vacuum configurations for renormalisable noncommutative ... · vacuum configurations for...

47
Vacuum configurations for renormalisable noncommutative scalar field theory Axel de Goursac LPT Orsay in collaboration with: - Adrian Tanas˘ a - Jean-Christophe Wallet arXiv:0709.3950 [hep-th], to appear in Eur. Phys. J. C Axel de Goursac Vienna, November 29, 2007

Upload: others

Post on 23-Sep-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Vacuum configurations for renormalisable noncommutative ... · Vacuum configurations for renormalisable noncommutative scalar field theory Axel de Goursac LPT Orsay in collaboration

Vacuum configurations for renormalisablenoncommutative scalar field theory

Axel de Goursac

LPT Orsay

in collaboration with:- Adrian Tanasa

- Jean-Christophe Wallet

arXiv:0709.3950 [hep-th],to appear in Eur. Phys. J. C

Axel de Goursac Vienna, November 29, 2007

Page 2: Vacuum configurations for renormalisable noncommutative ... · Vacuum configurations for renormalisable noncommutative scalar field theory Axel de Goursac LPT Orsay in collaboration

Plan

Scalar field theory with harmonic term on the Moyal space

Equation of motion

Vacuum configurations

Linear sigma model

Conclusions and perspectives

Axel de Goursac Vienna, November 29, 2007

Page 3: Vacuum configurations for renormalisable noncommutative ... · Vacuum configurations for renormalisable noncommutative scalar field theory Axel de Goursac LPT Orsay in collaboration

Plan

Scalar field theory with harmonic term on the Moyal space

Equation of motion

Vacuum configurations

Linear sigma model

Conclusions and perspectives

Axel de Goursac Vienna, November 29, 2007

Page 4: Vacuum configurations for renormalisable noncommutative ... · Vacuum configurations for renormalisable noncommutative scalar field theory Axel de Goursac LPT Orsay in collaboration

Plan

Scalar field theory with harmonic term on the Moyal space

Equation of motion

Vacuum configurations

Linear sigma model

Conclusions and perspectives

Axel de Goursac Vienna, November 29, 2007

Page 5: Vacuum configurations for renormalisable noncommutative ... · Vacuum configurations for renormalisable noncommutative scalar field theory Axel de Goursac LPT Orsay in collaboration

Plan

Scalar field theory with harmonic term on the Moyal space

Equation of motion

Vacuum configurations

Linear sigma model

Conclusions and perspectives

Axel de Goursac Vienna, November 29, 2007

Page 6: Vacuum configurations for renormalisable noncommutative ... · Vacuum configurations for renormalisable noncommutative scalar field theory Axel de Goursac LPT Orsay in collaboration

Plan

Scalar field theory with harmonic term on the Moyal space

Equation of motion

Vacuum configurations

Linear sigma model

Conclusions and perspectives

Axel de Goursac Vienna, November 29, 2007

Page 7: Vacuum configurations for renormalisable noncommutative ... · Vacuum configurations for renormalisable noncommutative scalar field theory Axel de Goursac LPT Orsay in collaboration

Moyal space

Deformation of Euclidean RD : Mθ = (S(RD), ?θ)

(f ?θ g)(x) =1

πD | det Θ|

∫dDydDz f (x + y)g(x + z)e−2iyΘ−1z

Θ =

0 −θθ 0

0

. . .

00 −θθ 0

Properties: [xµ, xν ]? = iΘµν (xµ = 2Θ−1

µν xν)∫dDx (f ? g)(x) =

∫dDx f (x)g(x)

∂µφ = − i

2[xµ, φ]? xµφ =

1

2xµ, φ?

Axel de Goursac Vienna, November 29, 2007

Page 8: Vacuum configurations for renormalisable noncommutative ... · Vacuum configurations for renormalisable noncommutative scalar field theory Axel de Goursac LPT Orsay in collaboration

Moyal space

Deformation of Euclidean RD : Mθ = (S(RD), ?θ)

(f ?θ g)(x) =1

πD | det Θ|

∫dDydDz f (x + y)g(x + z)e−2iyΘ−1z

Θ =

0 −θθ 0

0

. . .

