (AR,R.R)

C (A ,R,R) + (RA,R,R) (since ( (R,R) , R,R) = (0) )

C (A,R,R) + tA,R,R) (since RA C A)

C (A,R,R)

Page 147: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

148 ]

But (R,A,R) = (0) implies (R,R,A) = (0) (using ( 1) ) ,

and so (A,R,R) = (0) (using (2)).

Therefore, (R,R,R) C (0) . Hence R is associative ,

3. LEFT PRIMITIVE RINGS

Definition 1 . A left ideal A of R is called regular if there exists an

element geR such that x-xg e A for all xeR .

Definition 2. A ring R is called left primitive if it (contains a regular

maximal left ideal which contains no two-sided ideal of R other

than (0) .

Theorem 2. If R is a left primiiive ring, then either R is associa­

tive or it is simple with a right identity element .

Proof , Let A be a regular maximal left ideal which contains no tv.o­

sided ideal of Rother than (0) . If A =;t= (0) , then by Theorem !, R

is associative . Thus assume that (0) is a maximal regular left ideal

of R , which contains no two-sided ideal of .K other than (0) . (0)

is maximal implies , R has no proper ideal . Since (0) is regular,

there exists g e R such that x-xg e (il) for all x e R . That is, x=xg

for all x e R . This implies RR =I= lO) and g is a right identity

element . Hence R is simple with a right icentity element

Finally, at the referee's suggestion, we acid a theorem which was

proved in [4). This theorem states : If these (-1,1) rings are

semiprime, then they are associative . This result follows easily, since

in tnese rings (R,R ,R)2= (0): For the sake of ccmpltter.ess, the proof

of this theorem may be recalled here as outlined below (cf. [4] ) :

>-

Page 148: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

( a) (R,R,R) is a11 ideal ;

( b ) If u E U, then (x,x,y) u = (x,x,yu) ;

( c ) If u E U, then {x,x,u) = 0 ;

( d ) Since (R,R,R) C U and (R,R,R) is an ideal, then

(x,x,R} (R,R,R) C (x,x,R (R,R,R) C (x,x,U) = O;

( e) {R,R,R) C { (x,x,R) : XE R} .

Thus, by (d) and {e), (R,R,R) ( R,R,R) = 0 .

These identities are all given in [2] •

Acknowledgements

r 149

The authors are thankful to the referee and professor H. M.

Srivastava for their valuable suggestions

REFERENCES

[ I] I. R. Hentze!. Nil semi-Simple (-1,1) rings, J. Algebra 22 (1972)

442-450 .

{ 2] I. R. Hentze!, The characterization of (-1,I) rings, J. Algebra

30 (1974)' 236-258 •

l 3 ] E. Kleinfeld, Asssosymmetric rings, Proc • Amer • Math • Soc.

88 ( 1957)' 933-986 .

{ 4] Yash Paul, A note on (-1,1) rings, Jninftbha 11 (1981),

107-109 .

Page 149: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates
Page 150: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

Jiianabha, Vol. 16, 1986

CERTAIN MULTIDIMENSIONAL GENERATING

RELATIONS

By

B. D. AGRAWAL and SANCHITA MUKHERJEE

Department of Mathematics, Faculty of Science,

Banaras Hindu University, Varanasi - 221005, India

(Received: October 18, 1985; Revised: May 16, 1986 )·

ABSTRACT

In [ l] we defined a general polynomial system S~ [ ( Xm ). y ]

with the help of a generating relation involving the Lauricella function

FA . ln the present paper we derive a linear and a bilateral generating

relation for these polynomials . Finally, we apply our results to derive

several multilinear and multilateral generating relations

I. INTRODUCTION

The general polynomial system { s~ [ ( Xm) 'y 1 I n = 0, 1,2' }

is defined by means of the generating relation [ ] :

oo A;m,a, (bm), (µm) ~ S [ (xm) , y ] t'!i

n=O n;v, (rm;1), (cm)

evyt FA [a, (bm); (cm); µ1X1t, µ.2x2t'2 ,. •• ,µmXmlm ], (I.I)

where FA is one ofthe Lauricella functions [4,p.41] .

Page 151: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

152 J

The conditions for validity of ( 1.1) are

( i ) (xm), y, t are all finite quantities

( ii ) m, (rm;1) are natural numbers ;

(iii) v, (µm) are finite numbers ;

( iv ) a, (bm) are non-zero numbers ;

( v) (c,,.) are neither zero nor negative integerals .

For this polynomial system, we have an explicit representation in

the form {I J :

m A n [ (n-m 1)/r2 J [ (n-mi-~ n 111; )/rm

·~ 2 S [(xm),yJ= J: ~ n 1111=0 1112=0 mm=O

(a) m n--m1- ~(r,-1 )mi

2

(h1) m [(bm; 1)

n-m;- ~ r; 111i 2 .

] (111; I)

( n-m1 - ~ r;m; ) I (~ 1 ) .... m . [ (cm;1 )(m;I)] 2 n-m1 - ~ r;m,

2 m

m1 n-m1 - Lr; m; . (xy) (µ1X1) 2 [ (µ.m;1 Xm;i )mm,i J _____ _.:.__:_ ___________ (1.2)

[ ( mm ! ) J

which we shall use here •

Generating relations play an important role in the study of

polynomial sets . Recently, Srivastava and Manochn [9] (see also

McBride [5} have discussed a numper of useful methode of obtaining

generating functions . L. Carlitz and H. M. Srivastava ( [2] and [3] ) ,

R. Panda ( [6] and [7) ) , A, B. Rao and Anura Srivastava [8], and

Page 152: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

[ 153

some others (s'ee [9] have studied polynomials of the form Fi,F2, Fv<r>

and F4 with the help Of generating relations .

In this paper we derive a Jinear and a bilateral generating relati­

ons, which ultimate.Iy yields as its applications, various multidime

nsional generating relations .

We employ the following notations in our present investigations :

(i) ·. (m) = 1;2, ... , m.

(ii ) (a1,) = a1 • a2, ... ,ap .

(iii) [(ap) ]n = (a1) n (a2)n ··· lap),. .

(iv) [ (am:1)(p . ·)] =(a1)P .. (a2)p ... (a;_1)p· . m,1 . . . 1 2 '-1

(a•+l) ... (am) P1+1 Pm

( v ) !::, (r ;a) = _f!_ a+ 1 r ' -;.

a+r-l ' ... ' r

( . ) [ ( )Pm ] - ( ,pl - ( )P2 ( )Pm VI GmXm ·- a1X1; - G2X2 ••· amXm :

( ••) [( .. ··)prn;i] _I ) (. :i.P•-1(. )Pt+l Vll am,1 Xm,s - ,a1X1 ... ai_}Xi_n a1+tXi-1-l ·••

2. LINEAR GENERATNG RELATION

Using the series form, we finally have

OQ

L n=O

[ (ix'N) ]n [ (a"N') ]n --[ (~M) ]-,.-

A Sn [ (xn:), y ] t"

(amXm)Pm

Page 153: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

154J'

. N+N' + 1 : 0; 1; ... ; 1 [ [ (a.'N): I, r2 ••• ,rm], = F . I

M: O; 1; ... ; I L [ (~M) ; 1, r2 , ••• ,rm ] ,

[ (oc'/N'): l, r2.-•:;., rm}, (a:J,0, 1, ... ,1):-; (b1: 1) ; ... ; (bm: 1);

--- ';__;; (C1: I);.;.; (cm: I);

t . t . r2 rm] . vy •'f.'1X1 •'f.'2X2t•: · , ... , µmXmt ·

It may also be written as

A ~ [ (a.'N) ]n ( (a"N') Jn S ( (Xm) , Y] l"

n = 0 l (~M)J,. n

00 00 00

( (ix'N)) ni-1 n+m1 + ~ Yi m-1

2 ~ ~ ~

( (~M) J n = 0 m1=0 mm_1=0 m-l n+m1 + ~

2

'I

[(ixN,)J m-1 n+m1 + ~ .. 2

Yi mi

(b1)n (a)

,., m~ n+m2 + ... +m,,._1

(c1)n n !

[ (bm-i·I) J (vy)m1 (µ1X1)11 [ (,n,n_i;1 Xm_1;1)

' (mm_1;1) · ·-

[(mm!)] [ (cm_1;i) · ] (mm_1;1)

(2.I)

~-

Page 154: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

m-1 n+m1 + ~ ri m; · t 2

• I F r.,;, (N+N r+2 rmM+l

r m-1 I !:;, (rm; (ex: 1N) + n + m1 + ~ r; m;) , I 2 I I m-1 I !:;,(rm; l~M)+n+m1 + ~ Tim;), l 2

m~l

[ 155

( !:;, (rm;(cx:"N') + n+m1 + ·~ r;m;), a+n+m2+ .. +mm_1' bmL I 2 I l , , Cm ;

.. I rm I

gm Xm t j, J

where gm= µ,mrm(N+N,_M)rm . (2.2)

3. BILATERAL GENERATING RELATION

With the help of the generalized Lauricella function of Srivastava

and Daoust (cf [4J ( and using (2.2), we finally obtain the following

bilateral generating relation for our polynomial system

A ~ [ (or.'M) ]n [ {a"Ml_b Sn ( (xm), y·]

n=O [ (~N) ]n

A': Bl+ 2·; ... ; B<M> + 2 F

c : Dl ; ... ; D<Ml

;~ ,;

r [ (3): 1, ... ,1 ] : (a1' + n..: 1) .. (cx:1.'' +n: 1). [ (b'): 1) ; .. .

l [ (y) : 1,. .. , 1] : . . [ (d') : 1 ] ; .. .

Page 155: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

156 )

( dM) ; J ) ; Z1 • .. , ZM }n ; (a'M +n: 1), (ocM" + n; 1), [ (bM): 1 ] ;

00 00 00

= 1: 1: 1: ' n=O m1=0 mm=O

[ (oc'M) J m [ (a"M)] m (a) n+m1+ ~nm; n+m1 + 1: r; m; n+m2+ •. +mm

2 2

[ (~N) ] . m .n ! (c1)n [ (mm !) ] n + m1 + 1: r; mi

2

) mm;t (bi)n [ (bm;1) (m"l;l) ]{ X t)n {vyt)m1 [ (µm;1xm;1 /m;1 J • ' -- /Al 1

[ (cm;1) (mm;t) l

A' : BI + 2 ; ... ; B<M> + 2 F , C: DI; ... ; D<m>

m m

[

[(8): 1, .. ., 1] : {a1 ; +n+m1+1: r1m;: 1), (oc1' 1 +n+m1 +E r;m;: 1), ' ' 2 2

[ ( Y) : 1, .. ., 1 ] :

, m ,, m [(b'): 1]; ... ; (a +n+m1+ ~ r;m; :1), a +n+m1+~ rtm~: l),[(b'Ml) :I];

M 2 M , 2

r Cd') : 1 1 ; ... ;

4. APPLICATIONS

, [ (dM) : I ] ;

., Zt ,. .. , ZM _] (3 I)

Formula (3.1) with v = 0, m = 2, = r2 = µi, (b2) = (c2), a= 1/2,

"'·

Page 156: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

t I , 1 ,, ,. 1 l -z;

Xi = X, f!.2 = - , X2 = , a; = , IX; = t'j = , Z; = -­' +z;

l 157

(j=l, ... M), B1 = ... = B1M> = 0, Dl = ... = D 1M> =I, A'= C, ll=y

yields :

}

-nM +I 2 2 1n ~ (n!)M p,. (x) Pn (z1) ... P" (zM)f tl ui) ... (I -t-zM)-

n=O

~ { (J)n+2m1 ~M ll/2)n+m1 (2xt)n (-t2)m1

n ! m 1 !

00

n,m 1=0

M jl +n+2m1 , l -f-n +2m1; _ 1 =!!_ -J. ' IT 2F1L . I +z;

J=I I , (4.1)

which is a multilinear generatir.g relation for Le~endre polynomials .

By specializing various parameters in (3. I) , we have.:

;j (1 +2ix),. }M+l { (1 +ix)n }M-1 ~ _L ... -_2 __ 1-( I +2ix+n)

n=O ' (n!)M lO+z1) (I+zm):j

(a,ix). (ix,ix) {a,a) . Pn (x)Pn (z1) ... Pn (zM) tn

00 }

M-1 l (I +2ot)n+m1. JM_·· I {I +o),; .· . (2xl)" (-1't1 !: ·m1,n=O n ! m1 ! (l)n+2m1

Page 157: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

158]

M [ 1 +2a+n+2m1, I +cx+n+2m1 ; TI 2F1

j=2 l+a ;

With suitable conditions, we have :

J-z1

J+z; J . (4.2)

00

~ n=O

{ (2)n}M { (3/2)n }M

{~if {

2 2 }-(2+n) (1-) ... ( -) .

+z1 I +zM

. Ur. (x) U.,. (z1) ... Un (ZM) tn

00

~ n,m1=0

{ (Z)n+2m1 }M. { <3!2>n+2m1 !M n ! m1 ! { {l)n+2m1 lM

{l)n+m1

M .. [ 2+n+2mi. 3/2 + n+2m1 ; _ 1-z; J (2xt~n(-t~)ml (4.3) . _III 3/2 ; l+z; ]=

which is a rnultilinear generating relation for Tchebycheff polynomials.

Various other applications have similarly been deduced . Several

known bilinear, bilateral, trilinear, trilateral generating relations

happen to be special cases of our results (4.1), (4.2) and (4.3).

Acknowledgem.ents

The authors express their -sincere thanks to Professor H. M.

Srivastava for suggesting a numer of modifications in this paper •

;,,.

Page 158: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

( 159

REFERENCES

[ I ) 8. D. Agrawal and S. Mukherjee, A multivariate polynomial

system and its characterizations, Banaras Hiudu Univ. J. Math .

l ( 1986), to appear .

[ 2 ) L Carlitz and H. M. Srivastva . Some hypergeometric

polynomials associated with the Lauricella function Fo of several

vanab!es. I, Mat. Vesnik l3 (28) (1976) , 41 -47 .

[ 3 ) L. Carlitz and H. M, Srivastava, Some hypergeometric poly­

nomials associated with tne Lauricella function Fo of several

variables ll, Mat. Vesnik 13 (28) (1976), 143-152 .

[ 4) H. Exton, Multiple Hypergeometric Functions and Applications,

Halsted Press , John Wiley and Sons, New York; 1976.

[ 5) E. B. McBride, Obtaining Generating Functions, Springer Verlag,

Berlin, 197 l .

[ 6 ) R. Panda, Genenlized Polynomials A,, (x), Ph.D. thesis,

Banaras Hindu University , India , 1967 .

[ 7 ) R. panda, A theorem on bilateral generating functions, Glasnik

Mat . Ser. Ill 11 (31) (1976), 27-31 .

[ 8 ] A. Srivastava and A. B. Rao, On a polynomial of the form F4,

Indian J. Pure Appl .M.ith. 6 (1976), 1326-1334 •

[ 9] H.M. Srivastava and H.L.Manocha, A Treatise on Generating Fn­

nctions , Halsted Press , John Wiley and Sons, New York , 1984 .

Page 159: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates
Page 160: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

Jiiiiniibha, Vol. 16, 1986

DIFFERENTIAL EQUATIONS FOR A GENERAL

CLASS OF POLYNOMIALS

By

SHRI KANT* and R. N. PANDEY

Department of Applied Mathematics, Institute of Technology,

Banaras Hindu University, Varanasi - 221005, U. P., India

(Received : November 13, [985; Revised April 17, 1986)

ABSTRACT

The object of the present paper is to derive the differential equat­

ions satisfied by a general class of polynomials generated by (I l)

below . We also present a bdef discussion about the complete solution

and verification of the solution for one of the various cases involved.

1. INTRODUCTION

In the present paper we derive the differential equations for a

general class of polynomials which provide a generalization of a

number of orthogonal and other polynomial systems . This general

polynomial set is defined by a generating relation (see (2], [3] and

[4] ) :

c c -.\ (l-l'1 X I y 2 tal)

;: : p; u r (ar) : (a,,*); {au*);

S : q; V _ (bs): (bq*);(~v*) ;

*Present Address : Scientific Analysis Group, Defence R and D

Organisation, Ministry of Defence, Metcalf

House, Delhi-110054, India.

