van der waals forces johannes diderik van der waals

69
Van der Waals Forces Johannes Diderik van der Waals

Upload: barbara-wilson

Post on 25-Dec-2015

243 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Van der Waals Forces Johannes Diderik van der Waals

Van der Waals Forces

Johannes Diderik van der Waals

Page 2: Van der Waals Forces Johannes Diderik van der Waals

Polarity

Separation of charge

An asymmetrical difference in electronegativity along a bond or in a molecule

Page 3: Van der Waals Forces Johannes Diderik van der Waals

Circle the polar molecules. Label + and -

O

HH

N

HH

H

CCO O

Al

Cl

Cl

Cl

Cl

Cl

Cl

Cl

S

HH

Page 4: Van der Waals Forces Johannes Diderik van der Waals

C. __________ molecules are symmetrical

 D. What is the bond angle in H2O? _______

 E. The motion of particles in these phases:Solid Liquid Gas

Non-Polar104.5o

http://itl.chem.ufl.edu/2045_s00/lectures/FG11_001.GIF

Page 5: Van der Waals Forces Johannes Diderik van der Waals

Van der Waals Forces

Small, weak interactions between molecules

 

Page 6: Van der Waals Forces Johannes Diderik van der Waals

Van der Waals Forces

Intermolecular: between molecules (not a bond)

 

Intramolecular: bonds within molecules (stronger)

Page 7: Van der Waals Forces Johannes Diderik van der Waals

What is being attracted?

+ attracted to -

electrostatic attraction

e- s of one atom to another atom’s nucleus

e-

e-+ +

Page 8: Van der Waals Forces Johannes Diderik van der Waals

Evidence of VDW Forces?Non-polar molecules can form gases,

liquids and solids.

Ex: CO2

CO

O

CO O CO

O

CO O

CO

O

CO O CO

O

CO OCO

O

CO O CO

O

CO O

Page 9: Van der Waals Forces Johannes Diderik van der Waals

3 Types of Van der Waals Forces

1)    dipole-dipole

2)    dipole-induced dipole

3) dispersion

Page 10: Van der Waals Forces Johannes Diderik van der Waals

Dipole-Dipole

Two polar molecules align so that + and - are matched (electrostatic attraction)

Ex: ethane (C2H6) vs. fluromethane (CH3F)

Page 11: Van der Waals Forces Johannes Diderik van der Waals

Fluoromethane (CH3F) – boiling point = 194.7 K

H H

H C F H C F

H H

polar or non-polar?

- -

Ethane (C2H6) – boiling point = 184.5 K

H H H H

H C C H H C C H

H H H H

polar or non-polar?

Dipole-Dipole

NOT Dipole-Dipole

Page 12: Van der Waals Forces Johannes Diderik van der Waals

Try This:

Draw two KBr molecules and draw their dipole-dipole interactions with a dashed line.

BrBrK K

Page 13: Van der Waals Forces Johannes Diderik van der Waals

What does to “induce” mean?

– To cause or bring about

Ex:

Induced vomiting

Induced labor

Induced coma

Page 14: Van der Waals Forces Johannes Diderik van der Waals

Dipole-Induced DipoleA dipole can induce (cause)

a temporary dipole to form in a non-polar molecule

The molecules then line up to match + and - charges

Page 15: Van der Waals Forces Johannes Diderik van der Waals

Example

H Cl+ Are-e-

e-e-

e-

e-

e-e- e-

e-

e- e-

e-

e-e-

e-e-

e-

A DIPOLE (it’s polar)

non-polarINDUCEDDIPOLE

Dipole – Induced Dipole (weak and short-lived)

Page 16: Van der Waals Forces Johannes Diderik van der Waals

Draw CO2 (aq)What does (aq) mean?

dissolved in WATER

So…draw CO2 (g) in H2O (l)

CO O CO OO

HH

Page 17: Van der Waals Forces Johannes Diderik van der Waals

Where is CO2 (aq) seen?