00 −θθ 0

Properties: [xµ, xν ]? = iΘµν (xµ = 2Θ−1

µν xν)∫dDx (f ? g)(x) =

∫dDx f (x)g(x)

∂µφ = − i

2[xµ, φ]? xµφ =

1

2xµ, φ?

Axel de Goursac Vienna, November 29, 2007

Page 9: Vacuum configurations for renormalisable noncommutative ... · Vacuum configurations for renormalisable noncommutative scalar field theory Axel de Goursac LPT Orsay in collaboration

Moyal space

Deformation of Euclidean RD : Mθ = (S(RD), ?θ)

(f ?θ g)(x) =1

πD | det Θ|

∫dDydDz f (x + y)g(x + z)e−2iyΘ−1z

Θ =

0 −θθ 0

0

. . .

00 −θθ 0

Properties: [xµ, xν ]? = iΘµν (xµ = 2Θ−1

µν xν)∫dDx (f ? g)(x) =

∫dDx f (x)g(x)

∂µφ = − i

2[xµ, φ]? xµφ =

1

2xµ, φ?

Axel de Goursac Vienna, November 29, 2007

Page 10: Vacuum configurations for renormalisable noncommutative ... · Vacuum configurations for renormalisable noncommutative scalar field theory Axel de Goursac LPT Orsay in collaboration

Matrix base (2 dimensions)

(fmn(x))m,n∈N, eigenfunctions of the 2D harmonic oscillator:base of Mθ

fmn(x) = 2(−1)m√

m!

n!e i(n−m)ϕ

(2r2

θ

) n−m2

Ln−mm

(2r2

θ

)e−

r2

θ

Properties: f †mn(x) = fnm(x)

(fmn ? fkl)(x) = δnk fml(x)

if g(x) =∑∞

m,n=0 gmnfmn(x), then

gmn =1

2πθ

∫d2x g(x)fnm(x)

Axel de Goursac Vienna, November 29, 2007

Page 11: Vacuum configurations for renormalisable noncommutative ... · Vacuum configurations for renormalisable noncommutative scalar field theory Axel de Goursac LPT Orsay in collaboration

Matrix base (2 dimensions)

(fmn(x))m,n∈N, eigenfunctions of the 2D harmonic oscillator:base of Mθ

fmn(x) = 2(−1)m√

m!

n!e i(n−m)ϕ

(2r2

θ

) n−m2

Ln−mm

(2r2

θ

)e−

r2

θ

Properties: f †mn(x) = fnm(x)

(fmn ? fkl)(x) = δnk fml(x)

if g(x) =∑∞

m,n=0 gmnfmn(x), then

gmn =1

2πθ

∫d2x g(x)fnm(x)

Axel de Goursac Vienna, November 29, 2007

Page 12: Vacuum configurations for renormalisable noncommutative ... · Vacuum configurations for renormalisable noncommutative scalar field theory Axel de Goursac LPT Orsay in collaboration

Matrix base (2 dimensions)

(fmn(x))m,n∈N, eigenfunctions of the 2D harmonic oscillator:base of Mθ

fmn(x) = 2(−1)m√

m!

n!e i(n−m)ϕ

(2r2

θ

) n−m2

Ln−mm

(2r2

θ

)e−

r2

θ

Properties: f †mn(x) = fnm(x)

(fmn ? fkl)(x) = δnk fml(x)

if g(x) =∑∞

m,n=0 gmnfmn(x), then

gmn =1

2πθ

∫d2x g(x)fnm(x)

Axel de Goursac Vienna, November 29, 2007

Page 13: Vacuum configurations for renormalisable noncommutative ... · Vacuum configurations for renormalisable noncommutative scalar field theory Axel de Goursac LPT Orsay in collaboration

Matrix base (2 dimensions)

(fmn(x))m,n∈N, eigenfunctions of the 2D harmonic oscillator:base of Mθ

fmn(x) = 2(−1)m√

m!

n!e i(n−m)ϕ

(2r2

θ

) n−m2

Ln−mm

(2r2

θ

)e−

r2

θ

Properties: f †mn(x) = fnm(x)

(fmn ? fkl)(x) = δnk fml(x)

if g(x) =∑∞

m,n=0 gmnfmn(x), then

gmn =1

2πθ

∫d2x g(x)fnm(x)