Page 161: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

162 J

C I µ, X 1 ta2 vyC2 ta3

J (v1 xc1 yc2 t"'I-I )1 (I - V1 xcl yc2 ta1)m2

oo ,\; µ,; V; C11

; C2' ; 1X2 ; aa; (a,); (ap*); !Xu*) ~ A (x,y)ta2n (I· I)

n=O ix2n; v1 ; C1 ; C2 ; m1; m2 ; a1 ; bs) ; bq*) ; ((3v*)

where F ~ :: ~ ~ ~ is a general double hypergeometric function (cf. , e.g ,

Srivastava and Manocha [ 6 , p. 63 , E-1 . ( 16) et seq . J ; ~ee also

Burcbnall and Chaundy {I, p. 112)).

The above general polynomial set contains a number of param­

eters; therefore , for the sake of simplicity, we shall denote it by

A (x , y), unless there is some change in any one uf the parameters ix2n

(except ix2n) which is the order (degree) of the polynomial set . lf there

be-any· change m any of the parameters, only the changed parameter

will be indicated . For example

" ; µ, + I ; v ; C1' ... A (x,y)

a2n; v1 ; O ...

µ+I A

a2n; 111 ; 0 (x,y)

The explicit form of the polynomial set generated by ( l l) is

A (x,y) ix2n

00 00 [ (ar) ln-r1 k-d2 I { (ap*) Jn-d1 k-d2 I [(au*) )k

E ~

k=O l=O [ (bs)] k d l [ (b,*) J d k d I [ ((3v*) ]1, n-r1 - 2 n- i - 2

x

.)r.,_

Page 162: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

( 163

n-di k-d2l c1' (n-d1k-d2l)+c1l y-c2'k+c2l vkv1i (.\) m1n+D1k.:...D2l µ x

(-lfm1 (n-d1k-d2l) k! l! (n-d1k-d2l) t O.)m1n+D

1k-m1d2l

(1.2)

where

d1 = aa/a2, d2 = CJ.i/a2, '1 = (di-1)

D1 = m2-m1d1 and D2 = m1d2-l,

d1 and d2 being non-negative integers (see also [2],(3] and(4] for various notations and conventions used here).

2. THE GENERAL DIFFERENTIAL EQ.UATIONS

The differential equations satisfied by the polynomials A (x,y) a 2n

are contained in the following theorems :

THEO.REM I, For D1 > 0 , and D2 = 0 = v , we have the following

differential equation with respect to x :

~-1-(0-ci'a) l (a,)+n+d2- _'!?_l0-c1 'n)-{d2) ] ( (ap*) +n+d2-l ei e1

e1 C2 d d2 1 V1X Y 2 , (

--(0-ci a) - (d2)] - d [ (bs)+n - - (0-c1 n) - d2)] ei . µ. 2 ei

[ (hq*) +n - .!!~ (0-c1'n) -ld2) l [l +n - d2 (0-c1'n)-(d2) ] ei ei

[ l ->.-m1n + _!_ (0-c1 'n)]} A* (x,y) = 0, e1 a2n (2.1)

where e1 = c1 -c1 'd2 , 0 = x ~x , and (for convenience )

Page 163: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

164 ]

,\ ; µ ; v ; c1 ' ; ••• ; 02 ; ••• ; (a,) , (av*) ; A (x,y) = A* (x,y)

a2 n; V1 ; c1 ; C2; m1 ; ... ; a1 ; (bs) ; {bq*); ... a2n

(2.2)

Theorem 2. For D1 > 0 and D2 = 0 = v , we have the f ollowin7

differential equation with respect toy:

{ o/ [ (ar) +n+d2 - d2'f'' - (d2) J [ (av*) +n+d2-d2o/ - (d2) J

e1 C2

_l'.!::_~ [ (bs) + n-d2o/ - (d2)] [ (ba*) + n- d2o/ - (d2) J µ 2

( l +n -d2 o/--(d2) J [ l--.\-m1n+ o/ J} A\ n (x-,y) ·= 0. (2.3) 2

where o/ =L _d C2 dy

Proof. The proofs of Theorem I and Theorem 2 are fairly straight-

forward, and we omit the details .

The complete solution of (2.1) and (2.3) are given by (see

Rainville [5])

THEOREM:.\. For D1 > 0 and f>2 =0=i•, the complete solutions of

the differential equations (2.1) and ( 2.3) are

d2 r (I) (!) d2 p (1) (I) W= NoLo + 2: 2: N L + I: 2: N L

g=l h=l g,h g h g=l u=l g,u g,u

and d2 r (2) (2) d2 p

W * = No* Lo + 2: 2: N L + ~ 2:

{2) (2) N L

g,u g,u

g=I h=l g.lz g,h g=I u=l

(2.4)

(2.5)

).._ ..

Page 164: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

(1) (I) r~speclively, where No, N , N and N0* ,

(2) (2) N ' .N

g,h g,u g,h g,u

are arbitrnry fimctions of y and x, respectively, and

Lo= A* a2n

(l) (x,y) , L

g,h = x1' mF,, [Ri)

(1) k (2) L = x 1 mF,. [R2] , L k2 F [R ] == y 1ll ·ri l

g.u g,h

[ Hi5

(2) k3 L = y .,,,F,.

g,u [R2], where k= !J

2 ( ta1i) + n + d2 - g) + c1 'n ,

('} d I k l ( • d k1 = -d ((a,.*)+ n+ 2 - g )+ c1 n, 2 = d-- \ai,) tn+ 2-g), 2 2

k 3 = -1-- ( (av*)+n+d2-g), and R1 and R2 are defined as folfows:

d2

R 1 ~.,,F

r I 1, 6. (d2 ; l-g (h,)+a,,+d2), 6. (dz; a"+d2-g), I

. I 6. (d2 ; I-g-(b,1*)+a1t +dz), (2-A-min Ho, +n-gl/d2); I

-d9 e c /k ~ 1'1 x 1 v 2

(-d2)d;--(p--q+-;:~~~

i .6 (d2; 1-g-(a,)+a,,+ d2),6. (d2; l-g-(a;."')+a"+d9.),

I ( (ah+n-g)/dd 2); L

i I I I I I \ I

.J

Page 165: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

166 ]

and ~.

r I I I, !:::, (d2 ; 1-g-(bs)+au* + d2), !:::, (d2 ; au* + drg), I I I I !:::, (d2; 1-g-(bp*)+a,,*+d2), (2-A-m1n+(a,,* +n-g)/d2); I I I I -d2 e1 c2 I I fl- v1X y I

R2=F I d2 (p-q+r-s-1) I I (-dz) I I I I ,6(dz; l-g-(ap*) +a,.*+dz),,6(dz; l-g-(ar)+au*+d2). I I . l I ( (au*+n-g)/d2+2) ; I l J

Finally, we give

THEOREM 4. For D1 > 0. Dz > 0 and v > 0, we have the differ-

ential equations with respect to x and y :

{-1- ( 6-c1 'n) [ ( a,)+n td2-~(0-c/12)-(d2)] [ (ap*)+n+d2-

e1 e1

_d2_(0-c1'n)-(dz) ] X e1

D2 'J1Ycz xe1 [A+m1n+D2 - - (e-c1'n)-(Dz) J- [ (ar)+n-

e1 (-l)m1d2 µ.d2

dz (6-c1 'n)-(dz) ]x e1

[ (bq*) + n-3-2- (0-c1'n)-(d2)] [I +n- d2 (0-c1 'n)--(d2) J e1 ei

[.\+m1n-(m1d2/e1) (0-c1'n)-(m1d2)]} A* (x,y) = 0 (2.6) a2n

Page 166: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

[ 167

and

{'¥ [ (ar) +n + dz-dz'¥ - (dz)] [ (ap*) + n + dz -- dz'¥ - dz)]

[ ,.\ + m1 n + Dz - Dz '¥ - ( Dz ) ]

c2 ei ~y x [ (b,)+n-d2 '¥ -(dz I] [ ( bq*) + n · d2 '11'-(d2)]

(-l)m1dz /2

[ l+n-d2'¥-(d2)] [ ,.\ +m1n-m1dzlfl'-(m,dz)]} A* (x.y)=O (2.7) azn

Acknowledgements

The authors express their gratitude towards Professor H M.

Srivastava (Department of Mathematics, University of Victoria) for

his constructive suggestions .

REFERENCES

[ I ] J. L. Burchnall and T. W. Chaundy, Expansions of Appcll's

double hypergeometric function (Il), Quart . J. Math. Oxford

Ser. 12 (:941), 112-128.

[ 2] S. Kant and R. N. pandey, A study of generalized polynomial

set { A (x.})} , Vijnana Parishad Anusandhan Patrika 24 otz'l

( l 9 8 I) , 14 7 -159 .

( 3 J S. Kant and R. N Pandey , Generating functions involving

generalized Appell-function of two variables , Istanbul Tek .

Univ. B~·l. 34 (1981), No. 2, 95-107.

Page 167: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

168 l

[ 4 ] S. Kant and R. N. Pandey , Bilateral generating functions for

classical polynomials, Bull. Math . Soc. Sci Math . R. S.

Roumenie (N. S) 27 (75) (1983), 55-54 .

[ 5 ] E. D. Rainville, Special Function~ , Macmillan , New York,

1960.

[ 6 ] H. M. Srivastava and H. L. Manocha , A Treatise on -Genetatii1g

Functions , Halsted Press ( Ellis Horwood Ltd . , Chichester ) ,

John Wiley and Sons , New York , 1984 .

~'

Page 168: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

.T'naniibha, Vol. 16, 1986

SLOW UNSTEADY FLOW 'v• ll:N A POROUS ANNULUS

WITH AXIAL WAVINESS

By

V. Bhatnagar and Y. N. Gaur

Department of Mathematics, M. R. Engineering College,

Jaipur - 302017, Rajasthan, India

( Received: May 27, 1985 ; Revised: October 25, 1985 )

ABSTRACT

Slow unsteady flow of a viscous incompressible fluid between

two porous coaxial circular cylinders with axial waviness, under the

influence of pulsating pressure gradient has been investigated . The

waviness has been taken to be small in comparision to the smooth

radii of the circular cylinders . The Fourier integral transform techn­

ique bas been used for finding the expressions for axial velocity, radial

velocity and pressure in terms of modified Bessel functions . For a

particular case of sinusoidal waviness, the velocities have been ca!Cula­

ted and shown graphically ,

1. INTRODUCTION

Viscous fluid fiow through porous wavy boundaries is of practical

importance , In aircraft propulsion systems, p0rous tubes are used as

injectors to increase the engine efficiency and as silencers in exhaust

systems . Several authors, lnamely, Citron [2], Khamrui [7], Verma and

Gaur [IO] and Gaur and Mehta [4]) have studied the slow viscous

fluid flow through rough circular tubes and rough coaxial infinite cyli­

nders . Bauer [I] and Varshney (9] have investigated the puls atile flow

Page 169: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

170 ]

in a circular pipe with reabsorption across the wall and fluctuating ~

flow through a porous medium'1~l:f6~1ri'ded by a porous plate, respecti-

vely . Hepworth and Rice ( [5], [6] ) have studied the flow between

parallel plates and circular /rectangular tubes with arbitrary time

varying pressure gradient . Recently, Gaur and Bhatnagar [3] have

discussed the slow unsteady flow in a porous tube with axial waviness.

The present investigation deals with slow unsteady flow of a

viscous incompressible fluid between two porous coaxial circular cyli­

nders with axial waviness, under the influence of pulsating pressure

gradient . The waviness is taken to be small in comparison to the

smooth radii of the cylinders . Expressions for the velocity components

and pressure are obtained in terms af modified Bessel functions using

Fourier transform technique . A particular case of sinusoidal rough­

ness is numerically investigated .

2. PROBLEM FORMULATION

In cylindrical polar coordinates, the Navier - Stokes equations in

the non - dimensional form, under the slow flow assumption, are

oU oT ~ + ~~ +

oil oil2 ii cU_ + 02u oA oZ'"

j_W = _ _}f!_ + 02W + _!_ _!~ + q2W oT oz oA2 ii oil oZ2 •

and

A o(Uil) + ow = 0 •

ol\ oZ

u i12 (I)

(2)

(3)

Page 170: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

r 1n

where U and Ware the velocities in the radial (,\)and axial (Z) direc-­

tions, P the pressure and T the time .

Using slow flow conditions (\72 P = 0), (2) becomes

r -~-+ L (J,\Z

c cT

,\

c (J,\

I 02 1 -+-",\2 ,\ L. (}

- 2

32 I + -2zz j w

c ax

2 I + _o_JI J!V.

oz~

The boundary conditions are

U=V1 CosnT, W=Oat ..\=l + E N1 (Z), T > 0

and U=V2 Cos nT, W=O at ..\=cr + E N2 (Z), T > 0 } '

(4)

(5)

where E < < I is the roughness parameter, N1 (Z) and N2 (Z) are arbi­

trary functions of Z and cr is the ratio of the radius of the outer

cylinder to that of the inner cylinder . V1 and V2 are the known non­

dimensional velocities of suction/ injection such that V1 =crV2 •

Let

P (,\,Z_T) =Po (Z,T) + P1 (,\,Z,T) I I

U (,\,Z,T) = Vo (,\,T) + Ur (,\,Z,'l) f-l

W (,\,Z,T) = Wo (,\,T) + W1 (..\,Z,T) j ,

(6)

where Pi. T11 and W1 are the variations caused by the roughness and

P 0, U 0 and W 0 are the known quantities for the porous coaxial cylinolers

without roughness

Assuming

cPo

oZ K Gos nT = Re [ K einT ] ,

Page 171: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

172 ]

R [ ( inT d U R inT Wo= e !1 ,\) e ] an o= e [ 12 (,\) e ]

and solving the resulting equations under the boundary conditions

/ 1 (1) = 0 =f2(cr)andfi(l) = V1 andf2(cr) = V2,

we have

Wo (A,T) = Re [ ~ { (cr2-J) log_"-=_0_2-~log cr} einT l 4 log cr j

-'

(7)

and

Uo (,\,T) = Re { ------------} e1nT . [

V1 (cr2-,\2) + cr V2 (,\2-J) . J ,\ (cr2- J)

(8)

Using (6), (1) and (3) we have.

au1 0P1 a2 u1 a2 w1

-- = - -- + -- - --cT a A az2 aAaZ (9)

Equation ( 4) now becomes

a2 I a a2 a a2 i a a2 [ -- + - - + --- ]2 W1 =

aA2 " cA az2 ( - + - - + - - ) W1. (IO)

aT aA2 " aA az2

The boundary conditions now, are

Uo+U1=V1 Cos nT, W1 = - Woat A=l+e N1 (Z),T >0,Z>O

Uo+ U1 =V2 Cos nT, W1 = -Wo at A =cr te N2 (Z), T >0, Z >0

and

W1 =0 when { I+ e N1 (Z)} < ,\ < { cr + e N2 (Z) }, T <0, Z=O

3. METHOD OF SOLUTION

1 I I }-(1 J) I . I J

Using Fourier sine transform, the solution of the equation (IO),

gives

~

Page 172: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

[ 17 J

Wi(A,Z,T) = Re [ if (2/rt) f ~ [ A (E,) lo (E,A) + B (E,) Ko (E,A)

+ C (q Io (mi\)+ D (i;) Ko (mi\)] sin (E,Z)einT dE, ]. (12)

Using (12), equation (9) gives

U1 {A,Z,T) =Re [ - .V (2/rt) J~ [A(.;) Ii (E,A) - B (E,} K1 (~A)

i; E, . T + - C {!;)Ii (mA) - - D (E,) Ki (mi\)] cos (i;Z) em dE, ] . ( 13)

m m

Using (12) and (13), pressure P 1 (A,Z,T) is given by

Joo I

Pi (t\,Z,T) = Re [ if(2/7t) in - [A (E,) lo (E,A) + B (~)Ko (i;A)] 0 E,

inT d x Cos (E,Z) e E, J + C , ( 14)

where A (E,), B (0, C (E,), D(~). and Care the constants of integration .

10 , Ko Ii and K1 are modified Bessel functions of first and second

kind of order zero and one .

