validation - cosmed 2021. 1. 8.¢  validation of other techniques using the pea pod...

Download Validation - COSMED 2021. 1. 8.¢  Validation of Other Techniques Using the PEA POD ¢â‚¬¢ YUMANI D, et

Post on 11-Mar-2021




0 download

Embed Size (px)


  • Page 1 of 17 7/16/2021


    • HEARD-LIPSMEYER M, et al. Evaluating body composition in infancy and childhood: A comparison between 4C, QMR, DXA, and ADP. Pediatr Obes. 2020 Jun;15(6):e12617. doi: 10.1111/ijpo.12617. Epub 2020 Jan 27. PMID: 31986239; PMCID: PMC7323309

    • FORSUM E, et al. An evaluation of the Pea Pod system for assessing body composition of moderately premature infants. Nutrients. 2016 Apr 22;8(4):238. doi: 10.3390/nu8040238. PMID: 27110820; PMCID: PMC4848706

    • ROGGERO P, et al. Evaluation of air-displacement plethysmography for body composition assessment in preterm infants. Pediatr Res. 2012 Sep;72(3):316-20. doi: 10.1038/pr.2012.75. Epub 2012 Jun 5. PMID: 22669294

    • FRONDAS-CHAUTY A, et al. Air displacement plethysmography for determining body composition in neonates: Validation using live piglets. Pediatr Res. 2012 Jul;72(1):26-31. doi: 10.1038/pr.2012.35. Epub 2012 Mar 22. PMID: 22441376

    • FIELDS D, et al. Body composition at 6 months of life: Comparison of air displacement plethysmography and dual-energy x-ray absorptiometry. Obesity (Silver Spring). 2012 Nov;20(11):2302-6. doi: 10.1038/oby.2012.102. Epub 2012 Apr 23. PMID: 22522885

    • ANDRES A, et al. Quantitative nuclear magnetic resonance to measure fat mass in infants and children. Obesity (Silver Spring). 2011 Oct;19(10):2089-95. doi: 10.1038/oby.2011.215. Epub 2011 Jul 21. PMID: 21779094

    • ELLIS K, et al. Body-composition assessment in infancy: Air-displacement plethysmography compared with a reference 4-compartment model. Am J Clin Nutr. 2007 Jan;85(1):90-5. doi: 10.1093/ajcn/85.1.90. PMID: 17209182

    • YAO M, et al. Inter-device reliability of the PEA POD® for percent body fat estimates. (2005)

    • MA G, et al. Validation of a new pediatric air-displacement plethysmograph for assessing Body Composition in Infants. Am J Clin Nutr. 2004 Apr;79(4):653-60. doi: 10.1093/ajcn/79.4.653. PMID: 15051611

    • URLANDO A, et al. A new air displacement plethysmograph for the measurement of body composition in infants. Pediatr Res. 2003 Mar;53(3):486-92. doi: 10.1203/01.PDR.0000049669.74793.E3. PMID: 12595599

    • SAINZ R, et al. Evaluation of a new pediatric air-displacement plethysmograph for body-composition assessment by means of chemical analysis of bovine tissue phantoms. Am J Clin Nutr. 2003 Feb;77(2):364-70. doi: 10.1093/ajcn/77.2.364. PMID: 12540395

    • YAO M, et al. Preliminary evaluation of a new pediatric air displacement plethysmograph for body composition assessment in infants. Acta Diabetol. 2003 Oct;40 Suppl 1:S55-8. doi: 10.1007/s00592-003-0027-9. PMID: 14618434

    Validation of Other Techniques Using the PEA POD

    • OLGA L, et al. Anthropometry-based prediction of body composition in early infancy compared to air-displacement plethysmography. Pediatr Obes. 2021 Jun 10:e12818. doi: 10.1111/ijpo.12818. Epub ahead of print. PMID: 34114363