Axel de Goursac Vienna, November 29, 2007

Page 14: Vacuum configurations for renormalisable noncommutative ... · Vacuum configurations for renormalisable noncommutative scalar field theory Axel de Goursac LPT Orsay in collaboration

Scalar field theory with harmonic term

Renormalisable theory (for Ω 6= 0,hep-th/0401128):

S [φ] =

∫dDx

(1

2∂µφ ? ∂µφ +

Ω2

2(xµφ) ? (xµφ)

+M2

2φ ? φ + λ φ ? φ ? φ ? φ

)Spontaneous symmetry breaking: M2 → −µ2

Special value Ω = 1:

invariant under Langmann-Szabo duality (hep-th/0202039)

(pµ ↔ xµ)

stable under renormalisation group (hep-th/0612251)

Axel de Goursac Vienna, November 29, 2007

Page 15: Vacuum configurations for renormalisable noncommutative ... · Vacuum configurations for renormalisable noncommutative scalar field theory Axel de Goursac LPT Orsay in collaboration

Scalar field theory with harmonic term

Renormalisable theory (for Ω 6= 0,hep-th/0401128):

S [φ] =

∫dDx

(1

2∂µφ ? ∂µφ +

Ω2

2(xµφ) ? (xµφ)

+M2

2φ ? φ + λ φ ? φ ? φ ? φ

)Spontaneous symmetry breaking: M2 → −µ2

Special value Ω = 1:

invariant under Langmann-Szabo duality (hep-th/0202039)

(pµ ↔ xµ)

stable under renormalisation group (hep-th/0612251)

Axel de Goursac Vienna, November 29, 2007

Page 16: Vacuum configurations for renormalisable noncommutative ... · Vacuum configurations for renormalisable noncommutative scalar field theory Axel de Goursac LPT Orsay in collaboration

Scalar field theory with harmonic term

Renormalisable theory (for Ω 6= 0,hep-th/0401128):

S [φ] =

∫dDx

(1

2∂µφ ? ∂µφ +

Ω2

2(xµφ) ? (xµφ)

+M2

2φ ? φ + λ φ ? φ ? φ ? φ

)Spontaneous symmetry breaking: M2 → −µ2

Special value Ω = 1:

invariant under Langmann-Szabo duality (hep-th/0202039)

(pµ ↔ xµ)

stable under renormalisation group (hep-th/0612251)

Axel de Goursac Vienna, November 29, 2007

Page 17: Vacuum configurations for renormalisable noncommutative ... · Vacuum configurations for renormalisable noncommutative scalar field theory Axel de Goursac LPT Orsay in collaboration

Scalar field theory with harmonic term

Renormalisable theory (for Ω 6= 0,hep-th/0401128):

S [φ] =

∫dDx

(1

2∂µφ ? ∂µφ +

Ω2

2(xµφ) ? (xµφ)

+M2

2φ ? φ + λ φ ? φ ? φ ? φ

)Spontaneous symmetry breaking: M2 → −µ2

Special value Ω = 1:

invariant under Langmann-Szabo duality (hep-th/0202039)

(pµ ↔ xµ)

stable under renormalisation group (hep-th/0612251)

Axel de Goursac Vienna, November 29, 2007

Page 18: Vacuum configurations for renormalisable noncommutative ... · Vacuum configurations for renormalisable noncommutative scalar field theory Axel de Goursac LPT Orsay in collaboration

Scalar field theory with harmonic term

Renormalisable theory (for Ω 6= 0,hep-th/0401128):

S [φ] =

∫dDx

(1

2∂µφ ? ∂µφ +

Ω2

2(xµφ) ? (xµφ)

+M2

2φ ? φ + λ φ ? φ ? φ ? φ

)Spontaneous symmetry breaking: M2 → −µ2

Special value Ω = 1:

invariant under Langmann-Szabo duality (hep-th/0202039)

(pµ ↔ xµ)

stable under renormalisation group (hep-th/0612251)

Axel de Goursac Vienna, November 29, 2007

Page 19: Vacuum configurations for renormalisable noncommutative ... · Vacuum configurations for renormalisable noncommutative scalar field theory Axel de Goursac LPT Orsay in collaboration

Equation of motion

For Ω = 1, the equation of motion:

−∂2v(x) + x2v(x)−µ2v(x) + 4λ (v ? v ? v)(x) = 0

1

2x2, v? − µ2v + 4λ v ? v ? v = 0

if v(x) =∑∞

m,n=0 vmnfmn(x), then ((x2)mn = 4θ (2m + 1)δmn)

(4

θ(m + n + 1)− µ2

)vmn + 4λ

∞∑k,l=0

vmkvklvln = 0

Axel de Goursac Vienna, November 29, 2007

Page 20: Vacuum configurations for renormalisable noncommutative ... · Vacuum configurations for renormalisable noncommutative scalar field theory Axel de Goursac LPT Orsay in collaboration

Equation of motion

For Ω = 1, the equation of motion:

−∂2v(x) + x2v(x)−µ2v(x) + 4λ (v ? v ? v)(x) = 0

1

2x2, v? − µ2v + 4λ v ? v ? v = 0

if v(x) =∑∞

m,n=0 vmnfmn(x), then ((x2)mn = 4θ (2m + 1)δmn)

(4

θ(m + n + 1)− µ2

)vmn + 4λ

∞∑k,l=0

vmkvklvln = 0

Axel de Goursac Vienna, November 29, 2007

Page 21: Vacuum configurations for renormalisable noncommutative ... · Vacuum configurations for renormalisable noncommutative scalar field theory Axel de Goursac LPT Orsay in collaboration

Equation of motion

For Ω = 1, the equation of motion:

−∂2v(x) + x2v(x)−µ2v(x) + 4λ (v ? v ? v)(x) = 0

1

2x2, v? − µ2v + 4λ v ? v ? v = 0

if v(x) =∑∞

m,n=0 vmnfmn(x), then ((x2)mn = 4θ (2m + 1)δmn)

(4

θ(m + n + 1)− µ2

)vmn + 4λ

∞∑k,l=0

vmkvklvln = 0

Axel de Goursac Vienna, November 29, 2007

Page 22: Vacuum configurations for renormalisable noncommutative ... · Vacuum configurations for renormalisable noncommutative scalar field theory Axel de Goursac LPT Orsay in collaboration

Symmetry of the solution

Vacuum invariant under rotations: v(x) = g(x2)

vmn =1

2πθ

∫d2x g(x2)fnm(x)

vmn =1

2πθ

∫rdrdϕ g(r2)2(−1)n

√n!

m!e i(m−n)ϕ

(2r2

θ

)m−n2

Lm−nn

(2r2

θ

)e−

r2

θ

vmn =2(−1)m

θ

∫rdr g(r2)L0

m

(2r2

θ

)e−

r2

θ δmn

The vacuum is of the form:

vmn = amδmn, am ∈ R

Axel de Goursac Vienna, November 29, 2007

Page 23: Vacuum configurations for renormalisable noncommutative ... · Vacuum configurations for renormalisable noncommutative scalar field theory Axel de Goursac LPT Orsay in collaboration

Symmetry of the solution

Vacuum invariant under rotations: v(x) = g(x2)

vmn =1

2πθ

∫d2x g(x2)fnm(x)

vmn =1

2πθ

∫rdrdϕ g(r2)2(−1)n

√n!

m!e i(m−n)ϕ

(2r2

θ

)m−n2

Lm−nn

(2r2

θ

)e−

r2

θ

vmn =2(−1)m

θ

∫rdr g(r2)L0

m

(2r2

θ

)e−

r2

θ δmn

The vacuum is of the form:

vmn = amδmn, am ∈ R

Axel de Goursac Vienna, November 29, 2007

Page 24: Vacuum configurations for renormalisable noncommutative ... · Vacuum configurations for renormalisable noncommutative scalar field theory Axel de Goursac LPT Orsay in collaboration

Symmetry of the solution

Vacuum invariant under rotations: v(x) = g(x2)

vmn =1

2πθ

∫d2x g(x2)fnm(x)

vmn =1

2πθ

∫rdrdϕ g(r2)2(−1)n

√n!

m!e i(m−n)ϕ

(2r2

θ

)m−n2

Lm−nn

(2r2

θ

)e−

r2

θ

vmn =2(−1)m

θ

∫rdr g(r2)L0

m

(2r2

θ

)e−

r2

θ δmn

The vacuum is of the form:

vmn = amδmn, am ∈ R

Axel de Goursac Vienna, November 29, 2007

Page 25: Vacuum configurations for renormalisable noncommutative ... · Vacuum configurations for renormalisable noncommutative scalar field theory Axel de Goursac LPT Orsay in collaboration