We assume

A (E,) = Ao (E,) + E A1 (E,) + ··· , ( 15)

and similar expressions for B (E,) , C {i;) and D (E,) •

Using equations ( 11) to ( 15) and Fourier sine and cosine integral

theorems, the complete expressions for the axial velocity radial velocity

and pres sure are

W (A Z,T) = W o (A,T) + W1 (A,Z,T)

Page 173: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

17.t ]

= ~ f ~~~~g ~ _ ,\2 + I] cos nT + € if (2/1t) 4 i__ log cr

Re J~ { [ .6An (1;) To(~,\)

+ .6 A31 (~)Io (;A) - .6 B12 (~) Ko (;A)

__: .6 B32 (0 Ko (;A) + .6 C13 (0 lo (mA) + .6 C33 (~)lo (m,\)

- .6 Du (0 Ko (m,\) - .6 D34 (~)Ko (m,\) J N1 (~)

- [ .6A21 (;)Io (~,\) + .6 A41 (~)lo(~,\) - .6 B22 {;)Ko(~,\)

- .6 B42 (~)Ko(~,\) + .6 C23 CO lo (mA) + .6 C43 (;)lo (m,\)

- .6 D24 (~)Ko (mA) - .6 D44 (~)Ko (m,\)] N2 (~) }

. ('Z) inT d' x szn t. e t, ,

U (A,Z,T) = U0 (it,T) + U1 (A,Z,T)

= l-~~cr2 _=:A2) _+_cr~~,\2-1~] cos PlT

,\ ( r;2 - l) ...

(16)

+ E Re [ - if (2/rt) J~ { [ .6 A11 (~) /1 (1;A) t- .6 Aa1 (~) 11 (~,\)

+ .6 B12 (0 K1 (~,\) t .6 B32 (;)Ki(~,\) +~/m.6 C13 (~)Ii (mA)

+~Im .6 Ca3 (~)Ii (mA) + ~Im D14 CO K1 (mA)

+;/m .6 D34 (;)Ki (mA)] N1 (;)- [ .6A21 (0 l1 (~A)

Page 174: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

( 175

+ 6 A41 (C,) / 1 (C,A) t 6 B22 {(C,) K1 (~) + 6 842 (C,) Ki (~A)

+ ~/mt:,. C23 (C,) /1 (mA) +C,/m C43 (C,) /1 (m,\)

+ E,/m 6 D24 (f,) K1 (m..\) + E,/mt:,. D44 lf,) K1 (mA)] N2 (f,) }

C- ('Z) inT d" ] X OS <:; - e ; ( 17)

and

P (i\,Z,T) = Po (Z,T) + P 1 (,\,Z,T)

r 00

= c - KZ Cos ti'l + E v\2/rt) Re [Jo in 1/C, [ { 6 An(~) lo (f,tl)

+6 A31 (0 fo(~A) -6 812 (~)Ko (f,,\)--6 B32 (:;)Ko (f,A)} N1 (f,)

- { 6 A2l (f,) lo (f,tl) + 6 A41 m lo (f,A) -D. B22 (f,) Ko (~ti)

- /J.. 842 (2,) Ko (f,tl)} N2 m ) Cos (C,Z) einT df, ] , (18)

where C denotes a constant, and

6 A 11 (Z),, 6 B12 (Z), /J.. C13 (Z) and /J.. D14 (Z) are respectively

minors of Io (Z), K 0 (~), (m) and Ko (m') in /J.., each multiplied

by x I /J..,

/J.. A21 (Z), /J.. B22 (Z), /J.. C 23 (Z) and /J.. D24 (Z) are respectively

the minors of lo (crZ), Ko (crZ) / 0 (am') and Ko (crm') in /J.., each

multiplied by YI /J.. ,

/J.. Aa1 (Z), /J.. Ba2 (Z), /J.. C33 (Z) and /J.. D34 (Z) are respectively

Page 175: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

176 ]

minors of !1 (Z). - K, (Z), (Z/m') Ii (m') and (-Z/m') K1 (m') in A,

each multiplied by R / A,

A A41 (Z), A 842 (Z), AC43 (Z) and A044 (Z) are respectively

minors of li(aZ), - K1(aZ), (Z/m') Ii (am') and - (Z/m') K1 (am')

in A, each multiplied by Q / A,

X= -12----- ,Y=- 2a-----, K r ( a2 - l) J k [ ( a2 - I) J 4 L log a 4 a log a

R = _ [~a2~1~ Vi _=--_2aV2 J ' Q = [ 2a V1 - (a2 + 1 ) V2 ] - -------------

(a2 - I ) a (a2 - I)

~=I lo (Z) Ko (Z) lo (m') Ko (m)

I lo (aZ) Ko (aZ) lo (am') K0 (am')

I ! 1 (Z) -K1(Z) Z/m' !1 (m') -Z/m' K1 (m')

I !1 (aZ) -K1 (crZ) Z/m' Ii (am') - Z/m' Kt (am') I

and m' = ( z2 + in )1/2 and N1 (~) and N2 are Fourier sine transfor.ns

of N1 (Z) and N2 (Z) respectively .

4. PARTICULAR CASE (SINUSOIDAL WAVINESS)

For this case we take the waviness function at the walls

N1 (Z) = N2 (Z) = sin (Z/!), ( 19)

where 27t/ is the wavelength of waviness at the walls .

We may formally write

N1 (~) = N2 (~)=if (7t/2) a(~ - 1/l), (20)

'•. '•.

Page 176: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

r 111

where il is the Dirac delta function .

Substituting N1 (~)and N2 m from (2o) in (16) to (18) and using

the property of the Dirac delta function (Sneddon [8] we get

r ( a2 - l ) fag A ·1 W (A,Z,T) = K/4 -------- - A2 + l cos nT + ERe [ [f 6AJJ(i//) L log a. · j

and

+ 6 A31 (1//)- 6A2 1 (I//)- L,A41 (I//)} lo(A//)- { 6 B12(i/t)

+ 6 Bsz(l/l)- 6 B22<I/l)- 6 B42 (!//)}Ko(;\//)

+ { 6 C13 (l;/) + 6C23 (!//)- 6C23 (1//) - L C43 (!//)]lo (A//)

- ( 6D14 (l/l)+ 6Da4 (!//) - 6D24 {I//) - L,D44 (I//)} K<; (A//)]

>< Sin(Zil) einT ] (21)

. . - V1 l cr 2 A2) + cr V2 (A2- l) .,

U(AZ,T) = I-~ ·'-----------J cos nT ~ ,\(cr2-J)

-ERe [ [\ ,0, A11 (1//) +- 6 A31 (I/I)

- 6 A21 (1//) - A41 (I//)} / 1 (A/l) + { 6 B32 (1//) + 6BJ2 (I//)

- 6822(1/l)- L,B42(1//)} K1 (A//)+(!/!) { 6C13(l/l)+ 6C33(l//)

6 C2a (!/!) - ,0,C43 (1/l)} 11 (A/!)+ f'/l { 6 D14 (I//)

+ 6 D34 (1/l)

- 6 D24 (!//)- 6D44 (1//)} K1 (A//')] Cos (Z//) einT] (22)

P (A.Z,T) =C -KZ Cos nT + E Re [in l { [ 6. A 11 (1//) +6.Aa1 (l/l)

Page 177: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

178 ]

- !':::, A21 (1 I!) - !':::,. A ill (I I!) ] I 0 (>../ /) - [ !':::, B12 (I I!)

+ !':::, Ba2 (!//)- !':::. B22 (I//) - !':::. B42 (!//)]Ko (A//)}

X cos (Z/l) einT ] ,

where

I//' = ( 1//2 + in )1/2.

5. NUMERICAL DISCUSSION

(23)

Axial and radial velocity profiles have been drawn for i;=O I,

a=2 at various sections of the annulus for· different values

of nT.

Fig. l shows axial velocity profiles at different sections of the

annulus for nT = 0 and nT = rt/3 for the injection / suction velocities

V1/k = I : V2/k = 1/2 and V1/k = 2: V2/k = I at the inner and outer

cylinders respectively. For nT = 0 they are shown in upper half (Which

will be the same in the lower half) and for nT = rc/ 3 in the lower half

(which will be !he same in the upper half) of the annulus . It is noted

that increase in the injection I suction velocities st the inner and outer

cylinders respectively results in the increase of the axial velocity at the

section Z = rt/2 while decr>!ase is observed at Z = 3rt/2. At the

scetion Z=O and rt, che axial velocity remains unaffected by injection/·

suction velocities • For the case nT = 0, the profiles are almost

parabolic.

Fig . 2 depicts axial velocity profiles in a similar way as shown in

Fig. I for suction/ injection velocities V1/k = - I : V2/k = -- (1/2)

and V1/k = - 2 : V2/k = - I at the inner and outer cylinders respec­

tively . The axial velocity decreases with increase in the suction /

injection velocities at the section Z = rt/2, the decrease being much

A.

Page 178: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

[ 179

sharper near the inner cylinder, while the axial velocity increases at

the section Z = 3n / 2. The profiles now are almost para'Joli;; at the

section Z = 3rc/2 .

Fig 3 (a), (Ii), (c) and (d) respectively represent the radial velo­

cities· at sections Z = 0, :;/2, re and 3rc/2 of the annulus for Vifk = I :

V2/k = !/2, V1/k = 2: V2/k = I, V1/k = - l : V2/k = - (1/2) and

V1/k = - 2 : V2/k = - l and nT = 0 .

At all the four sections there is a uniform decrease in the radial

velocity from inner to tile outer cylinder .

Increase in we value of the waviness para.neter s , mcrea~es the

puiturbed pans of the vel,Kities and the pressure .

Page 179: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

2 ' \ \ \

,, I

I ,

' , I

I

\ \

\

' I I I

I

i W/'f..-

1 i , ___ ......._ ______ .. _ _.L. ________ _.... ____ _.,. __

37\/2 27\"

,-:'.··~~,\ \ ; \ i I I I I

: I I

FIG AXIAL VELOCITY PROFILES AT DIFFERENT SECTIONS Of- T~ ANNULUS FOR rr: 2, £ :0·1 AND V1/K: J: .Vz/K:1/2 (----)ANO V1/K"2: V2/K:1 (-·) .

z

Page 180: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

i ,<:

2

'--- w

W/K-

i I

I

-n'I" •'U

---

---a---------------------

........ ---,..,.._ .. -~

- '

L. ·-. ··-··---···----· ..... ·--·-0 iV2 II: 37\/2 27\ Z

\ I.

I ! t I

"hf./".'/~ .:.----------~ ·-\) --.

t t I

j/ 2~---.L.....,____------

FIG 2 AXIAL VELOCITV PROFILES AT DiFFt.RENT SECTIONS OF THE ANNULUS FOR a--• 2, ~=0·1 AND

V,IK=-1 Vz/K=-]12 (-----) AND v,11<:-2: V2/l<:-1 (-)

Page 181: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

I· ;i

..... -r

....... - --,_

ar~

~ 11- '-..

• I I --------.:::. 0 tt- ------;------.. i ...... 0 -

..:."'. 0 1 7 ;\~~

_, r:=-11---. .,_

----­I ./

:,,_~

I

I I

{'")

t~ ................... __ _

! of11 ----+--~ 2 -

-1

-2

(c)

:..:>

·1 ~

,/~

! -<I-

(b)

~.

l'·,~--­.. ..il ·t . .._ -H ------- l

t:/ ~r

(d)

FIG. 3 RADIAL VELOCITY P~WF'ILES FOR u- :2, f =0·1, nT: 0 AND Viii<: l: Vz/I( :1/2 f-----), V1/K :2: Vz/K:l (--), V1/K:-1: Vzll<=-112 (-)

-

AND V1/K •-2: V2 /K: -t <-> AT DIFFERENT SECTIOt.IS Of THE ANNUL.US Z:Q, 7"i/2, 7'\ ANO l7V2 RESPEC'IVELV ( (a).{b),ic;) AND {d)l

Page 182: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

I 183

REFERENCES

[ 1 ] H.F. Bauer, Pulsatile flow in a straight circular pipe with reab­

sorption across the wall, Jngr. -Arch, 45 {1976), 1-15.

[ 2 ] J. S, Cit1on, Slow viscous flow between rotation concentric

cylinders with axial roughness, J. Appl. Meclz. 29 ( 1962), 188-192.

[ 3 ) Y N. Gaur and V. Bhatnagar, Slow unsteady flow through a

porous circular tube with axial wavine.>s, Indian J. Pure Appl. Ji.lath. 16 (!985). 90-101.

[ 4] Y. N. Gaur and D. M. Mehta Slow unsteady flow of a viscous

incompressible fluid between two coaxial cir~ular cylinders

with axial roughness, Indi:n1 J. Pure Appl. Math. 12 (1981),

l 160-1170 '

[ 5 J H. K. Hepv.orth and W. Rice, Laminar flow between parallel

plates with arbitrary time varying pressure gradient and 1rbit­

rary initial velocity, Trans. ASMF J. Appl. Mech. 34 (1067),

215-2i6 .

l 6 J H. K. Hepworth and W. Rice, Laminar tNo-dimensional flow in conduits with arbitrary time varying pressure gradient, Trans. ASMF J. Af!pl. Mech. 37 (1970), 861-864 .

l 7 J S. 0

R. Khamru1, Slow steady flow of a viscous liquid through

a circular tuoe with axial roughness, hdiun J. Mech l (190.J),

l 8-21 •

[ 8 ] 1. N. Snedden, Fourier Transforms, McGraw-Hill, New York;

1951 .

[ 9] C. L. Varshney., Fluctuating flow of viscous fluid through a

porous medium bounded by a porous plate, lndian J Pure

Appl. Math . 10 (1979), 1558-1564 .

[ IO J P D. Verma and Y. N. Gaur, Slow unsteady flow or a viscous incompressible fluid through a circular tube with axial rough­

ness, Indian J. Pure Appl . Math. l ([970), 492-501 .

Page 183: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

Jiianabha, Vol. 16, 1986

RANDOM VIBRATION OF A BEAM TO STOCHASTIC LOADING

By

ASHOK GANGULY

Department of Applied Mathematics,

S. G. S. Institute of Technology and Science,

Indore - 452003, M. P. India

(Received : June JO, 1985 ; Revised : July 3 , 1986)

ABSTRACT

We study the random vibration of a beam of finite length under

stochastic loading . The technique of the Fourier transform is used

for the solution of the problem .

l. INTRODUCTION

In recent years, much attention has been devoted to the problems

involving stochastic vibrations of beams . The motivation for such

researches is due to various requirements such as wind effects and

earthquake effects on structures, etc . Stochastic vibration of different

types of beams has been studied by many authors (see [I], [3], [4],

[5] and [6] ) . In these problems, a mechanical system is excited by a

random type load and the response of the system is of random nature.

Its analysis is done with the help of stochastic p10cess , The analytical

tools for such study were borrowed srom the r.oise problems in comm­

unication theory and adapted to problems of structural dynamics(l2],l3]).

In dealing with stochastic processes, the averages very often used are the

auto-correlation functions, and their Forier transforms are called the

power spectral densities

Page 184: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

186 1

In the present paper, we illustrate the Subject-matter of stochastic

vibration by considering the vibrations of a beam of finite length,

which is freely hinged at its ends, subjected to stochastic loading .

The mean square values ·Of-; the output displacement and the velocity

are calculated with the help of auto-correlation function of appLed

load .

2, FORMULATION OF THE PROBLEM

Let a beam of finite length L, which is freely hinged at its ends.

be subjected to a stochastic load

P ( x,t) = qr (t, a ( x - x'), ( 0 < x' < L)

where qr ( t ) is stochastic in time t . Lf y ( x,t) is the transverse stoc­

hastic displacement of any point x of the beam at time t, then differe­

ntial equation governing the motion of the beam is ( 7, p. l l l, Eq.

(50)}

()4y + cx4 a2

22y -2[2-

P (x,t) -EI (1)

where a2 = EI/ (pS) , Eis Young's modulus of the material forming

the beam, I the moment of inertia of the cross-section of the beam with

respect to line normal to both the x and y axes aod passes thrcugh

the centre of mass of cross-sectional area S and p is the mass per

unit length of the beam •

The boundary conditions are [ 7, p. 116 Eq. ( o3) ]

a2y y = ox2

0 at x = 0 and x = L . (2)

~

Page 185: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

l 187

3. SOLUTION OF THE PROBLEM

Applying the Fourier transforms to (I), we have, finally. the exp­ression for the transverse displacement ( t7], p. 118 )

2La 00

• (mt"<). (n7tX') I y (x,t) = -,,- l: szn - szn - -2- X

1t" E I n = l L L n

~r'YC-r) sin [ n21t2as-'t") J d, l3)

giving the deterministic solution of displacement in terms of some integrals .