    • NAGEL E, et al. Weight for length measures may not accurately reflect adiposity in preterm infants born appropriate for gestational age during hospitalisation or after discharge from the neonatal intensive care unit. Pediatr Obes. 2021 May;16(5):e12744. doi: 10.1111/ijpo.12744. Epub 2020 Nov 3. PMID: 33140910; PMCID: PMC8026714

    • YUMANI DFJ, et al. A comparative study using dual-energy X-ray absorptiometry, air displacement plethysmography, and skinfolds to assess fat mass in preterms at term equivalent age. Eur J Pediatr. 2021 Mar;180(3):919-927. doi: 10.1007/s00431-020-03812-3. Epub 2020 Oct 1. PMID: 33006007; PMCID: PMC7886735

    • NAGEL E, et al. Can ultrasound measures of muscle and adipose tissue thickness predict body composition of premature infants in the neonatal intensive care unit? J Parenter Enteral Nutr 2021 Feb;45(2):323-330. doi: 10.1002/jpen.1829. Epub 2020 Apr 7. PMID: 32255211

    • KOUWENHOVEN SMP, et al. Methods to Assess Fat Mass in Infants and Young Children: A Comparative Study Using Skinfold Thickness and Air- Displacement Plethysmography. Life (Basel). 2021 Jan 20;11(2):75. doi: 10.3390/life11020075. PMID: 33498272; PMCID: PMC7909249

    • MARANO D, et al. Evaluation of anthropometric equations developed to estimate neonates' body composition: A systematic review. Cien Saude Colet. 2020 Jul 8;25(7):2711-2720. doi: 10.1590/1413-81232020257.26982018. PMID: 32667553

  • Page 2 of 17 7/16/2021

    • RODRIGUEZ-CANO A, et al. Anthropometric and clinical correlates of fat mass in healthy term infants at 6 months of age. BMC Pediatr. 2019 Feb 18;19(1):60. doi: 10.1186/s12887-019-1430-x. PMID: 30777039; PMCID: PMC6378706

    • HAWKES C, et al. The relationship between IGF-I and -II concentrations and body composition at birth and over the first 2 months. Pediatr Res. 2019 Apr;85(5):687-692. doi: 10.1038/s41390-019-0331-x. Epub 2019 Feb 11. PMID: 30745570; PMCID: PMC6435390

    • JOSEFSON J, et al. Fat mass estimation in neonates: Anthropometric models compared with air displacement plethysmography. Br J Nutr. 2019 Feb;121(3):285-290. doi: 10.1017/S0007114518003355. Epub 2018 Nov 16. PMID: 30444206; PMCID: PMC7009914

    • ROY S, et al. Body Mass Index is a better indicator of body composition than weight-for-length at age 1 month. J Pediatr. 019 Jan;204:77-83.e1. doi: 10.1016/j.jpeds.2018.08.007. Epub 2018 Sep 26. PMID: 30268397; PMCID: PMC6309630

    • HUVANANDANA J, et al. An anthropometric approach to characterizing neonatal morbidity and body composition, using air displacement plethysmography as a criterion method. PLoS One. 2018 Mar 30;13(3):e0195193. doi: 10.1371/journal.pone.0195193. PMID: 29601596; PMCID: PMC5877876

    • CHEN L, et al. Which anthropometric measures best reflect neonatal adiposity? Int J Obes (Lond). 2018 Mar;42(3):501-506. doi: 10.1038/ijo.2017.250. Epub 2017 Oct 9. PMID: 28990589; PMCID: PMC5862425

    • LIOTTO N, et al. Can basic characteristics estimate body composition in early infancy? J Pediatr Gastroenterol Nutr. 2018 Mar;66(3):e76-e80. doi: 10.1097/MPG.0000000000001758. PMID: 28953532

    • PERNG W, et al. An observational cohort study of weight- and length-derived anthropometric indicators with body composition at birth and 5 mo: The Healthy Start Study. Am J Clin Nutr. 2017 Aug;106(2):559-567. doi: 10.3945/ajcn.116.149617. Epub 2017 Jun 28. PMID: 28659296; PMCID: PMC5525117