Symmetry of the solution

Vacuum invariant under rotations: v(x) = g(x2)

vmn =1

2πθ

∫d2x g(x2)fnm(x)

vmn =1

2πθ

∫rdrdϕ g(r2)2(−1)n

√n!

m!e i(m−n)ϕ

(2r2

θ

)m−n2

Lm−nn

(2r2

θ

)e−

r2

θ

vmn =2(−1)m

θ

∫rdr g(r2)L0

m

(2r2

θ

)e−

r2

θ δmn

The vacuum is of the form:

vmn = amδmn, am ∈ R

Axel de Goursac Vienna, November 29, 2007

Page 26: Vacuum configurations for renormalisable noncommutative ... · Vacuum configurations for renormalisable noncommutative scalar field theory Axel de Goursac LPT Orsay in collaboration

Symmetry of the solution

Vacuum invariant under rotations: v(x) = g(x2)

vmn =1

2πθ

∫d2x g(x2)fnm(x)

vmn =1

2πθ

∫rdrdϕ g(r2)2(−1)n

√n!

m!e i(m−n)ϕ

(2r2

θ

)m−n2

Lm−nn

(2r2

θ

)e−

r2

θ

vmn =2(−1)m

θ

∫rdr g(r2)L0

m

(2r2

θ

)e−

r2

θ δmn

The vacuum is of the form:

vmn = amδmn, am ∈ R

Axel de Goursac Vienna, November 29, 2007

Page 27: Vacuum configurations for renormalisable noncommutative ... · Vacuum configurations for renormalisable noncommutative scalar field theory Axel de Goursac LPT Orsay in collaboration

Symmetry of the solution

Vacuum invariant under rotations: v(x) = g(x2)

vmn =1

2πθ

∫d2x g(x2)fnm(x)

vmn =1

2πθ

∫rdrdϕ g(r2)2(−1)n

√n!

m!e i(m−n)ϕ

(2r2

θ

)m−n2

Lm−nn

(2r2

θ

)e−

r2

θ

vmn =2(−1)m

θ

∫rdr g(r2)L0

m

(2r2

θ

)e−

r2

θ δmn

The vacuum is of the form:

vmn = amδmn, am ∈ R

Axel de Goursac Vienna, November 29, 2007

Page 28: Vacuum configurations for renormalisable noncommutative ... · Vacuum configurations for renormalisable noncommutative scalar field theory Axel de Goursac LPT Orsay in collaboration

Solutions

(4

θ(m + n + 1)− µ2

)vmn + 4λ

∞∑k,l=0

vmkvklvln = 0

vmn= amδmn

∀m ∈ N,(4

θ(2m + 1)− µ2 + 4λ a2

m

)am = 0

Solutions: am = 0 or a2m = 2

λθ

(µ2θ8 − 1

2 −m)≥ 0

p = bµ2θ

8− 1

2c → 2p solutions

Axel de Goursac Vienna, November 29, 2007

Page 29: Vacuum configurations for renormalisable noncommutative ... · Vacuum configurations for renormalisable noncommutative scalar field theory Axel de Goursac LPT Orsay in collaboration

Solutions

(4

θ(m + n + 1)− µ2

)vmn + 4λ

∞∑k,l=0

vmkvklvln = 0

vmn= amδmn

∀m ∈ N,(4

θ(2m + 1)− µ2 + 4λ a2

m

)am = 0

Solutions: am = 0 or a2m = 2

λθ

(µ2θ8 − 1

2 −m)≥ 0

p = bµ2θ

8− 1

2c → 2p solutions

Axel de Goursac Vienna, November 29, 2007

Page 30: Vacuum configurations for renormalisable noncommutative ... · Vacuum configurations for renormalisable noncommutative scalar field theory Axel de Goursac LPT Orsay in collaboration