The auto-correlation function for the output process y( x,t)

is defined as

Rv (x, ~'ti. t2) == E [ y ( x, tr) y ( x,t2 )J (4)

where E is the expectation .

Using (3) and (4) and putting r = 11 - '1' s = t2-"2,

we get

Rv ( x, ~. ti. 12) = ( 2La) '; _l - sin (n1tX ') 'It~ E I m,n= l n2m2 L

sm - in - Ism -· (nn:x' ) s · (m1t~ \ . (nm~') L L ) L

! 11 J t 2

( 2 2 ) . n 7t a . x sm, -- rszn 0 0 >I L

( m2~a) s R'Y ( t1 -r, t2-:s ) dr ds l5)

Page 186: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

188 I

where the definition for R'Y is used .

We prei;cribe the load '¥ (t), to be stationary stochastic process

of known spectral density S'Y (w) as (5J :

Slf (w) = 2 re SoS (w) (6)

where S 0 is a real constant and 3 (w) is Dirac s delta function .

Then, the auto-correlation function of '¥ (r) is

J +=

R'Y(-r) = -f- Sl}'. (w) eiw-r dw, re -oo

(6u)

frcm where, we get with the help of (6)

l< '¥ ( -r) = So • (7)

Since the proces5 'Y(t) is stati.rnarys we have

R'Y ( t1 -r, t2-s ) = R'Y (-r) = So

Using (7) in (5), v.e get

Ru ( x, ~' tl> t2 ) 2 00 y ~ 1 . nre >;; • 1 rex ' O --::fT .I/fl --Sin -

m,n= I rim L L

Sin -- Sin -- X --COS --- · -co, --. mre~ . mre~' l l n2re2at1 } { 1 . m'!n2at2 J

L L L · L (8)

giving auto-correlation function of the displacement ,

/~

~ I

Page 187: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

! ,w

where y~ = 4L4 So / n2 £2 J2 . The series in (8) is convergent and

the sum is f;r.ite for all values of t1, t2 • Rv (x, ~' t 1 , t2) varies directly

as the constant S0 corresponding to the spectral density of the stoch­

astic process tf(t) . It varies inversely as the square of I .

ln (ii), putting x = ~, x' = ~'and 11 = t2 = t, we have, the

n.ean square value of the displacement

Yi (X,t) - y~ 2; __ l __ 00 . nn;x . nn;x' . mnx . mrcx'

szn -- szn - -- szn -- szn -- X 111,n= I n4m4 L L L L

(

.x l 1-cos n2~2 at } {

m2rc2 at} 1--cos -L- ·

The velocity V (x,t) is given by

V (x,t) = ay ~,t) 2i -

The auto-correlation function of the velocity is

R, (x.<.t1t2) ~E [ V (x,11). V (x,t2) J

02 Rv (x,~,ti.t2)

at1 at2

Using (8), we have

R ( ~ t t ) _ v2 ~ 1 . nrcx . nn;x'

v x,c;, 1' 2 - 0 "'-' -- szn - szn -2 2 L m,n=l nm L

(9)

(10a)

(lOb)

Page 188: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

190 1

. mrc~ . mn:~' . sin -- szn -- . sin L L

n2n:2 at1

L

2 . . where v

0 = 4 £2 So a2 / 'lt4 £2 12

sin m2n2a12 L

ti I)

Putting x = ~. x' = ~, and t1 = t2

velocity from (11) as

t, we get the mean square

2 2 00 1 . nnx . nnx' . nmx . mnx'

V (x, t) = V 0 ~ -.-- szn -- szn --- sm -- szn -- . I m.n = 1 n2m2 L L L L

. n2n2at . m2n2ut szn -- sm --- ,

L L

which obviously is zero at t=O .

4. NUMERICAL DISCUSSIONS AND GRAPHICAL

REPRI:.:SENT A TIONS

(12)

The calculations fot mean square values of displacement (9) atid

velocity (12) are done for different values of non-dimensional time

at/Lat the point x = x' = L/2 of the beam . The calculated results

are given in Table I . The tabulated results are plotted in Figures I

and 2.

It is seen from Figure l that mean square displacement is initially

zero . It increases with time and attains maximum value after some

time and then it gradually decreases to zero . It attains minima and

maxima at equal intervals of time,

'~ '

/

Page 189: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

[ 191

Figure 2 represents mean square velocity . Starting from zero

value it increases to maximum value and then decreases to zero value •

This cyclee continues indefinitely .

TABLE I

For n = I to 20, m = I to 20, x = x' = L/2

at/L = 0 I 2 3 4 5 6 7 8 9 IO

2 ' 2 y I y = 0 3.6 0.15 l.5 l.4 0.2 3.6 0 3.6 0.14 1.5 1 0

2 2 0. 25 v /V = 0 0.63 0.9 1.0 0.6 0.3 0 0.2 0.6 09

1 0

at/L - 11 12 l3 14 15 16 17 18 19 20

2 2 1.4 1.2 2.5 0 3.6 0.12 y/y - 1.7 1.4 0.2 3.5

1 0

2 2 1.0 0.6 0.3 0 0.2 v /V - 0.6 0.9 LO 0·7 0.3

1 0

Page 190: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

I

------~_J

Page 191: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

....... ------~----~--. ~-,----------------------

Page 192: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

194 J

Acknowledgements

The author is thankful to Dr. G. R. Tiwari for giving help . He

is also grateflll to Professor H. M. Srivastava and the referee for their

valuable suggestions in the improvement of this paper.

REFERENCES

[ l ] W. E. Boyce, Random vibration of elastic strin~s and bars,

Proc. Fourth U. S. Nat. Congr. , pp 77-8 5, Berkefoy, California,

(1962).

[ 2 J E. H. Crandall, Random Vibration, Vol. l, M. 1 T Press,

Cambridge, Massachusetts, 1958.

[ 3 J S. H. Crandall and W. M. Mark, Random Vibration in Mecha­

nical Systems, Academic Press, New York, 1963 .

[ 4 ] l. B. Elishakav, Random vibration of two-span beam, Israel

J. Tech 11 (1973), 317-320.

[ 5 ) L. Fryba, Non-stationary response of a beam to a moving

random force, J. Sound Vibrations 46 (1976), 323-338 .

[ 6 J J. C. Samuels aud A. C. Eringen, Response of a simply suppo­

rted Timoshenko beam to a purely random Gaussian process,

J Appl. Mech. 25 (1958), 496-500 .

[ 7 ] I. N. Sneddon, Fuurie1 Tran~Jorms, McGraw-Hill, New York,

1951 .

·-· ·- ~-

~-

Page 193: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

Jiiiinabha, Vol. 16, 1986

MULTIPLE HYPERGEOMETRIC FUNCTIONS RELATEO TO

LAURICELLA'S FUNCTIONS

By

R. C. Singh Chandel and Anil Kumar Gupta

Department of Mathematics, D. V. Postgraduate College,

Orai-285001, U. P., India

( Received : July 19, 1985 ; Revised: July 14, 1986)

ABSTRACT

The papaer is based upon a commendable idea of interpolation

between Lauricella's functions. The authors introduce three multiple hypetgeometric functions related to Latrricella's functions a.lid derive various generating relations, integral .representations and recurrence realtions for them . Some special and confluent cases of these functions are also considered . Of course, as .remarked at the end of Section 1 below, each of these three multiple hypergeometric functions as well as a fourth one (defined in the following paper by P. W. Karlsson [ 12] ) is contained, as a special case, in the generalized Lauriclla hyp­

ergeometric function introduced , almost two decades ago, by H. M.

Sriva~tava and M. C. Daoust [17].

1. INTRODUCTION

Lauricella ( 13] introduced the multiple hypergeometric functions

cni lnJ (n) (n)

FA , FB , Fe and Fn •

Exton {7) introduced the following two multilple hypergeometric (nl

functions related to Lauricella's FD

Page 194: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

196 1

( 1.1)

(1.2)

<k>£< 11> ( a, b1 ,. •• , bn ; c, c' ; X1 , ... , Xn) (1) (D)

00 (a) + + (b1) ... (hn) 1111 m 1 ••• mn mi mn X1 ~ ~

/1111 Xn

(c) (c') m1 ! m 1 , ••• ,m,.=0 m1+ ... +mk m1<+1+···+m,.

• •• ;;;n !

<7'>£<"'> (a a', b1 , . , bn; C; XI , •.. , Xn) (2) (D)

00 (a) (a') + . (b1) ... (bn) m1+···+mk m1r+l ••. +m,. 1111 ll"!n

~ 1111 , ••• , 111n =0

(c) x m1+ ... +mn

m1 x ~-'···

ll"ln Xn

m1!: m,.!

Motivated by this work, Chandel [3] defined and studied the following <n>

function related to Lauricella's Fe :

(1.3) 1'£(") (a, a', b ; C1 , ••• , Cn ; XI, ... , Xn) (1) c

00 (a)m1 + (a') (b); • +mk tnk+ 1 + ... mn m 1 + ·· + m.n (c) ... (en)

1111 tnn ~

m1 , ... , mn=O

m1 mn Xi Xn

x -· ···--m1! mnl

x

In the same paper (3] , he also introduced certain other functions

related to E~">, and F1">, but they are trivially reducible to combina­

tions of Lauricell's functions . Since then we have been interested in I .. , "

··rinding new m u1tip1e hypergeometric functions. i~1ate<l ;9 ·. f~,;) and - .. (I.~ ij" lj r • ' '• Iii t .

F1"> . Fortunately, in the present paper . we are able to introduce the

'

'

;

Page 195: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

197

following multiple bypergeometric functions rel_a.ted to Lauricella's

functions [ 13 J :

(1.4) (kJF~"t ( n, b, b1ctl , ... , bn; C1 , •• ., Cn; X1 , ••. , Xn)

00 (a),,.11 + ... *mn (b) + + (b1,+i) ··· (bn) ; m 1 ••• m1c Fnk+ 1 111n X

2: m1 , ... , 111n=0

(c1) ... (en) m1 mn

m1 mn x X1 Xn. .. ,;;;:T ... mni··

For k=O, I it reduces to F~">, while for k=n it reduces to FJ:;">.

(I 5 (''>Fl"l ( b b. . . . ) • ) AD a, 1 , ••. , " , C ; Ck..;..J , ·., Cn , X1 , ... , Xn

00 (a) _J , (b 1 ) ·•· (bn) m1 T ··· 1mn 1111 . . Inn

~ ------·-···- x 0 (c) + (Ck+1) .•. (Cn)

111 1 ,. •• , IUn = tni +··· 1111: . tnk+I 111n

m1 111,, X X1 __ ••• Xn_

m1! 11111!

for k=O, I it reduces to F~">, while for k=n it reduces to F_b11l,

(J.6) (kl£1b (a, Gk+I , ••• ,an, b1 , ... , b,.; C; X1 ,. •• , Xn)

oo (a) + + (a1t+d ···(an) (b1) ••. (bn) ~ 1111 ... Ink m1o+J 111n 1111 111n

m1 .?"""• mn=O (c)1111+ ... +111.,.

m1 111n X X1, ••• ~.

m1 ! mn!

x

Page 196: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

198 ]

Fork = 0, I, it reduces to F~">, and for I<, = 'n , it reduces to Fbn> .

Some confluent forms special cases, generating relations, integral

representations and recurrence relations have been discussed here .

It should be remarked here that, in the following paper, Karlsson

l12] has defined one more multiple hypergeometric series of this class

and has given the precise regions of convergence for all four of these

multiple hypergeometric series . He has also presented several other

properties of these functions, including, for example, Eulerian inetegral

representations, transformations, and reduction formulas .

Just as (I.I), (l.2) and ll.3), the multiple hypergeometric func­

tions defined by ( 1.4), (I.5) and (1.6) as well as the fourth one defined

by Karlsson [12], are contained, as special cases, in the generalized

Lauricella hypergeometric function of Srivastava and Daoust

(cf. [17, p. 454]; see also [11, pp 106-IO?J and [18, p. 37]).

2. CONFLUENT FORMS

For confluent forms, we consider

(2 1 l im <l''F <"> (a b b b . c c . "' · ) b AC ' ' k+l , ••• , " > 1 ,. • ., " , ·"'l , .. ., Xk , bk+l ,. . ., ,,-?oo

00 (a) (b) m1 + ... + m,, m1 + ... + mk

(c1} ... (c,.) m1 m ..

L m1 ,. •. , mn=O

(k)<fa~'6 ( a, b ; Ct ,. • ., Cn ; X1 ,.. , Xn ) , k ;/:: n , (})

X!.i.1 ...&) -- ,. ... , bk+I b.,.

m1 X1

m1! Xn

m,.

m,,!

'

'

Page 197: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

(2.2)

=

(2.3)

I 199

lim b -7 00

. x 1 X7, (k) FC:t (a, hk+l , ... , bn 'C1 , ... , Cn, -b , ... , T'

Xk+l , ••• , Xn )

OQ {a),,, + +m (b1,+i)m ... (b11)m·· !;. 1 · ··· n . k+l , n

·... -·(c1) ·· ... (c,,) -m1 , ... , m,,=0 ml mn

x m1 x l m1!

<kJcp!nJ (a, bk+1 , .•. , b,, , C1 , ••. , Cn ; X1 , ••. , X,.) • t2l AC

~.

mn Xn ... -,-mn.

lim (7'>F(") ( b . Ck+l , ••• , Cn-70 AD a' l , ... , bn, C 'C7,+l , ... , Cn, X1 , ••• , Xk,

Ck+l X<+l , ... , CnXn

00 (a) + + (b1) ... (bn) m 1 ... mn m1 mn ~

m1 ,., mn=O (c)m1+ +mk

(IC) cp ~~ ( a, bl , .. , bn ; C ; Xt , .• ·, Xn ), k -:j::. n • (])

x

m1 mn x ~ ••• ~

m1 ! Inn!

(2.4) lim (I') p<n) ( Gk+l , ••• , On-'>-=> BD a ' Gk+J , ••• , an , b1 , ... , b,, ;

Xk+l C ; X1 , ••. , Xk ' a1o+1

.' ' .. Xn··) , ... ,· .. ··~~ .

Page 198: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

200 ]

and , ..

(2.5)

00 (a)m + + m (b1) •.. (bn )m 1 ... k m1 n

(c) m1 + + mn

x ~

m1 ,. •• , mn=o

x

(k).f.. (n) ( b b . . -.. .. ) I • ...:,_· '/' BD a, 1 ,. ·., n , C , X1 ,. ·., Xn , I~ -r- n

(1)

(I') pen) , a-+oo BD \. a • ak+1 , ... , an , b1 , .. ., bn ; c ; lim

Xk Xt

a , ... ,-a

m1 mn X1 Xn --···-, m 1 ! mn·

!:-- .•

, Xk+l , .. ., Xn )

~

(ak+l) .•. (an) (bi) ... (bn) mk+l mn m1 m,. 00

(c)m1 + ... + mn x

m1 , ••. , mn=O cii;

x m1 mn

X1 Xn ;n_;r ... m,.f

<llef> 1nh ( a1c+1 , ••. , On, b1 , ... , bn ; C ; A:J , ... , Xn ), k ::j:. 0 , (2)

3. SPECIAL CASES

For n = 4 and k = 3, (1.4) gives

·~ (4.1)

··! .-~~

l.3lF~~ (a, b, b4 ; c1 _, C2, C3, C4; X1, X2, X3, X4)

. .~?; 'f(

= K2 ( a, a, a, a ; b, b. b, b4 ; C1 ' C2 ' C3 • C4 ; X1 ' X2 ' X3' X4 )

·. "'

~

Page 199: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

( 201

= ~~:Et41 Ut b4 ; c, C1 ' C2' C3' C4 ; Xi 'X2' X3. X4)

while; for n = 4 and k = 2, ( 1.4) reduces t.o

(3.2) c 21F~46 (a, b, b3 ' /;4; Ct' c~' C3 'C1 ; Xi 'X2 ' X3 'X4)

= Kio (a; a, a, a; b, b, b, b3' b4; C1: C2' C3' C4 ; X1, X2, X3. X4 ).