Carbonated water

CO2 is not very soluble…

1 CO2 in 1000 H2O molecules

http://www.packaging-technology.com/contractor_images/venus/4_rinser.jpg

Page 18: Van der Waals Forces Johannes Diderik van der Waals

Dispersion Forces

A temporary dipole forms in a non-polar molecule…

which leads to…a temporary dipole to form in ANOTHER

non-polar molecule

Dispersion is the ONLY intermolecular attraction that occurs between non-polar molecules

Page 19: Van der Waals Forces Johannes Diderik van der Waals

Dispersion Forces

Cl-Cle-e-

e-

e-

e-

e-

e- e-e-e-

e-e-

e-

e-e-

e-e-

e-

non-polarINDUCEDDIPOLE

TEMPORARY DIPOLEnon-polar

Cl-Cle-e- e-

e-

e-

e-e- e-e-

e-

e-e-e-e-

e-

e- e-

Dispersion (weakest and very short-lived)

Page 20: Van der Waals Forces Johannes Diderik van der Waals

Tokay Gecko:Dispersion

Forces!

Page 21: Van der Waals Forces Johannes Diderik van der Waals

Review

Dipole – Dipole

between two polar molecules

Dipole – Induced Dipole

b/w a polar & a non-polar molecule

Dispersion

between two non-polar molecules

Page 22: Van der Waals Forces Johannes Diderik van der Waals

Hydrogen BondingSTRONGEST Intermolecular Force!!A special type of dipole-dipole attractionBonds form due to the polarity of water

Draw 3 H2O molecules in your notes

Ice Liquid

Page 23: Van der Waals Forces Johannes Diderik van der Waals

Hydrogen Bonding con’t

Hydrogen bonds keep water in the liquid phase over a wider range of temperatures than is found for any other molecule of its size

Page 24: Van der Waals Forces Johannes Diderik van der Waals

Hydrogen bonds account for the high boiling point of water

Page 25: Van der Waals Forces Johannes Diderik van der Waals

Expansion of Ice

Ice expands when water freezes compared to most substances that contract when freezing

Ice bomb video

Page 26: Van der Waals Forces Johannes Diderik van der Waals

Denisty vs Temperature of H2O4 oC—max density of water – liquid!

SolidIce

Liquidwater

Page 27: Van der Waals Forces Johannes Diderik van der Waals

Hexagonal Ice

http://www.gala-instrumente.de/images/44%20hexagonal%20ice.jpg

http://hyperphysics.phy-astr.gsu.edu/hbase/chemical/imgche/waterhex.gif

Page 28: Van der Waals Forces Johannes Diderik van der Waals

Halos, Sundogs, & Pillars are

caused by hexagonal ice crystals

http://www.lummox.net/celestial/pics/ak1999-sundog.jpg

http://images.usatoday.com/tech/_photos/2006/09/12/cloud.jpg

Page 29: Van der Waals Forces Johannes Diderik van der Waals

Ponds Freezing

Solid water (ice) has a lower density than liquid water

Page 30: Van der Waals Forces Johannes Diderik van der Waals
Page 31: Van der Waals Forces Johannes Diderik van der Waals

Why is this good?Ponds freeze from the top down,

insulating the water below and keeping it from freezing solid

Without this, ponds would freeze solid and thaw more slowly

Page 32: Van der Waals Forces Johannes Diderik van der Waals

Surface Tension

Enhancement of the intermolecular attractive forces at the surface

Page 33: Van der Waals Forces Johannes Diderik van der Waals

Evidence

Lab:

Dixie cup

Penny

Capillary tube

needle

Page 34: Van der Waals Forces Johannes Diderik van der Waals

What causes surface tension?The cohesive forces between

molecules are shared with all neighboring atoms.

Since the surface has no neighboring atoms above, they exhibit stronger attractive forces for their neighbors next to and below them

Page 35: Van der Waals Forces Johannes Diderik van der Waals

Surface tension is a result of cohesive intermolecular forces

Page 36: Van der Waals Forces Johannes Diderik van der Waals

How many drops can you get on a penny?

Water?

TTE?

Why is there a difference???Water has strong Hydrogen Bonds and TTE

has weaker intermolecular forces

http://www.msnucleus.org/membership/html/k-6/wc/water/1/images/penny.jpg

Page 37: Van der Waals Forces Johannes Diderik van der Waals

How is surface tension affected by soap?

Breaks the surface tension!

http://www.chemistryland.com/CHM107/Water/SoapDisruptsWater.jpg http://www.chemistry.nus.edu.sg/2500/micelle.jpg

Page 38: Van der Waals Forces Johannes Diderik van der Waals

Capillary Rise

Water rises up the capillary tube because there are unbalanced forces between the water and glass and the water and gravity

H2O Hggravity

glass

Page 39: Van der Waals Forces Johannes Diderik van der Waals

Which is larger? Adhesion or Cohesion?