Solutions

(4

θ(m + n + 1)− µ2

)vmn + 4λ

∞∑k,l=0

vmkvklvln = 0

vmn= amδmn

∀m ∈ N,(4

θ(2m + 1)− µ2 + 4λ a2

m

)am = 0

Solutions: am = 0 or a2m = 2

λθ

(µ2θ8 − 1

2 −m)≥ 0

p = bµ2θ

8− 1

2c → 2p solutions

Axel de Goursac Vienna, November 29, 2007

Page 31: Vacuum configurations for renormalisable noncommutative ... · Vacuum configurations for renormalisable noncommutative scalar field theory Axel de Goursac LPT Orsay in collaboration

Solutions

(4

θ(m + n + 1)− µ2

)vmn + 4λ

∞∑k,l=0

vmkvklvln = 0

vmn= amδmn

∀m ∈ N,(4

θ(2m + 1)− µ2 + 4λ a2

m

)am = 0

Solutions: am = 0 or a2m = 2

λθ

(µ2θ8 − 1

2 −m)≥ 0

p = bµ2θ

8− 1

2c → 2p solutions

Axel de Goursac Vienna, November 29, 2007

Page 32: Vacuum configurations for renormalisable noncommutative ... · Vacuum configurations for renormalisable noncommutative scalar field theory Axel de Goursac LPT Orsay in collaboration

Propagator

Spontaneous symmetry breaking: φ(x) → v(x) + φ(x)

S [φ] =

∫dDx

(1

2∂µφ ? ∂µφ +

1

2(xµφ) ? (xµφ) +

m2

2φ ? φ

+4λ v ? v ? φ ? φ + 2λ v ? φ ? v ? φ

+ 4λ v ? φ ? φ ? φ + λ φ ? φ ? φ ? φ)

The propagator is given by

Squadr = 2πθ

∞∑m,n=0

(2

θ(m + n + 1)− µ2

2+2λ

p∑k=0

a2k(δmk + δnk)

+2λ

p∑k,l=0

akalδmkδnl

)φmnφnm

Squadr = C−1m,n;k,lφmnφkl

Axel de Goursac Vienna, November 29, 2007

Page 33: Vacuum configurations for renormalisable noncommutative ... · Vacuum configurations for renormalisable noncommutative scalar field theory Axel de Goursac LPT Orsay in collaboration

Propagator

Spontaneous symmetry breaking: φ(x) → v(x) + φ(x)

S [φ] =

∫dDx

(1

2∂µφ ? ∂µφ +

1

2(xµφ) ? (xµφ) +

m2

2φ ? φ

+4λ v ? v ? φ ? φ + 2λ v ? φ ? v ? φ

+ 4λ v ? φ ? φ ? φ + λ φ ? φ ? φ ? φ)

The propagator is given by

Squadr = 2πθ

∞∑m,n=0

(2

θ(m + n + 1)− µ2

2+2λ

p∑k=0

a2k(δmk + δnk)

+2λ

p∑k,l=0

akalδmkδnl

)φmnφnm

Squadr = C−1m,n;k,lφmnφkl

Axel de Goursac Vienna, November 29, 2007

Page 34: Vacuum configurations for renormalisable noncommutative ... · Vacuum configurations for renormalisable noncommutative scalar field theory Axel de Goursac LPT Orsay in collaboration

Propagator

Spontaneous symmetry breaking: φ(x) → v(x) + φ(x)

S [φ] =

∫dDx

(1

2∂µφ ? ∂µφ +

1

2(xµφ) ? (xµφ) +

m2

2φ ? φ

+4λ v ? v ? φ ? φ + 2λ v ? φ ? v ? φ

+ 4λ v ? φ ? φ ? φ + λ φ ? φ ? φ ? φ)

The propagator is given by

Squadr = 2πθ

∞∑m,n=0

(2

θ(m + n + 1)− µ2

2+2λ

p∑k=0

a2k(δmk + δnk)

+2λ

p∑k,l=0

akalδmkδnl

)φmnφnm

Squadr = C−1m,n;k,lφmnφkl

Axel de Goursac Vienna, November 29, 2007

Page 35: Vacuum configurations for renormalisable noncommutative ... · Vacuum configurations for renormalisable noncommutative scalar field theory Axel de Goursac LPT Orsay in collaboration

Spontaneous symmetry breaking

Vacuum condition: ∀m ∈ 0, ..p, a2m > 0 (p = bµ2θ

8 − 12c)