For n = 4 and k = 3, (l 5) gives

(3.3) c 3>f~4}; (a, bi, b2, b3 , b4 ; C, C4 ; X1 , X2 , X3, X4 )

Ku ( a, a, a, a, b1 ' b2 ' b3 ' b4 ; c, c, C, C4 ; X1 X2. X3, X4 )

c3l£14) ( a h1 • b2 h3 • b' ; c, C4 ; X1 ' X2' X3 'X4 ) lfr D ' · ' ,.

while, for n = 4 and k = 2, (1.5) gives

(3.4) l2IF~4~ (a. b1, b2, b3, b4; C, C3, C4; X1, X2, X3, X4

= Km (a, a. a, a ; bl 'b2' b3, b4; c, c, C3, C4; X1 'X2, X3, X4).

Further , for n = 4 and k = 3 , (I 6) yields

t3.5) l3JF~1j ( a, a4' b1 , b2' b3 'b4; c; X1 'X2' X3' X4)

- K15 (a, a, a, a4; b1 , b2 , b3, b4, c, c, c, c; x 1 , x2, x3, x 4 )

and, for n = 4 and k = 2, (1.6) gives

(3.6) 121 F1't (a, a3 , a4 . b1 , b 2 , b3, b4 ; c; x 1 , xz, x3, x4 )

Page 200: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

202 ]

K21 ( a, a, a3, a4 ; bi. b2 , bs , b4 ; c, c, c, c ; xi , x2 , xs , X4) ,

where K2, K1o. K11, K13, K15, K21 are the multiple hypergeometric

functions of four variables studied by Exton ( [6] , [ 8 J, [ 1 I ] .) ,

For n = 3 and k = 2 , (l .4) reduces to

(3.7) <2>p~3t (a, b, bs; C1 'C2' C3; XI, X2' X3)

= FE ( a, a, a , bs b, b ; cs , c1 , c2 ; xs , x1 , x2 )

while, for n =3 and k = 2. ( 1.5) gives

(3.8) (2) (3)

F (a, b1 , b2 • bs ; c , c3 ; x 1 , x2 , xs ) AD

FG (a, a, a, bs , bi , b2 ; cs, c , c ; xs, x 1 , x2 )

:1l£~> (a, b3 , b1 , b2 , C3 , C ; X3 , X1 , X2 )

Further, for n = 3 and k = 2, ( 1.6) reduces to

(2) <31 (3.9) F 80 ( a, a3, b1 , b2 , bs ; c ; x1 , X2, xs )

Fs (a3 , a, a, b3, b1, b2 ; c. c, c; xs, x 1 , x2 )

~ g;E~) ( a3 ' a ' bs , b1 . b2 ; c ; X3 ' X1 ' X2 ) '

where FE, FG and Fs are Laur:celia's hypergeometric functions

of three variables studied, in these notations. by '-)a ran ( [14J ; see also

Srivastava and Karlsson [ 18, pp. 42-43 J).

Similarly, we can give special cases of confluent hypergeometric

functions also .

~

l '\

Page 201: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

4. Generating Relations

From definitions, we obtain

(4.1) (J-t)-a (kJp1nJ (a, b, b1,_,_1 , ..• , bn ; CJ , ••• , Cn ; AC .

X1

1-=1 , ... ,

( 203

~) l-1

00 ~ (a)r

r= 0 rf r Ck>p<nJ (a+r, h, hk-'.-1 , .•• , bn ; C1 , ... , Cn, Xi, .. , X,.),

AC

(4.2) \l-t)-a ck'F~"Ji (a, b1 , ... , b,,.; C, Ck+l , ••• , Cn X1

l-t '~. ', ~)

l-t

00

_ ~ (a)r. i<ri <kJF~jy (a+r, b1 , •.. , b,. ; c, Ck+l , ... , c,. ; X1 , ... ,xn ),

r=O r !

(k) (r.)

(4.3) (I-1ra F8n (a,ak+i,····a,.,b1,---.b,,.;c;

00

~ r=O

and

(a). ir ,. !

X1

l-t ,. ... , 21'._ J Xk+l , ... , Xk )

l-t

''''F1"}y ( a+ r, a1:+1 ,. .. , a,. , b1 , ... b,. ; c ; X1 , ,Xn ),

(4.4) (l-1)- 0 ' 1"F~(! (a, b, b1<+ 1 ,. .. , bn ; c1 , ... , c,.;

00

~ r=O

--~.!.. , ... l-1 ~ ' X1r+1 , .. 'Xn )

1-t

.i!!]~ <k>F~~ (a, b+r , b11+1 , ... , bn; C1 , ... , Cn ; Xi, .•• , Xn) r !

Similarly, we can obtain generating relations for the confluent

hypergeorr.etric functions •

Page 202: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

20~ I

5• l~tegral Representations

Making an appeal to [ 16, p 10 I ]

(5.1) (,\,m) = _1_ f oo e-t 1A+m-1 dt ' r(") lo

·and (5, p. 13 J

l (5.2) r (il+m) 270 J

IO+l

et i-,i.-m dt -oo

Re (,\) > 0, m = 0, 1,2 , ... , we derive the following integral

representations

{7q ('nJ

(5.3) F ( a,b, bk+1 •. > bn; C1 ' .. , Cn 'X1 , ... ,x,,) AC

I r= f oo r (a) r (b) Jo Jo e-ls+tl ,\a-1 tb-1 0F1 ( -·; C1; x st) ..

0F 1 (-; c,,, x.st) 1F1 (b"+l; c"H;Xk;-.1 s) ..

iF1 (b,, ; Cn ; Xn S ) d's dt ,

(k) <'')

(5.4) F (a, b1 , ... , bn ; c, Ck+1 , .•• , Cn; X] ,.. , Xn) AD

r (c) in:(r(a)- 1

00 110+> e-s+t sa-1 r" 1Fo ( b1

0 -oo

XkS F (b •• 1Fo ( b1c ;- ; --- ) I 1 l<+J ; Ctc+l ; Xkc-J S )

t

··· 1F1 ( bn ; C n ; Xn s ) ds dt ,

~!!..__

'

\

Page 203: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

[ 205

where b1 ,. .• ,bk are negative integers, and

(k) ('l)

(5.5) F (a, Gk+t , •.• ,a,., bi, ... , bn; c ; X1 , .•• , Xn) BD

-r (a) r-(ak+i) ... r (a11) r (b1) ... r (bn) I~··· (2n-k+ I) ...

f 00 e -( S + Sk+l + ... + Sn + !1 + ... + tn) Sa-I

Jo a,.-1 b1-1 b,.-1 s ti ... t,. fl

oF1 (-; c; X1 t1 S + ··· + Xk fie S + Xk+i S'k+l tk1l

+ .. + Xn Sn tn ] ds dsk+I ... dsn dt1 .•• dt,. ,

Re (a), Re (ai,+ 1), , .•• , Re (an)'· Re (b1) , ... , Re (bn) > O.

dk+l-1 s k+l

Similarly, we can obtain integral representations for the confluent

forms .

6. Recurrence Relations

For further investigations, we shall use (Exton { [ 10, p. 115 (3.5) ] )

(6.l) oF1 (-; c-1 ;x)- oF1 (-; c; x) -

and (Slater [ 15, p. 19])

--~ oF1 ( - ; c + I ; x ) = O , c (c-1)

(6.2) c 1F1 (a; c ; x) - c 1F1 ( a,,---1 ; c; x) -x 1F1 (a; c+l, x)=O,

(6 3) (l f--a-c) 1F 1 (a; c; x) - a 1F 1 (a+ I ; c; x) + ( c - I ) 1F1 (a ; c- l ; x ) = 0 .

By an appe'.ll to (6.1 ), (6.2) a'1d l6.3), the relatio 1 (5.3) gives the

following recurrence re 1ations :

Page 204: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

206 ]

(6 4) (k) (ri)

F ( a' b, bk+t ' .... b,. ; Ct , ...• Cn ; Xi , ••. ' Xn ) AC

= 1k>p~nt (a, b, bk+t , ••• , bn; Ct,. •• , CL1 , Cj-l, Ci+1 , ... , c,.; X1 , .. ., Xn)

(k) I") X; ab C; (c;- l)

F (a, b, bk+l , ... , b,.; c1 , .•. , c;_1 , c;+l, AC

C;+1 , ... , Cn , X1 , .• ., Xn) ,

where j = 1 , ... , k ;

(6.5) (k) F~"d ( a, b' bk+l , .• ., bn ; C1 , ••• , c,.; X1 , .•• , Xn)

Ck>p~~ (a, b, hk+t , ... , b,_1, b;-l , b;+l, .•. , bn ;

C1 , .•. , Cn ; X1 , , Xn )

a X;

C; Ck>p~nd (a, b, bk+t , .. ., bn ; C1 , .. ' CL1' c1+ I '

C;+1 , ••• , Cn ; X1 , ••• , Xn ) ,

where j = k + 1 , ... , n

ck> en) (6.6) (I +b;-C;) F (a, b, bk+t , ... , bn ; C1 ,. •. , Cn ; X1 , ••• , Xn)

AC

ck> en> ~ b; F ( a, b, bk+I , ... , b;_1 , b; + I , bH1 , .•. , bn ;

AC

C1 , · ··, Cn ; X1 , •• ., Xn )

(k) (ri)

- (c;-1) F (a, b, bk+1 , ... , b,. ; c1 , ... ,Ck, ... , CL1. AC

C;-1 , C;+l , ... , Cn ; Xi , .. ., Xn ) ,

"

Page 205: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

( 207

where j = k + l , •.. , n •

Similarly, from (5.4) and (5.5) we derive

(6.7) <k>F',;h (a, b1 , •• ., b,.; C, Ck+I , •.• , c,.; X1 , .•• , Xn)

<k>p~"A (a, b1 , .•. ,bk , bk+I , ••• , b;_1 , h;-l , b;+1 , ...• b,.;

C , Ck+t ,. •• , Cn ; Xt , •• ., Xn )

X;a C;

<kJ F~i, ( a, b1 , ••• , b,. ; c , Ck+I , ••• , c;_1 , c; + I ,

C;+l , ••. , Cn ; XI, •••• Xn ) ,

where j = k + I , ... , n , and

(6.8) (k) F1nJ (a. llk+I ,. •• ,an' b1 , .•• , bn ; c; X1 ,. .. Xn)

<1' 1 F1n}i (a, llk+l , ••• ,a,,, b1 , .•• , bn; c-1 ; X1 , ••• , Xn)

a [ x1b1 <k 1F1] (a + I , ak+i , ... ,an, cl c-1 )

bi + l , ... , bn; C + 1 ; X1 , .•• , Xn )

+ ... + Xk bk <''>F';li (a + l , ak+l , ... ,a,. , bi, ... , bk-I,

bk + l • bk+l , ••• , bn ; C + 1 ; X1 ,. •. , Xn } ]

1 [ . b .. . (k)pC"l ( 1 --1-, XA+l ak+I k+l BD a, ak+I + ' c ( c-

ak+2 , .•• , a,. , bi , ... , bk , b1c+1 + l ,. . ., b., ; c + l ; X1 , .•• , X11 )

Page 206: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

208 )

b <'<>p<n> ( + I + ... + Xn Gn" BD a, Gk+l,•••• Gn_1, Gn ,

b1 , ••• , bk , b1c+1 ,. •• , bn_l , bn + I ; C + 1 ; X1 ,. •. , Xn ) ]

Acknowledgements

Our sincere thanks are due to Professor H. M. Srivastava and Professor P. W. Karlsson for their suggestions.

REFERENCES

[ I ] R. C. Singh Chandel, The products of classical polynomials and the generalized Laplacian operator, Ganita 20 (1969) no. 2, 79-87 ; Corrigendum, ibid 23 (1972), no 1, 90.

[ 2] R. C. Singh Chandel, Fractional integration and integral repre­sentations of certain generalized hypergeometric functions of several variables, Jfianabha sect. A l ( 1971) , 45-56 .

[ 3 ] R. C. Singh Chandel, On some multiple hypergeometric functions related to Lauricella functions, Jnamibha Sect . A 3 (1973), 119-136 ; Errata and Addenda, ibid. 5 (1975), 177-180.

[ 4] R. V. Churchill, Fourier Series and Boundary Value Problems,

McGraw-Hill New York, 1961 .

[ 5 ] A, Erdelyi et al. , Higher Transcendental Fuuctions, Vol . I,

McGraw-Hill New York 1953 .

[ 6 ] H. Exton, Certain hypergeometric functions of four variables,

Bull. Soc. Grece (N. S. ) 13 (1972), 104-113 .

[ 7 ] H. Exton, On two multiple hypergeometric functions related to

Lauricella's Fv, Jfianabha Sect. A 2 (1972), 59-73.

~

I ._;

Page 207: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

[ 209

[ 8 ] H. Exton, Some integral representations and transformations of

hypergeometric functions of four variables, Bull. Soc . Math . Grece (N. S) 14 (1973), 132-140.

( 9 ] H. Exton, A note on a recurrence formula for Appell's function

F 4 , JfJ.anabha Sect. A 5 (1975), 63-65,

[ IO] H. Exton, Recurrence relations for the Lauricella functions,

JfJ.anabha Sect A . 5 (1975), 111-123 •

[ 11 J H. Exton, Multiple Hyper geometric Functions and App/ ications,

John wiley and Sons, New York, 1976 .

[ 12 ] P. W. Karlsson, On intermediate Lauricella functions, JMinabha

16 {1986), 211-222

I

( 13 ] G. Lauriceila, Sulle Funzioni ipergeometriche a pi u variabili,

Rend. Circ. Mat. Pa!ermo1(1893),111-183.

[ 14 ] S. Saran, Hypergeometric functions of three variables, Ganita

5 (1954), 77-91 ; Corrigendum. ibid. 7 {1956), 65.

[ 15] L. J Slater, Corif!uent Hypergeometric Functions, Cambridge

Univ. Press , Cambridge, 1960 .

[ 16 ] H, M. Srivastava, Some integrals representing triple hyper -

geometric functions, Rend. Gire. Mat. Palermo Ser. 1116 (1967),

99-115.

f 17] H. M. Srivastava and M. C. Daoust, Certain generalized

Neumann expansions associated with the kampe de Feriet

function . Nederl. Akad. Wetensch. Proc • Ser. A 72 = Indag.

Math . 31 (1969), 449-457.

[ 18] H. M. Srivastava and P.W. Karlsson, Multiple Gaussian Hyper­

geometric Serifs , John Wiley and Sons, New York, 1985 .

Page 208: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates
Page 209: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

Jiianabha, Vol. 16, 1986

ON INTERMEDIATE LAURICELLA FUNCTIONS

By

Per W, Karlsson

Department of Physics, The Technical University of Denmark,

DK - 2800 Lyngby, Denmark

(Received: April 22, 1986 )

ABSTRACT

For the four intermediate Lauricella functions, of which three

were defined in the preceding paper [I] and a fourth one is di::fined

by the multiple series (I. I) below, we establish regions of convergence

together with some integral representations, transformations, and

reduction formulas. Of course, as remarked in [I] as well as at the end

of Section l below, each of these intermediate Lauricella functions is

contained in the generalized Lauricella function of several variables,

which was introduced eartier by H. M Srivastava and M C. Daoust

[6] .

l. INTRODUCTION

Cnl Cn) lnl In)

With the four Lauricella functions FA , Fs , Fe , FD in

mind, one might ask whether functions could be constructed that are

tin a suitable sense) intermediate between pairs of Lauricella functions.

Clearly, there are ( i) =6 cases to be considered ; and, in the preceding

paper, Chandel and Gupta [lJ in fact introduced three. intermediate

(lq (71)

functions F AC

(k) (k) (II) (R) ·

F , and E , see [I, Eqs. (1.4), (1.5), U.6)] . AD BD .