Adhesion: attraction between H2O (Hg) & glassCohesion: attraction of H2O (Hg) molec. to each other

Adhesion > Cohesion Cohesion > Adhesion

Page 40: Van der Waals Forces Johannes Diderik van der Waals

Do other liquids exhibit capillary rise?

As long as they are attracted to glass and have enough cohesion

Page 41: Van der Waals Forces Johannes Diderik van der Waals

Cohesion > AdhesionLiquid “Beads”

on Surface

Cohesion < AdhesionLiquid “Wets”

the Surface

IM forces and interactions between liquids and surfaces

Page 42: Van der Waals Forces Johannes Diderik van der Waals

EvaporationDiagram the distribution of kinetic energy

at a temperature

# p

arti

cles

low KE ave KE high KE

25oC 75oC5oC

Page 43: Van der Waals Forces Johannes Diderik van der Waals

Which molecules will evaporate?

Only high energy molecules can vaporize

# p

arti

cles

low KE ave KE high KE

This lowers the total kinetic energy (temperature) of the entire system

Page 44: Van der Waals Forces Johannes Diderik van der Waals

Boiling

t = 1 min

P atm

Pvap

P atm

t = 5 minBOILING!

Pvap

t = 0 min

P atm

Pvap

Pvap = Patm

Page 45: Van der Waals Forces Johannes Diderik van der Waals

Boiling

Boiling occurs when

Vapor Pressure = Barometric Pressure

When Vapor Pressure = 760 mmHg, Boiling Point = 100oC

Page 46: Van der Waals Forces Johannes Diderik van der Waals

Evaporation Questions1. Why do we sweat?

breaking water’s bonds has a cooling effect

high energy molecules are lost

Page 47: Van der Waals Forces Johannes Diderik van der Waals

2. Why does water stay cool in clay containers?

Since clay is porous, high energy molecules escape leaving lower temperature water

http://www.juneauempire.com/images/050406/13484_500.jpg

When the water added to the sand evaporates in the Pot-in-Pot Cooler, it pulls heat from the smaller pot, keeping vegetables cool.

http://www.npr.org/templates/story/story.php?storyId=11032381&sc=emaf

Refrigeration for the other 90%

Page 48: Van der Waals Forces Johannes Diderik van der Waals

3. Why can liquid water change to vapor at room temperature?

High energy molecules escape

Evaporation occurs at all temperatures

# p

arti

cles

low KE ave KE high KE

Page 49: Van der Waals Forces Johannes Diderik van der Waals

4. Define vapor pressure

Force of particles leaving a liquidPressure of molecules in their bubbles

Can solids have a vapor pressure?Yes! Solid Gas Ex: ice, dry ice, plastics

Page 50: Van der Waals Forces Johannes Diderik van der Waals

5. What is the difference between evaporation and boiling?

Evaporation: occurs at any temperature; high energy molecules escape

Boiling: occurs when atmospheric pressure = vapor pressure

Page 51: Van der Waals Forces Johannes Diderik van der Waals

Volatile Substances

Easily evaporate

Weak attractive forces

Low boiling point

High vapor pressure

Page 52: Van der Waals Forces Johannes Diderik van der Waals

Non-volatile substances

Do not easily evaporate

Strong attractive forces

High boiling point

Low vapor pressure

Page 53: Van der Waals Forces Johannes Diderik van der Waals

Equilibrium

A + B C + D

Forward Reaction

Reverse Reaction

Rate of forward reaction = Rate of reverse reaction

Page 54: Van der Waals Forces Johannes Diderik van der Waals

Dynamic Equilibrium

Acetone (l) Acetone (g)

Reaction looks like it has stopped, but is dynamic at the molecular level

Page 55: Van der Waals Forces Johannes Diderik van der Waals

What conditions are necessary for equilibrium?

1. Closed System

2. Rate of fwd rxn = rate of rev rxn

3. Constant temp, pressure, color

4. Both reactants and products are present (but not necessarily equal)

Page 56: Van der Waals Forces Johannes Diderik van der Waals

Henri Louis Le Chatlier(1850-1936)

Inventor of acetylene torch

Professor of Industrial Chemistry and Metallurgy

Instrumental in the development of cement and Plaster of Paris

Page 57: Van der Waals Forces Johannes Diderik van der Waals

LeChatlier’s Principle

When a stress is applied

to a system at equilibrium,

the system will respond

to partially undo the stress

Add Reactant, Add Product, Remove Reactant, Remove Product, Add Heat, Increase Pressure,…

Page 58: Van der Waals Forces Johannes Diderik van der Waals

Predicting adjustments

Haber process

N2 + 3 H2 2 NH3 + energy

Add energy

System wants? Shift? Amount of

N2 and H2?