−µ2 > −4θ (p < 0):

v(x) = 0: global minimum of the action

µ2θ8 − 1

2 ∈ N:Local zero mode in the propagator

−µ2 < −4θ (p ≥ 0) and µ2θ

8 − 12 /∈N:

v(x) =

p∑k=0

√2

λθ

(µ2θ

8− 1

2−m

)fmm(x)

is a local minimum of the action

Axel de Goursac Vienna, November 29, 2007

Page 36: Vacuum configurations for renormalisable noncommutative ... · Vacuum configurations for renormalisable noncommutative scalar field theory Axel de Goursac LPT Orsay in collaboration

Spontaneous symmetry breaking

Vacuum condition: ∀m ∈ 0, ..p, a2m > 0 (p = bµ2θ

8 − 12c)

−µ2 > −4θ (p < 0):

v(x) = 0: global minimum of the action

µ2θ8 − 1

2 ∈ N:Local zero mode in the propagator

−µ2 < −4θ (p ≥ 0) and µ2θ

8 − 12 /∈N:

v(x) =

p∑k=0

√2

λθ

(µ2θ

8− 1

2−m

)fmm(x)

is a local minimum of the action

Axel de Goursac Vienna, November 29, 2007

Page 37: Vacuum configurations for renormalisable noncommutative ... · Vacuum configurations for renormalisable noncommutative scalar field theory Axel de Goursac LPT Orsay in collaboration

Spontaneous symmetry breaking

Vacuum condition: ∀m ∈ 0, ..p, a2m > 0 (p = bµ2θ

8 − 12c)

−µ2 > −4θ (p < 0):

v(x) = 0: global minimum of the action

µ2θ8 − 1

2 ∈ N:Local zero mode in the propagator

−µ2 < −4θ (p ≥ 0) and µ2θ

8 − 12 /∈N:

v(x) =

p∑k=0

√2

λθ

(µ2θ

8− 1

2−m

)fmm(x)

is a local minimum of the action

Axel de Goursac Vienna, November 29, 2007

Page 38: Vacuum configurations for renormalisable noncommutative ... · Vacuum configurations for renormalisable noncommutative scalar field theory Axel de Goursac LPT Orsay in collaboration

Spontaneous symmetry breaking

Vacuum condition: ∀m ∈ 0, ..p, a2m > 0 (p = bµ2θ

8 − 12c)

−µ2 > −4θ (p < 0):

v(x) = 0: global minimum of the action

µ2θ8 − 1

2 ∈ N:Local zero mode in the propagator

−µ2 < −4θ (p ≥ 0) and µ2θ

8 − 12 /∈N:

v(x) =

p∑k=0

√2

λθ

(µ2θ

8− 1

2−m

)fmm(x)

is a local minimum of the action

Axel de Goursac Vienna, November 29, 2007

Page 39: Vacuum configurations for renormalisable noncommutative ... · Vacuum configurations for renormalisable noncommutative scalar field theory Axel de Goursac LPT Orsay in collaboration

Linear sigma model(1)

S =

∫d4x

(1

2(∂µΦi ) ? (∂µΦi ) +

1

2x2ΦiΦi

− µ2

2ΦiΦi + λΦi ? Φi ? Φj ? Φj

)Vacuum: < Φ >= (0, . . . , 0, v(x))fluctuation: δΦ = (π1, . . . , πN−1, σ(x))Spontaneous symmetry breaking: Φ →< Φ > +δΦ

S =

∫d4x

(1

2(∂µπi ) ? (∂µπi ) +

1

2x2πiπi −

µ2

2πiπi

+2λv ? v ? πi ? πi + λπi ? πi ? πj ? πj + ...

Axel de Goursac Vienna, November 29, 2007

Page 40: Vacuum configurations for renormalisable noncommutative ... · Vacuum configurations for renormalisable noncommutative scalar field theory Axel de Goursac LPT Orsay in collaboration

Linear sigma model(1)

S =

∫d4x

(1

2(∂µΦi ) ? (∂µΦi ) +

1

2x2ΦiΦi

− µ2

2ΦiΦi + λΦi ? Φi ? Φj ? Φj

)Vacuum: < Φ >= (0, . . . , 0, v(x))fluctuation: δΦ = (π1, . . . , πN−1, σ(x))Spontaneous symmetry breaking: Φ →< Φ > +δΦ

S =

∫d4x

(1

2(∂µπi ) ? (∂µπi ) +

1

2x2πiπi −

µ2

2πiπi

+2λv ? v ? πi ? πi + λπi ? πi ? πj ? πj + ...