An attempt to construct AB-and BC-functions on similar lines leads

Page 210: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

212 l

to products. In the sixth case, however, we obtain a new function

defined by the series

(k) (71)

(I.I) F [a, b, b1 •.•. ,bk; c, c,,+l , .. ., c., ; x 1 , ... , x .. J CD

00 (a) I (b) + (b1) ... (b1,) m1+ ... ,m,. mk+l ... +m,. 1111 mk ~

m1 ,. • ., m,.=0 (c + , (Ck+1) ... (en) m1 ... T mk m1,+1 tnn

x

m1 mn X ~ ... Xn_

m1 ! m,.

(71) (?'I)

It reduces to F fork = O, and to F for k = n . C D

In the present paper we shall supplement the invesiigation in [I)

by establishing regions of convergence for the four functions together

with some integral representations, transformations, and reduction

formulas . The four functions are, incidentally, contained in the wide

class of multiple hypergeometric functions introdnced by Srivastava

and Daoust ( [ 6, p. 454 et seq. ] ,: see also [7, p 37 J ) .

2. Regions of convergence

It is a well-kncwn consequence of Stirling's theorem thar the

region of convergence D in absolute space for a hypergeometric series

is independent of the parameters . (Exceptional values for which the

series becomes meaningless or terminating are tacitly excluded . ) lf

we choose suitable parameter values and take abs.1luk values of all

terms, a simpler series cr with region of convergence D emerges ;

and in many cases D is fairly easily obtained from cr . (Some exam­

ples of the method may be found in [.!.], [3], and (4) . ) Frequently,

'

\

'

Page 211: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

( 213

this approach is superior to the application of Horn's theorem, espe­

cially because the latter grows complicated as the number of variables

increases, compare [7, Chapter 4 and Section 9.2].

In the present case, the following results were found

Series

(k) 1n)

FAc

( k) (tl)

FAD

(k) (fl)

FBD

(k) (tl)

FcD

Region of convergence

( .r i x1 i + .. +.r 1xk1 )2 + 1 xk+1 t + ... + 1x,.1 < 1

max \ I Xi 1 ,. •• , I Xk I ) + I Xk,1 I + ... + I x,. I < l

max ( I x 1 l , ... , I x,. I ) < l

max ( j X1 I, ... , I Xk I )+(-..,r \ Xk+l I+ ... +./ I Xn i )2 <1

Proofs are obtained by taking all parameters equal to unity. To facili­

tate printing, we ~hall let

~ and ~ (k) (n-k)

denote summations over m1 , ... , rn1, and mk+J ,. .. , mn , respectively,

all indices run from 0 to oo . ( The trivial cases k = O and k = n are

excluded . ) For brevity we introduce

(2• l) {

K = m 1 + ... +-mk, N = nlk+1+ .•. +mn,

r =max ( I X1 I , ... , I X1c I ) ,z = I Xk+l I + ... + I Xn I .

Page 212: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

214 J

(k) '"J In conjunction with FAc we now consider the series

O'J = ~ ~ ( K + J':!J ! K ~J_ Xt i mi ·•· I Xn I mn (k) (n-k) (mi ! ... mk !)2 mk+I ! ... m., !

r ~2

~ I K! J I X1 I mi ... I x1c I m" (k) L m1 ! ... mk !

~ (n-k)

( I+K)N Ix I m"H I Im,. _ ___ · k-; 1 __ ·.. Xn

m1c+1 ! ... mn ! ---- ---·

The inner series equals (l-Z)-1-K. Hence,

(k) ,...I I X1 I I Xk I J a1 = (t-zr1 Fe I, I; l. - 'I ; 1-Z ,. .. , 1--Z

L

The region of convergence is thus given by z < I and

.y ( I X} I I (1-Z) + ... + if ( I X1c I ) I (I- Z)) < I

(kJ (n)

A little rearrangement now yields the assertion for FAc. For the series

For tbe series (k) (n)

FAD we proceed as follows ,

0"2= ~ ~ (k) (n-k)

( K + N) ! I X1 I mi · .. i Xn I m,. --K! m1,+1! ... m,.! __ _

= ~ I X1 I m1 .. , I Xi I mk ~ ( 1 +K )N I Xk+i I m11+1 ... ) x,. I Inn

(k) tn-k) mk+l ! ... m,.! -- ·

Again, the inner series equals ( 1-zr1- K , and we find,

\

\

Page 213: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

cr2 = l-Zp II ~ ~ l_ 1

( k oo [ Jm· j= I mj=O 1-Z .

Thus we must have Z < l and I x; I < 1-Z, j E {I , ... , k}, or

(!:) (1')

Y +z < 1, which is the assertion for FAD

In the third case we consider the series

cr3 =

Clearly,

'S ~ (k) (11-k)

K ! m,,_H ! ... m,. ! I . I m1 I I Inn --· X1 ... Xn • ( K+ N) !

cr3 < ~ ~ I X1 I m1 . . I Xn I m,.. (k) (11-k) '

[ 215 .

v.hich implies convergence of •k>F~}; if I x1 l , ... , I Xn I are all below

unity . Ou the other hand , upon discarding terms we obtain

a3 > 00

~ Ix; I m; m;=O

j E { I , .. , n } ,

which means that 11'> F';~ is divergent if the mod ulu:; of any variable

exceeds unity . This completes the third case .

Finally , for tk> F(;~ we consider

cr4 = ~ I (n-k) l

N 1 ]2 m1;+1 ! ... Inn ! I Xk+l I mk+l ... I Xn I m,.. cr5 •

Page 214: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

216 1

where

0'5 = ~ (1 +N)K (k) K ! I X1 [ m1

I Xn I mn

00 ~ (1 +N)P

p=O p ! ~ I XJ. I mi . . . I Xk I m;.

k=p

Clearly , one of the term's in the inner series is YP . Thus ,

00

a5 > ~ (I + N)p Yv p=O p ! = (J-Y)-1-N '

which implies

a4 > (l-Y)-1 ptruq [I I· I c ' ' , ... , I Xk+l I 1-Y

I Xn J J ' 1-Y

On the other hand. the number of ternrs in the sum with K=p does

not exceed (p + 1 )7', and for any E > 0 we can find an A > O such

that (p + I )1' < A ( 1 + E )7' for all p > 0 . Consequently ,

0'5 < ~ (I+ N)p A (I +z)PYP = A ( I -(I +c:) y r1-N

p=O p !

and

1n_k) • j Xk+l I ! Xn / J a4<A (1-(1 +E)Y)-1 Fe (I' 1 ; l , ... , I ' l-(1 +·c:)Y , .. , 1-(l+e:)Y •

From the inequalities for a4 it follows, since E may be arbitrarily

small. that the region of convergence is given by

if ( I Xk+i / / ( 1-Y ) ) +,, · + if ( j Xn I / ( 1- Y ) ) < I .

The fourth assertion now follows .

\

\

Page 215: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

{ 217

3. Integral representations of Euler's type

Since there is no simple Eulerian integral for F';!!> we can not expect

(k) {n) (I') 1n)

such representations to exist for F AC and F CD • In the other cases,

however, we have

(k) ('1)

(3.l) FBD [a, m+1 ,. ... lln 'b, ,. .. ,On; c; X1' .. , x,. J

r (c) ------ x r (J11) .•. r vJ,.) r (~-01 - ... - b,.)

i i bcl b,.-1 (l c-b1 - ... -b .. - I X U1 ••• Un -U1 - ··· - U,.) X

T,.

( 1 }-llk+l (l -an X -Uk+l Xk+l ··- -Un Xn) X

-a x ( l-u1 x1 - ... Uk x1, ) du1 ••• du,. ,

where

T,. = { (u1 , , Un) I 0 < U1 /\ ··· /\ 0 < Un /\ U1 + .. + Un< 1 },

Re c > Re ( b1 + ... + b,. ) , Re b; > 0 , j E {I , ... , n } ;

and

(k) (")

(3.2) FAD [a, b1 , ... , bn; c' c,,+1 , ... , Cn; X1 , ••• , Xn] =

_______ r___;__( C-")_r---'-( C_k+--=1"----) _· ·_· r ( Cn) _ X r (b1) ••• r (b,.) r (c-b1 - ••• - b1o) r (c,,+i - bk+1) ••• r(c,.-b,.)

Page 216: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

218 1

X 1 U bi-I u b,.-1( l-u _ _ u .)c-b1 - ... - b1c-l l ... n 1 ... k

Sn,7c \

X ( l-u. )Ck+l-hk+rl (l Cn-b,.-1 1,+1 ••. -u,.) x

-a X ( l-U1X1 - •·• - UnXn ) du1 .•• dun,

11bere

Sn,k = { (u1 , ... ,Un) I 0 < U1 f>.. ·• /\ 0 < U7, /\ U1 -!-- ... +- U1.<I /\

/\ 0 < Ut.:+1 < 1 L\ ... /\ 0 ~ Un < ] } ,

Rec> Re ( b1 + ... +bk), Re bj > 0, j € {I, ... , k},

Re Ci > Re b, > 0 , i E { k + I , ... , n } •

The integral representations are proved in the usual way by expansion \

of factors containing x1 , ... , x,,. Incidentally, particular cases ( n =3,

k= 2 ) of both representations were given by Saran [ 5, Eqs (3.IO) and

(3.5) 1 .

4. Transformations

The domain of integration in \2.2) and the form of the integrand

are both preserved under the transformations

11 = l--Ui - ••• - U7,, t2 = U2 , ••• , !11 = Un ( k ;;;;: l) ,

and

11 = U1 , ... , ln_} , = Un_J , ln = I-Un ( k < n-1).

The resulting transformations of Eule1's type read ,

(k) (1i)

(4.l) FAD (a, bi •... , bn ; c, Ck+l , ... , c,.; X1 , .•• , Xn 1 ( l-x1 )a=

Page 217: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

j

'

and

(71) 1n)

FAD [a, c-(b1 + ... +b1c)' b2 , ... , bn ; c, Ck+l .... , Cn ;

-X1

I-xi

(k) (fl)

' X2-X1 , ... , -:::k..:--"1, ~ , ... , ~ I I-xi I-xi l -x1 I -xi

-.J

[ 219

l4- '.) FAD [ a, bi, ... , bn ; c, C1c+1 , ••• , c,. ; X1 , ... , Xn J (1-xn)a =

(II) 1n1

FAD [a . b1 , ... , bn._] ' Cn --b,.; c 'Ck+l , •• ., Cn;

X1

1-xn , ... , Xn_1

1-Xn

1 __ ,,, I - .

J-Xn j

The~e are , however only two of several transformations which

can be obtained in a similar way . Particular cases ( n = 3 . k = 2 )

are due to Saran [ 5, Eqs. (5.3) and (5.2) ] .

5. Reducible cases

(Ill rn)

Except for the function FAc there is a reduction formula in case

the fir~t k variables are equal . The formulas read ,

(lq en)

(5 I) FAD [a~ b1 , ... , bn ; c' C1<+1 , ... , Cn; x , ... , x' Xk+I , ... , Xn J

Cn k+] F l [ a, b1 + ... + b,,, bk;·t , ... , b,. ; C , C1c+1 , ... , Cn ;

A

X, Xk+l , ... , Xn) ,

Page 218: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

220 J

(k) (n)

(5 2) FBD [a' a1c+1 , ...• On' b1 , .•.• bn; c; x , ... , x' Xk+l , .. 'Xn] =

(5.3)

<n-k+V FB [a' a1:+1 , •. .,On' b1 + ... + b1c, b,,H , ... , bn; c;

X , X1:+1 , ••. , Xn ) ,

(kl (n)

F [a, b, b1 ,. .. , b,,; c. C1c+1 ,. •• , Cn 'x ,. .. , x, Xk+l , .• ., Xn ]= CD

(1) <n-k+ll , F [a, b, 01 + ... +bk; c, Ck+l , ... , Cn; x, Xk+1 , ... , Xn J.

CD

In all cases the function on the left-band side is written as a

series with summation indices m1c-1-1 , ••• , mn , such that the general term

'k> contains a FD with equal variables to which we apply Lauricella's

reduction formula

(//)

(5.4) FD (A b1 , .. ., bk; C; x ,. .. , x]= 2F1 (A, bi+ ... +b1c; C; .\]

Equality of parameters may give rise to reduction formulas , too . With

X = Xk+J + ... + Xn

for brevity , we have

(kl <n> (5 5) FAC (a, b, Cic+i , •• ., C11 ; C1 ,. •. , Cn ; X1 , ... , Xn J

C7dl r . ~ . , X7, J = (1-X)-a Fe a, b; Ci, .. ' C1c ' 1 X , .. ., l -X ' 1-

and

(k) (n)

(5.6) F [ o, bi , ... ' bn ; c ' b1c+1 , .. ., bn ; X1 , .• ' Xn ] AD

\

\

Page 219: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

[ .221

(k) I X1 Xk ]' = (1-Xra FD I a, bi,. .. , bk; c; 1-X , ... , T-X . ,_

These are proved by the same series manipulations that we used

for cr 1 and cr2 •

Further reduction formulas could be obtained from the transform-

ations mentioned in Section 4 .

Acknowledgements

The author is indebted to Professor H. ,M. Srivastava for the

opportunity to see the manuscript of [I] before its publication and for !

/ the encouragement to undertake present inve<;tigation

REFERENCES

[ I ] R. C. S Chandel and A. K. Gupta, Multiple hypergeometric

functions related to Lauricella's functions, Jiiardibha 16 ( 1986 ), 195-210

[ 2 ] p W. Karlsson, On the conver5ence of certain hypergeometric

series in several variables, Jiianabha Sect A 5 ( 197:5), 125-127.

[ 3 J P. W. Karbson, On Certain Generalizations of Hypergeometric

Functions of Two Variables, Physics Laborator¥ II, The Technical

University of Denmark, Lyngby, 1976 •

[ 4 J P. W. Karlsson, Regions of convergence for some of Exton's

hypergeometric series, Nederl. Akad. Wetensch. Proc. Ser •

A 81 = Indag. Math, 40 (1978), 72-75.

Page 220: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

222 1

[ 5 ) S. Saran, Hypergeometric functions of three variables, Gan ita

5 (1954), 77-91 ; Corrigendum ibid. 7 (1956), 65 .

( 6 ] H. M. Srivastava and Martha C. Daoust, Certain generalized

Neumann expansions associated with the kampe de Feriet

function , Nederl. Akad. Wetensch. Proc . Ser. A 72 = Indag.

Math. 31 (1969), 449-457.

[ 7] H. M. Srivastava and P. W. Karlsson, Multiple Gaussian

Hypergeometric Series , Halsted Press ( Ellis Horwood Limited,

Chichester) John Wiley and Sons , New York,- Chichester,

Brisbane and Toronto, 1985 .

~

\

Page 221: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

)

.lfianiibha, Vol. 16, 1986

A PROPERTY OF CONTRACTIVE TYPE MAPPINGS

IN 2-METRIC SPACES

Bv.

Cbih - Ru Hsiao

Department of Mathematics,

Statistics, and Computer Science,

University of Illinois at Chicago,

Chicago, Illinois 6'.>680, U. S. A.

(Received : October 9, 1985 ; Revised [Final] : September 23, 1986)

ABSTRACT

All the contractive type mappings in the theorems in [2] to [ 12]

have property (f-1) in a 2-metric space . If a mapping f possesses

property (H) in an Euclidean 2-metric space, then the points given by

the iterati,on of f at any point in the Euclidean 2-metric space are

collinear. Not all 2-metric spaces have property (H*) .

1. INTRODUCTION

The concept of 2- metric space has been investigated by S. Gabler

in [I]. Many contractive type principles on 2-metric spaces have been

proved by K lseki (2] , M. S Khan (3] , S. N. Lal and A. K. Singh

( [4], [SJ), S N. Lal and Mohan Das ( [6] ? [7] ) , B. E. Rhoades

[8] , A. K. Sharma (9], ( [I OJ, [ 11] ), and S. L. Singh [ 12] The purpose

of this article is to show that all the fixed point theorems in [2] to

[ 12] can apply only to a self-mapping/, which is defined in a

2-metric space (X, d) and has the following property denoted by

property (fl) :

"d l fix, fix , fkx ) = 0, for all i, j, k e /+

Page 222: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

224 I

and all x E X , where /O x = x , v x E X ;

flx = fx; f2x = J0 fx; etc . "

It follows that all the theorems in [2] to [ 12} cannot apply to a

mapping which does not have the above rroperty .