    • ROELANTS J, et al. Foetal fractional thigh volume: an early 3D ultrasound marker of neonatal adiposity. Pediatr Obes. 2017 Aug;12 Suppl 1:65- 71. doi: 10.1111/ijpo.12231. Epub 2017 Jul 28. PMID: 28752648

    • CAUBLE J, et al. Validity of anthropometric equations to estimate infant fat mass at birth and in early infancy. BMC Pediatr. 2017 Mar 27;17(1):88. doi: 10.1186/s12887-017-0844-6. Erratum in: BMC Pediatr. 2020 Feb 28;20(1):92. PMID: 28347278; PMCID: PMC5368988

    • LARCADE J, et al. Estimation of fat-free mass at discharge in preterm infants fed with optimized feeding regimen. J Pediatr Gastroenterol Nutr. 2017 Jan;64(1):115-118. doi: 10.1097/MPG.0000000000001261. PMID: 27149252

    • RAMEL S, et al. Do anthropometric measures accurately reflect body composition in preterm infants? Pediatr Obes. 2017 Aug;12 Suppl 1:72- 77. doi: 10.1111/ijpo.12181. Epub 2016 Sep 16. PMID: 27635625

    • HAWKES C, et al. Body Composition within the first 3 months: Optimized correction for length and correlation with BMI at 2 years. Horm Res Paediatr. 2016;86(3):178-187. doi: 10.1159/000448659. Epub 2016 Aug 25. PMID: 27560149

    • WROTTESLEY S, et al. A comparison of body composition estimates using dual-energy X-ray absorptiometry and air-displacement plethysmography in South African neonates. Eur J Clin Nutr. 2016 Nov;70(11):1254-1258. doi: 10.1038/ejcn.2016.91. Epub 2016 Jun 1. PMID: 27245207

    • KIGER J, et al. Preterm infant body composition cannot be accurately determined by weight and length. J Neonatal Perinatal Med. 2016 Sep 16;9(3):285-90. doi: 10.3233/NPM-16915125. PMID: 27589548

    • RAUSCH I, et al. Reproducibility of MRI Dixon-based attenuation correction in combined PET/MR with applications for lean body mass estimation. J Nucl Med. 2016 Jul;57(7):1096-101. doi: 10.2967/jnumed.115.168294. Epub 2016 Feb 25. PMID: 26917707

    • TINT M, et al. Estimation of fat-free mass in Asian neonates using bioelectrical impedance analysis. Br J Nutr. 2016 Mar 28;115(6):1033-42. doi: 10.1017/S0007114515005486. Epub 2016 Feb 9. PMID: 26856420; PMCID: PMC4820031

    • BARBOUR L, et al. Striking differences in estimates of infant adiposity by new and old DXA software, PEAPOD and skin-folds at 2 weeks and 1 year of life. Pediatr Obes. 2016 Aug;11(4):264-71. doi: 10.1111/ijpo.12055. Epub 2015 Jul 22. PMID: 26198967; PMCID: PMC4762753

    • MOORE G, et al. Can Fetal Limb Soft Tissue Measurements in the Third Trimester Predict Neonatal Adiposity? J Ultrasound Med. 2016 Sep;35(9):1915-24. doi: 10.7863/ultra.15.06028. Epub 2016 Jul 14. PMID: 27417735

  • Page 3 of 17 7/16/2021

    • WILBÆK R, et al. Calibration of bioelectrical impedance analysis for body composition assessment in Ethiopian infants using air-displacement plethysmography. Eur J Clin Nutr. 2015 Oct;69(10):1099-104. doi: 10.1038/ejcn.2015.51. Epub 2015 Apr 1. PMID: 25828629

    • DALY-WOLF K, et al. Mid-arm circumference is a reliable method to estimate adiposity in preterm and term infants. Pediatr Res. 2015 Sep;78(3):336-41. doi: 10.1038/pr.2015.103. Epub 2015 May 28. PMID: 26020147

    • GRIJALVA-ETERNOD C, et al. Midupper arm circumference and weight-for-length z scores have different associations with body compos