Axel de Goursac Vienna, November 29, 2007

Page 41: Vacuum configurations for renormalisable noncommutative ... · Vacuum configurations for renormalisable noncommutative scalar field theory Axel de Goursac LPT Orsay in collaboration

Linear sigma model(1)

S =

∫d4x

(1

2(∂µΦi ) ? (∂µΦi ) +

1

2x2ΦiΦi

− µ2

2ΦiΦi + λΦi ? Φi ? Φj ? Φj

)Vacuum: < Φ >= (0, . . . , 0, v(x))fluctuation: δΦ = (π1, . . . , πN−1, σ(x))Spontaneous symmetry breaking: Φ →< Φ > +δΦ

S =

∫d4x

(1

2(∂µπi ) ? (∂µπi ) +

1

2x2πiπi −

µ2

2πiπi

+2λv ? v ? πi ? πi + λπi ? πi ? πj ? πj + ...

Axel de Goursac Vienna, November 29, 2007

Page 42: Vacuum configurations for renormalisable noncommutative ... · Vacuum configurations for renormalisable noncommutative scalar field theory Axel de Goursac LPT Orsay in collaboration

Linear sigma model(2)

Condition for vanishing π-mass term:∫d4x

(1

2x2πiπi −

µ2

2πiπi + 2λv ? v ? πi ? πi

)=

∫d4x

(Ω′2

2x2πiπi

)+ kinetic terms...

=⇒ v ? v =Ω′2 − 1

4λx2 +

µ2

This condition is incompatible with the equation of motion

Axel de Goursac Vienna, November 29, 2007

Page 43: Vacuum configurations for renormalisable noncommutative ... · Vacuum configurations for renormalisable noncommutative scalar field theory Axel de Goursac LPT Orsay in collaboration

Linear sigma model(2)

Condition for vanishing π-mass term:∫d4x

(1

2x2πiπi −

µ2

2πiπi + 2λv ? v ? πi ? πi

)=

∫d4x

(Ω′2

2x2πiπi

)+ kinetic terms...

=⇒ v ? v =Ω′2 − 1

4λx2 +

µ2

This condition is incompatible with the equation of motion

Axel de Goursac Vienna, November 29, 2007

Page 44: Vacuum configurations for renormalisable noncommutative ... · Vacuum configurations for renormalisable noncommutative scalar field theory Axel de Goursac LPT Orsay in collaboration

Linear sigma model(2)

Condition for vanishing π-mass term:∫d4x

(1

2x2πiπi −

µ2

2πiπi + 2λv ? v ? πi ? πi

)=

∫d4x

(Ω′2

2x2πiπi

)+ kinetic terms...

=⇒ v ? v =Ω′2 − 1

4λx2 +

µ2

This condition is incompatible with the equation of motion

Axel de Goursac Vienna, November 29, 2007

Page 45: Vacuum configurations for renormalisable noncommutative ... · Vacuum configurations for renormalisable noncommutative scalar field theory Axel de Goursac LPT Orsay in collaboration

Conclusions

New sector of the noncommutative scalar theory withharmonic term

Changes in the linear sigma model

Case Ω 6= 1: flows of Ω and µ2

Axel de Goursac Vienna, November 29, 2007

Page 46: Vacuum configurations for renormalisable noncommutative ... · Vacuum configurations for renormalisable noncommutative scalar field theory Axel de Goursac LPT Orsay in collaboration

Conclusions

New sector of the noncommutative scalar theory withharmonic term

Changes in the linear sigma model

Case Ω 6= 1: flows of Ω and µ2

Axel de Goursac Vienna, November 29, 2007

Page 47: Vacuum configurations for renormalisable noncommutative ... · Vacuum configurations for renormalisable noncommutative scalar field theory Axel de Goursac LPT Orsay in collaboration

Conclusions

New sector of the noncommutative scalar theory withharmonic term

Changes in the linear sigma model

Case Ω 6= 1: flows of Ω and µ2

Axel de Goursac Vienna, November 29, 2007