2. MAIN RESULTS (PART I)

From [I] we have :

Definition 1. A 2-metric sp,ace is a space X with a non-negative

real-valued function d on X x X x X satisfying the following

conditions :

( i ) to each pair of distinct points x, y in X,

there exists a point z in X such tll~t

d ( x, y, z ) # 0 .

( ii ) d ( x, y, z ) = 0 , when at least two of x, y, z are equai

( iii ) d ( x, y, z ) = d ( ~· z, y ) = d ( y, z, x ) .

( iv ) d ( X, y, Z ) ~ d ( U, y, Z ) + d ( X, U. Z ) + d ( X, y, U )

( simplex inequality ) .

Definltion 2. Let ( X, d) be a 2-met.ric space, f: X -->- X.

If for any x E X, set : xo = x, Xi = fxo, X2 = fx1, · , Xn+i = fxn, .. ,

we have:

d ( X, , Xi , Xk ) = 0 , 'ef i, j, k E /+ ,

then we say that f has property (H) in ( X, d).

Definition 3. Let ( X, d) be a 2-m.etric space ,f, g: X ~ X.

\

\

j )

/

Page 223: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

)

( 225

If for any x € X set : Xo = x, Xi. = fxo, x2 = gx1 , ... , X2n+1 = fx2n ,

x2n+2 = gx2,,+i , .. , we have d ( x; , x;, x" ) = 0 , Vi, j, k E /r , then

\'.e say that f and g have common property (H) in ( X, d).

Example. I I

Let J = ( 2

_ , l ] x [ T , l ] Define a 2-metric d

on J as:

. 1 I ( 1J1 a2 i I I d ( ( a1 , a 2 ), ( b1, b2 ) , ( c1 , c2 ) ) = - - I det I b 1 b2 I I I .

2 I l c 1 c2 I J l Define f: ( J, d )--'>- ( J, d ) as :

f ( ( a. b ) ) = ( al/2; bl/2 ) .

104 11 4 _ 10 2 II 2 Take xo = ( ( Ti) , ( i2 ) ),,, X1 = f'(o =· ( ( ii ) . ( i2 ) ) '

10 l I x2 = I'(1 = ( fr , i2 ) . Then d ( xo, x 1, x 2 ) =F 0 , l!-Dd f does not

have property (H) in ( J, d) .

Remark I. Let x : ( x1 , X2 ,. .. , Xn), Y : ( Yl> Y2 ., .. , Yn),

and z : ( z10 z2 ,. . ., z,. ) be three points in the Euclidean 2-metric space

(R11 , d),

d(x,y,z) I I ___,. ___,. 2 I xy I • I xz I . sin a j '

__..

where I xy I denotes the length of the vector from x to y ,. j xz I denotes the lenEth of the vector from x to z, aod ix is the angle between --'>- __,,_ xy and xz

The foJk;wing is a special case of Theorem 1 to be stated later .

Page 224: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

226 1

_,.

If d ( x, y, z ) = 0 , then I xy I = 0 , or I xz I = 0 ,

or a = 0 or TI;, and x ,y , and z are collinear .

From the above argument we know : If a mapping f has property

(H) in a Euclidean 2-metric space , then the points given by the iter­

ation of f at any point are collinear .

Remark 2 . Later we shall prove that , if a mapping f satisfie3 the

conditions of any fixed point theorem in [2] to ( 12], then f has property

(H) in a 2-metric space, and, if mappings/, g sausfy the CJnditions

of any common fixed point theorem in L2] to lJ2], then f and g have

common property (H) in a 2-metric space . So alt tne theorems in L2]

to p2] fail to discuss the mappings which do not have property (H)

in a 2-metric spac.:e ,

we are not interested in what the property ( H) leads to, since th~

mappings which have proverty (H) rn a 2-metnc are trivial We

prove :

Theorem l. Let (x, d) bea 2-mllric ~pa_ce. Mappings f,g, :X--i>X

satisfy the following conaition:

d ( fx, gy, a ) ~ <P ( d ( x, y, a ), d ( x, fx, a) d ( y, gy, a ) ,

d ( x, gy, a), d ( y, f'c, a)) .............. ( 1 *)

for all x,y.a " X, where the mapping <P : R~ ~ R+ is non - decre­

asing in each variable, and

<P ( t, t, t, t, l ) < t, for each t > 0 ......... (2*)

Then f and g have common property (fl) in ( X, d) .

Proof . First Prove :

\

~\

Page 225: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

1 I

)

d ( Xn+2, Xn+I , Xn ) = 0 for all n € [+

When n is even let n = 2i , from (I*) we have

d ( X2'+2 , X2i ,.} , X2i ) = d ( X2i+l , X2i+2 , X2i )

= d ( f'(2i , gX2i.T-l , X21 )

.;;;;; cp ( d ( X2i , X2i+J , X2i ) , d ( X2i , X2i +-1 ; X2J ) ,

[ 227

(A)

d ( A2i+J , X2i+2 , X2i ), d { X2;, X21+2 , X2i ), d ( X21+1 , X2i+l, Xzi ) )

= cp ( 0, 0, d ( X2i+2 , X21+1 , X2i ) , 0, Q ) ·

Suppose d ( x2;+2 , x2;+1 , x2; ) = t* > 0 . Since cf; is nondecreasing

by (2*) we have t* ,;;;;; cp ( t*, t*, t*, t*, t*) < t*, a contradiction

Hence d ( x21,.2 , x2H.1 , x2;) = 0 . Similaly we can prove

d ( X2i+3 . X2i+2 , X2i+l ) = 0 •

We now prove each of the following :

d ( Xn Xn H, Xo ) = 0, for all n e /+ . ········· (B)

d t Xn, Xn+I, X; ) = 0, for all n e [+ . ········· (C)

d ( Xo, X1, Xh ) = 0, for all k E /+ ........ (D)

d ( Xn, Xn-t-i , x1c ) = 0, for all n e / 1- , any k e /+ (E)

d ( X;, X;, Xk = 0, for all i, j, k E [+ (F)

Note that t B) is trivially true if n is 0 or l • Assume the induct­

ion hypothesis~ suppose n is odd, and let n = 2m+ 1 • Using {l *)

we have:

d ( X2rn+1 , X2m+2 , Xo )

d ( fx2m , gx2mH , XJ )

Page 226: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

228 J

~ <fa ( d ( X2m , X2m+l , Xo ) , d ( X2m , X2m+? , Xo ) , d ( X2m+1 ,

X2m+2 , XO ) t d ( X2m , X2m+2 , Xo ) , d ( X2m+1 , X2m+I , Xo ) ) •

= <fa ( 0, 0, d ( X2m+l , X2m+2 , Xo ) , d ( X2m , X2m+2 , XO ) , 0 )

Using the simplex inequlity and (A), we have :

d ( X2m , X2m+2 , Xo )

~ d l X2m+l• X2m+2• Xo )+d ( X2m, X2m+i Xo )+d ( X2m, X2m+2• X2m+1 )

= d ( X2m+l• X2m+2, XO ) •

If d l x2m, x2m+2, xo) :::j::. 0, then, from (2*) we obtain a contradiction.

The proof under ,the assumption that n is even is similar. as is the

proof of ( C) .

\

(D) is trivially true for k = 0 . Assume the induction hypl}th- ~ esi s . From the simplex inequality we have

d ( xo, xh Xk+l )

~ d ( Xk, Xi. Xk+1) + d( XQ, Xk, Xk+l) + d( XQ, X1, Xk).

The first two terms are zero by (B) and (C) and the third is zero by

the induction assumption . Hence d ( x0 , x1 , Xk+J ) = 0 and (D) is

proved .

(E) is true for n = 0 by (D) . Assume the induction hypothesis.

Suppose n is even and let n = 2m . From (I*) we have :

d ( X2m, X2m+I• Xk ) = d ( gX2m-1, fx2m, X1c )

~ cp ( d ( X2m, X2m-t· Xk ), d ( X2m• X2m+l• Xk) ,

d ( X2m-1, X2m, Xk ) , d ( X2m, X2m' Xk ) ,

d ( X2m-], X2m+1' Xk ) ) •

f :!

Page 227: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

I I !;

[ 229

Using the simplex inequality, the induction assumption, and (A),

d ( Xzn,,_ 1 , Xzm+1· X11) < d ( Xzm, X2m+l• X1c) • lf d ( Xzm, X2m+i. X11)

-::/:: 0 , then ( 2 *) leads to a contradiction . The proof under the assum­

ption that n is odd is similar to the above argument .

To prove (F). we may assume, without loss of generality, that

i < j. Moreover. we may assume strict ineqnality, since, otherwise,

we obtain zero by the clefi nit ion of 2-metric spaces . Using the 8implex

inequality; \\e have

d ( X;, X; Xk )

< d ( X;_l, X;, X1,) + d ( X,, X;_ 1• Xie) + d ( X;, X;, X;_} )

= d (Xi, X; -1 Xk) ,

since the other t No tel m3 are zero by (E)

Continuing in this same manner, we obtain d ( X;, x;_i. X1c)

< d ( Xi. XJ 2• X1r ) ,,;;;; ... < d ( X;, Xi+I • X1; ) = 0 by (E) .

A different proof of Theorem I appears in the appendix . It is

included for its valu~ as a proof technique .

There is a special case of Theorem I; that is :

Theorem 2. Let f be a self-mapping on a 2-metric space ( X, d)

such that :

d ( fx, fy, a ) < <P (a ( x, y, a) , d ( x, f.,., a), d ( y.fy, a ) ,

d ( x,fy, a ) , d ( y, f", a)) (3*)

fo: all x. v, a EX. <P satisfies (2*) in Theorem I. Then f has property

(I-/) in ( X. d ) .

Remark 3. It is easy to check that all the contractive type mappings

in the theorems in (5], (8], (9], [ lO] and [ 12] have property (H) in (X, d)

Page 228: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

230 ]

or common property (H) in ( X, d) , since they all are special cases of

(I*) in Theorem l or (3*) in Theorem 2 •

3. MAIN RESULTS (PART II)

Lemma l formalizes the fact that condition (£) implies (F) .

Lelllrna I. Let { Xn } be a sequence in 2-metric space ( X, d) and

d ( Xm, Xm+I> Xn) = 0, Vm, n E /+ . (1)

Then d( x;, X;, Xk) = 0, yi, }, k E /+ .

Theorelll 3. Let { Xn i be a sequence in 2-metric space ( X, d)

If there exists a real number k E f 0, I J such that, for all n " N

and all a EX,

d ( Xn, Xn+1, a ) .;;:; k • d ( Xn_}, Xn, a ) , (2)

then

d ( Xi , Xj , X1c ) 0, \f i, j, k E /+

Proof. From (2) we know :

d ( Xn, Xn+I> Xm ) .;;:; k • d l Xn_}, Xn, Xm ) ,

for all n E N and m " f+ •

JO When m = n or n + 1 , d ( Xn, Xn+I• Xm ) = 0

20 When m < n,

d ( Xn, Xn+1, Xm) .;;;; k. d ( Xn_} ~ Xn, Xm)

.;;:; k2 . d ( Xn_2 , Xn_1 , Xrn )

.;;;; kn-m , d ( Xm , Xm+i , Xm ) = 0

30 When m 'i>.n + 1,

\

Page 229: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

[ 231

d ( Xn , Xn71 , Xrn )

< d ( Xm_}, Xn+; , Xm) + d ( Xn,. Xm_1, Xm ) + d ( Xn, Xn+h Xm_J ) •

By }O and 20 we have d ( Xm_ 1 , x,,,, Xn+i ) = 0 and

d ( Xm_J , Xm, Xn) = 0 . Then d ( Xn, Xn+J , Xm < d ( Xn, Xn+l , Xm_} ).

Continuing in this way we have :

d ( Xn , Xn+i , Am ) < d ( Xn , Xn+i , Xm_1 )

< d ( x,, , Xr.+l , Xm_z )

< d ( Xn , Xn+l , Xn+t ) = 0 ,

40 When n = 0 ,

( xo, X1, Xm ) < d ( Xz. x,,., Xo ) + d ( X1, X2, Xo) + d (Xi, X2, Xm ).

By JO, 20, 30 we have d ( x1, x2, x0 = 0 and

d ( X1, X2, Xrn ) = 0 Then d ( Xo, Xi, X n ) < d ( Xz. Xm, Xo )

Continuing in this way we have :

d ( Xo, Xi. Xrn ) < d ( Xz, Xm, Xo )

< d ( X3 , X.,. , Xo )

< d ( x,._t , X.n , Xo ) = 0 .

From ro '20' 30 and 40 we have: d(x,,, Xn+i 'Xai) = 0 ,

vm,n E /+. Then, by Lemma I, we have : d (Xi' Xj. X1c) = 0'

vi, j, k € [+ •

Remark 4 • By Lemma l and Theorem 3, it is easy to check that

all the contractive type mappings in the theorems in (4] and [ll] have

property ( H) in (X,d) or common property (H) in (X, d) .

Page 230: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

232 1

4. MAIN RESULTS (PART III)

In this part we shall illustrate that all the proofs of the theorems

in [2], [3], [6], and [7] are :ncomplete or wrong .

Following liJ, we have Definitions 4 and 5.

Definition 4. A sequence {xn} in a 2-metric space (X, d) is convergent

and x EX is the limit of this sequence if

lim d ( x,. , x , a ) = 0 for all a E X . n~oo

Definition 5. A sequence {x11 } in a 2-metric space (X,d) is called a

Cauchy sequence if Jim d ( Xa,, x,,, a) = 0, for all a EX • m,n-+oo

Remark 5 .. From Definitions 4 and 5, we know : In the proof of

the Theorem of [2]. the author needs to prcve that the inequality

p ( x,. , x,.+t, a ) < q p ( x,._1 , x,. , a ) is true for all points a in X .

It is only shown to be true for some points a of X . Since the authors

of [3]. (6] and [7] use the same proof technique, those results are

also incorrect •

We are not interested in whether the statement

'' p ( x,, ; Xn+I , a ) < q p ( Xn_1 , Xn, a )' · is true for all a E X or not,

smce by Theorem 3 we know that :

''p ( Xn, Xn+i , a) < q p ( Xn_ 1 , Xn , a), for all a E X and all a EN''

implies that : p ( X; , X; , Xi. ) = 0 , fur all i, j, k E /+ .

Thus T has prop-::rty ( H) in (X, d)

5. CONCLUSIONS

In this article we have shown that all the theorems rn [2] to [ l 2]

only can discuss mappings that have property (H) in a 2-metric space.

\ '

\ ...

Page 231: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

I 233

If f has property (H) in Euclidean 2-metric space ( R2, A ) , where

A ( x, y, z ) denotes the area of the triangle L',xyz formed by joining

the three points x, y, z in R2 . Then for each x in R2 , the iteration

off at x is in a straight Ii ne . So f is a trivial mapping. In fact, the

definition of a 2-metric space given by Gabler is not strong • The

Euclidean 2-metric space (R2, A) has the following property denoted

by property (fl*) :

''If A ( a, b, x ) = 0 = A ( a, b, y ) and A ( a, x, y ) =I= 0 ,

then a = b"

But, if we define a new 2-metric A* on R2 by A* (x, y, z ) = the area

of the intersection of L',xyz and the unit disc in R2, then we have:

A* ( ( 2, 0), ( - 2, 9 ) , ( 2, 9 ) ) = 0

A* ( ( -2 , 0 ) , ( -2, 9 ) , ( 2 , 9 ) ) = 0 and

A* ( ( -2, 0 ) , \ 2. 0) , ( 2, 9 ) ) =/= 0 , but

( 2, 9 ) =I= ( -2, 9 ) .

Hence ( R2, A* ) doesn't have property (H*) . Thus not all 2-metric

spaces have property (H*) as Euclidean 2-metric spaces have. Moreover,

in a 2-metric space ( X, d) if we want to prove " a = b '', we must

prove " d ( a, b, x) = 0 , for all x in ( X. d )'' .

We cannot establish a good fixed point theorem in a 2-metric space by considering iterations of a contra9tive type mapping . We

:,,uggest that we investigate 2-metric spaces that have property H* •

Then we have a better chance of establishing a useful fixed point

theorem in 2 metric spaces .