Amount of NH3?

Remove NH3

System wants? Shift? Amount of

N2 and H2?

Amount of NH3?

Use energy

Produce NH3

prod

uced usedprod

uced

used

Page 59: Van der Waals Forces Johannes Diderik van der Waals

(Use H+)

2 H+ + 2 CrO42- Cr2O7

2- + H2O Add HCl System wants? Shift? Color?

Add NaOH System wants? Shift? Color?

Use H+

Produce H+

ORANGE

YELLOW

Na+H+

H+H+

prod

uced

used

used

prod

uced

(Add H+)

Page 60: Van der Waals Forces Johannes Diderik van der Waals

2 H+ + 2 CrO42- Cr2O7

2- + H2O

x x xx x x x x xox xx x x x xx xxxx

o x x x xx x x x

ox o oo o o o ooo o

o o x o oo oo oo o ooo

oo

X = CrO4-2

O = Cr2O7-2

Add H+

Add OH-

Page 61: Van der Waals Forces Johannes Diderik van der Waals

2 NO2 N2O4 + energy

Add Heat System wants?

Shift? Color?

Remove Heat

System wants?

Shift? Color?

Increase Pressure

System wants?

Shift? Color?

Use Heat

Produce Heat

Decrease Pr.

DARKER

LIGHTER

LIGHTER

producedused

produce

d

used

Page 62: Van der Waals Forces Johannes Diderik van der Waals

H2O (l) + energy H2O (g)Add Heat System wants? Shift? Observation?

Remove Heat

System wants? Shift? Observation?

Decrease Pressure

System wants? Shift? Observation?

Increase Pressure

System wants? Shift? Observation?

Use Heat

Produce Heat

Increase Pr.

Evaporation

Condensation

Condensation

prod

uced

usedprod

uced

used

Decrease Pr.

Evaporation

Page 63: Van der Waals Forces Johannes Diderik van der Waals

How Do Pressure Cookers Work?

http://www.goalfinder.com/images/SPGPRO2/pressur-design-of-pressure-cooker.jpg

Pressure cookers increase the pressure above the water so that water boils at a ________ temperature and cooks food ________

HIGHER

QUICKER

Page 64: Van der Waals Forces Johannes Diderik van der Waals

Lab Practice Problem

NaCl Na+ + Cl-

Cl-

Na+Na+

Na+

Cl-Cl-

NaClNaClNaCl

a) Which direction would the reaction shift if MgCl2 (Mg2+ and Cl-) were added to the system above? Explain.

b) What would happen to the amount of NaCl if Cl- were removed from the system? Explain.

Na+Cl-Cl-

Cl-Cl-

NaClNaClNaCl

Na+

Cl-

Page 65: Van der Waals Forces Johannes Diderik van der Waals

Phase ChangesT

empe

ratu

re (

o C)

- 5

0

100

105

KE

PE

KE

PE

KE

Where is there a KE?

Where is there a PE?

Time

Page 66: Van der Waals Forces Johannes Diderik van der Waals

TermsMelting Point

Temp when substances changes from l s

Boiling pointTemp when substance changes from l g

KE—where there is a change in temperature

PE—where there’s a phase change

(constant temp)

Page 67: Van der Waals Forces Johannes Diderik van der Waals

Calculations

1. Calculate the amount of heat needed to raise the temperature of 100 ml of water from 15oC to 65oC.

Q = mcT

Q = (100g)(1 cal/goC)(50oC)

Q = 5000 cal

Page 68: Van der Waals Forces Johannes Diderik van der Waals

3. Calculate the amount of heat needed to melt 100 g of ice.

REMEMBER: Heat of Fusion = 80 cal/g

80 cal

1 g=

x cal

100 gx = 8000 cal

Page 69: Van der Waals Forces Johannes Diderik van der Waals

2. Calculate the amount of heat needed to boil 100 ml of water.

HEAT OF VAPORIZATION = 540 cal/g

540 cal

1 g=

x cal

100 gx = 54,000 cal