Page 232: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

234 1

Acknowledge1nents

I am grateful to Professor H. M. Srivastava and the referee for

providing a short proof of Theorem I and for many valuabk

suggestions .

REFERENCES

[ I f' S. Gabler, 2-metrische Rilme und ihre Topologische struktur, Math. Il/achr. 26 (1963/<4), 115-148,

[ 2] K. Iseki, Fixed point theorem in 2-metric spaces, Math. Sem.

Notes KOhl:' U1,iv 3 (197.'), 133-136. [ 3 ] M. S. Khan, On fixed point theorems in 2-metric space, Pub/.

Inst. Math. tBeoKrad) ( N S) 27 (41) (1980), 107-112.

[ 4 ] S N. Lal and A. K. Singh, Invariant points of gen~rahzed non­expensive mappings in 2 metrie spaces, Indian J. Pure Appl.

Math. 20 ( 19'8), 71-76 [ 5] S. N. Lal and A. K. Singh, An analogue of Banach's contraction

principle for 2-metric spaces, Bull. Austral. Math. Soc, 18

{1978)' 137-143 . [ 6 ] S. N. Lal and Mohan Das. Mappings with common invariant

l oints in :-metric spaces. Math . Sem . Notes Kobe Uni!'. 8 ( 1980), 8.l-89 .

[ 7 J S. N. Lal and Mohan Das. Mappings with common invariant points in 2-metric space. Ii Math. Sem. Notes Kobe Univ . HI (1982)' 691-595.

[ 8 ] B. E. Rhoade:>. Contraction type mappings on a 2-metric space. Math Atnhr 91 ( 1979), 151-15).

l 9 J A. K Sharma. On fixed points in 2-metric spaces, Math. Sem. Notes Kobe Univ. o ( 1971) ) , 467-473 .

[ 10 J A. K. Sharma, A generalization of Banach contraction prir.ciple to 2-metric space.;, Math. Sen. Notes Kooe Univ.

7 ( 1979)' 291-295. [ l l ) A. K. Sharma, On generalized contractions in 2-metric space.,,

Math. Sem Notes Ko!Je .Univ 10 (1982), 491-506. [ 12 ) S. L Singh, Some contractive type principles on 2-metric sp 1c-.:s

and applirntions, M.1th Sl:'ln Notes KObe Univ 7 (1979), l-11.

Page 233: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

r 23s

APPENDIX

The following is a different way of proving Theorem I .

Proof. First prove :

d ( X11+2 . Xn+l , Xn ) = 0 for all n E [+ ••• (A)

When n is even let n = 2i , from (I*) we have

d ( X2i+2 , X2;+1 , X2; ) = d ( X2i-1 l , X2i+2, X2i )

= d ( fX21 , gX2i H , X21 )

~ rp ( d ( X2•+2 , X2i+l• X2i ), d ( X2; , X2i+i , X2; ) ,

d ( X2;. t, X2i+2, X21 ) , d ( X2i, X2i r2 , X2i ) , d ( X2i+l , X2;"·l X2i))

= rp ( 0, 0, d ( X2i i-2 , X2i+1 , X2; ) , 0 , 0) ·

Suppose d ( x2;+2 , x 2;+1 , x2i) = i* > 0 . Sirce rfo is nondecreasing

by ( 2*) we have t* ~ rfo ( t* , t*, t*, t*, t* ) < t*, a contradiction.

Hence d ( x2;+2 , x 2;+1 , x2, ) = 0 • Similarly , we can prove

d ( X2i+3 , x 2;+2 , X2i+t) = 0 . We now show that ;

d ( Xt1+3 , Xr. .. } , X11 ) = d ( Xn+3, Xn+2 , Xn ) = 0

for all n E 1+. ... (B)

By the simplex inequality

d ( Xn !-3 , Xn+i , Xn )

~ d l X'•+2 , Xn+J , Xn ) + d ( Xn+3 , Xn+2• Xn ) + d ( Xn+3 , Xn+b Xn+2 )

d ( Xn-i-3 , Xn., 2 , Xn )

~ d ( Xn+i , Xn+2 , Xn ) + d ( Xn+3 , Xn+1 , Xn ) + d ( Xn+3 , Xn+2 , Xn+i ) •.

From (A) we have

Page 234: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

236 1

d ( Xn+3 ,Xn+1 , Xn ) .;;;;; d ( Xn+.3 , Xn+2 , Xn ) ,

and

d ( X11+3 , Xn+2 , Xn } .;;;;; d ( Xn J.3 • X11+1 , Xn ) '

then d ( Xn+3 , Xn+2 , Xn ) = d ( Xn+3 , Xn+t, Xn ) • When n is even,

let n = 2 i . Then

d ( X2i+3 , X2i+l , X2; ) = d ( Xv t-3 , X2; J.2 , X2i )

= d ( /X2i+2 , gX2i+J , X2; )

.;;;;; d> ( d ( x2;+2 , x 2;+1 , x2; ) , d ( X2i+2 , X21+a, x21 ) ,

d ( X2i+.J , X2i+2 , X2; ),( X2;+2 , X2i+2 , X21 ) t

d ( X2;+1 , X2i+3 , X2i ) )

= cP ( 0, d( X2i+3, X2i+2, X2i), 0, 0, d( X21+3 • X2i+l, X21)) •

Suppose d ( x21+a, .x2;+2 , x 2;) = d ( x21+a, x 2;+1 , x21) = t* > O,

then by (2*), 1* ~ <P (,t*, t*, t*, t*, t*) < t*, a contradiction.

This implies that (B) is true when n is.even.

Similarly, we can show that ( B 1 is true when n is odd . We now

show that d ( x;, x; , >.1, ) = 0, for all i, j, k e /+ •

[ st~p 1 1 • d < x; , x1 , x" ) = o , vi, j, k e { o, 1, 2, 3 } .

Since (A) is true, we only have to show

( JO ) { d ( X3 , XJ , Xo ) = 0

d ( .\3 , X2 , Xo) = 0 ,

Since (B) is true , ( Io ) is trivial .

( Step 2 J . d ( x; , x; , Xk ) = 0 , vi, j , k e { 0, 1, 2, 3, 4} •

By [ Step l ] and (A) we onJy have to show

Page 235: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

3?8 ] ..

( d ( X5 ' X1 , Xo ) = 0 I I d ( X5 , x 2 , X.o ) = 0

( 30) ~ I d ( X5 , xa , xo ) = 0 I l d ( x5 , x4 , xo ) = 0

( d ( X5 , X2 , X1 ) = 0 I

( 21 ) ~ d ( X5 , X3 , X1 ) = 0 I L d ( X5 , X4 ' X1 ) = 0

{

d ( X5 , X3 , X2 ) = 0 ( )2)

d ( X5 , X4 , X2 ) =' 0 ·

The proof of ( 12) and ( 21) is similar to [Steil 2J; that is, "rewrite

{Step 2] by considering d (Xi, X1, x,,), Vi, j, k E { l, 2, 3, 4, 5 }

instead of considering d ( Xi , x; , Xk) , Vi, j, k E { 0, I, 2 3, 4 }",

since (B) is always true •

So we only have to show ( 30 )

d ( X5, X1 , Xo )

~ d ( Xl 'X1 ' Xo ) + d ( X5 t Xi ' Xo ) + d ( X5 • X1. X1 )

--+ d ( X", ' X1 , Xo ) ~ d ( X5 ' X1 , Xe) , for I = 2, 3, 4 .

d ( X5 , X1 , Xo )

~ d l X1 ' X1 ' Xo ) + d ( X5 ' X1 • Xo ) + d ( X5 ' X1 ' X1 )

=:> d ( X5 ' X1 ' Xo ) ~ d ( X5. X1 ' Xo ) ' for l = 2 ' 3, 4 .

Hence d ( x5 , x1 , Xo ) = d ( X5 , xi , xo ) , t = 2, 3, 4 • Since

for all i, j, E { 0, I, 2, 3. 4, 5} either d( x;, x;, x0 ) = 0

or d ( X; , x; , x0 ) appears in ( 30 ) , and

d ( x; , Xi , xo ) = d ( X5 , x1 , xo ) , then by (l *) and (2*) it's

easy to show that :

Page 236: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

[ 239

d ( x5 , x1 , XJ ) = d ( x5, x1 , xu ) I ~ 2, 3, 4 , Su~pose cotltinue

in this way we can prove :

[ Step m -2 l , d ( Xi • x; • Xk ) = 0 , Vi, j. k, " { 0, l, 2, ... , m } .

To show :

[Step m-1 ] , d ( x,, \:;,Xi,) = 0, Vi, j. k E { 0, l, 2, .. , m,

m+ l } .

[ ( m·-1 )O l

{ ( m-2 )l ]

We only have to show

( <f { Xm+l , X1 , X3 ) = 0 I I I

~ I I l

a ( Xrn.+i , x2 • .X0 ) = O

d ( Xm+l, Xm , Xo) = 0

( d ( Xm+l , X2 , X1 ) = 0 I ~ I l_ d 1.. Xm +1 , Xm , X1 ) = 0

{

d ( Xm+] ' Xm_J , ·'""-2 ) = 0 ... ,[l".-2]

d ( X ,,_, 1 , Xm, Xm_1 ) = 0

Since the proof of [ ( m-2 )1] , ( ( m-3 )2] , •. ~ [ 2m~3] , [ }".-2]

is similar to [ Step m-2 ] , we only have to sh~w [ ( m-1 y:i ] . By simplex ineqtiaihy we can show that :

d ( Xm+i , X1 , Xo ) c-= d ( Xm-11 , Xi , Xo ) , I = 2 , 3 , ... , m ;

then by tl *) , (2*) we can prove [ ( m-l )1 ] • By ~ath'ematical induction for m the proof is completed .

Page 237: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

Statement of ownership and other particulars

about the journal

JN°ANABHA

1. Place of publication

2. Periodicity of its publication

3• Printer's name

Nationality

Address

4. Publisher's name

Nationality

Address

5. Editor's name

Nationality

Address

6. Name and address of the individuals who own the journal

and partners or share holders holding more than one percent df the total capital

D. V. Postgraduate .QoJJ~ge

Orai-285001, U.P., li'·.v''

Annual

Anil Kumar Gupta

Indian

'{};'

Navin Printing Press, 98.

Orai-285001, U.P.

Dr. R. C. Singh Chandel

For Vijnana Parishad of India ,,,,;:)J.J:..

Indian

D. V. P0stgraduate College

Orai-285001, U. P., India

Dr. R. C. Singh Ch11ndel

Indian

D. V. Postgraduate College

Orai-285001, U.P., India

;~;,,

} Add'~'' 1

Vijnana Parishad of India, D. v; Postgradua,te College

Orai-28.JOOI, U.P., India

I, Dr. R. C. Singh Chandel hereby declare that the particulars given above

are true to the best of my knowledge and belief •

Sd. / Dr. R. C. Singh Chandel

Publisher

,

Page 238: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

INTORMATION FOR CONTRIBUTORS/SUBSCRIBERS

Jfianabha is published annually. It is an interdisciplinary journal devoted

primarily to research articles in all areas of the mathematical, physical and bio

logical sciences; it does, however, encourage original mathematical works which

are motivated by an.d relevant to applications in the social, management, bio­

medical or engineering science~. Papers intended for publication in this journal

should be in typed form or offset-reproduced, (not dittoed), double spaced with

generous margins, and they may be written in Hindi or English. Manuscripts in

duplicate, if possible, may be submitted to either of the Editors. It is mandatory

for every author in Jfianabha to be a member of the Vijnana Parishad of India in good

-'• ·8in{Jpan,d to pay publication charge:. which will be based upon the number of printed pages.

·n ission of a paper implies the author's assurance that the paper has

Step m-1 ] , d \lv circulated, copyrighted, published or submitted for publication

m+ I } . We <are advised to submit only neatly (and carefully) type-written and

checked manuscripts employing accepted conventions of references,

iisplays, etc. ; all typescripts not in a format suitable for publication

rnal will be returned unrefereed. 1nts are provided free for each article ; additional reprints, in multiples

( 0 oe obtained at cost price, if the authors give

[ m-- l ) l ;roofs. prior intimation while

ive with Volume 12 the price .per volume is Rs.

lndivid•_i-\tl' members of the Vijnana Parishad of India

30.00 (or U.S.$ 20.00).

are entitled to free

subscriptions to the current issues of this journal. Individual. membership: Rs .. 24.00

'(or U.S.$ 15.00) per calendar year; Life membership: Rs. 240.00 (or U.S.$ 150.00 ).

Back volumes are available at special price. ( PaJ>ment of dues by cheques must include

appropriate bank charges.) [By a reciprocity agreement with the American Mathematical Society, an

individual/life member of the Parishad residing outside the North American

continent may join the Society by submitting an application for membership on

the form that may be obtained from the office of the Society (P. O. Box 6248,

Providence, Rhode Island 02940, U • S. A.) and by paying the Society's current

·dues as a reciprocity member at a considerably reduced rate ; the u_sual requirements

that the applicant be endorsed by two members of the Society and that the candi­

date be elected by the Council are waived, but this reduction in dues to the

Society does not apply to those individual/life members of the Parishad who

reside, even on a temporary basis, in the Nor~h American area

Canada).

i.e., U.S.A. and

The mathematical content o_f this journal is indexed in the Society's biweekly

- Current Mathematical Publications and is reviewed, among others, by

Mathematical Reviews (U.S.A.), Zentralblatt fur Mathematik (W. Germany)

and Applied Mechanics Reviews (U. S. A.).]

All communications regarding subscriptions, orders for back volumes, mem­

bership of the Vijnana Parishad of India,, change of address, etc. and all books for

review, should be addressed to :

The Secretary, Vijnana Parishad of India

D. V. Postgraduate College,

Orai-285001, U. P., lr]dia.

Page 239: V01'UME 16 - docs.vijnanaparishadofindia.orgdocs.vijnanaparishadofindia.org/jnanabha/jnanabha_volume_16_198… · 1 hus, inclusion (2.10) proves (2.6) (uniform convergence of iterates

,,_;,-.

·:1

CONTENTS

An Unified Approach for the Contractive mappings -D. Delbosco

Fixed Point of Set-Valued Mappings, of Convex Metric Spaces -M. D. Guay & K. L. Singh

Common Fi;.ed Point in Metric Spaces -Duane E. Anderson, K. L. Singh & J. H. M .. Whitfield

A Theorem on the Existence of Positive Eigenvalues of k-Set Contractions ·-A. Carbone and G. Trombetta

A Degree Th~ory for Weakly Continuous Multivalued Maps in Reflexive Banach Spaces -Giulio Trombetta On Certain Operational Generating and Recurrence Relations

-Hukum Chand Agrawal 55

Some Linear and Bilinear Generating

Functions of Three Variables On Certain Polynomials Associated with

Relations Involving Hypergeometric

-M.B. Singh the Multivariable H-Function

•. -P. C. it1unot and Renu Mathur

67

81

On Some Self - Superposable Flows in Conical Ducts

-Pramod Kumar Mittal 91

The Generalized Prolate Spheroidal Wave Function and its Applications

-V. G. Gupta 103 On a Generalized Multiple Transform • I

-K, N. Bhatt and S. P. Goyal 113 An Expansion Formula for the H-Function of Several Variables

· ~· -Geeta Aneja 121 Some Theorems for a Distributiooal Generalized Laplace Transform

-S. K. Akhaury 129 On (-1,1) Rings with Commutators in the Left Nutleus

-Yash Paul and S. Sharadha 145 Certain Multidimensional Generating Relations

-B. D. Agrawal and Sanchita Mukherjee 151

Differential Equations for a General Class of Polynomials

-Shri Kant & R. N. Pande_y 161

Slow Unsteady Flow in a Porous Annulus with Axial Waviness

-V. Bhatnagar and Y. N. Gaztr 169

Random Vibration of a Beam to Stochastic Loading

-Ashok Ganguly 185 Multiple Hypergeometric Functions Related to Lauricella's Functions

-R. C. Singh Chandel and Anil Kumar Gupta 195

Qn ~ntert~ediate Lauricella Functions

-Per W. Karfrson 211

A Property of Contractive Type Mappings in 2-Metric Spaces

-Chih-RuHisiao 223