vatten(byggnad) - lunds tekniska högskola · vvr145 vatten. compressibility all fluids can be...

16
2007-8-30 1 Vatten(byggnad) Vätskors egenskaper (1) Hydrostatik (3) Grundläggande ekvationer (5) Rörströmning (4) VVR145 Vatten 2. Vätskors egenskaper (1.1, 4.1 och 2.8) (Föreläsningsanteckningar) Vätska som kontinuerligt medium Densitet Kompressibilitet Viskositet Ytspänning, kapillaritet Ö VVR145 Vatten Övningstal: B1, B2, B5 och B7

Upload: others

Post on 21-Aug-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Vatten(byggnad) - Lunds tekniska högskola · VVR145 Vatten. COMPRESSIBILITY All fluids can be compressed by application of pressure ⇒elastic energy being stored Modulus of elasticity

2007-8-30

1

Vatten(byggnad)

Vätskors egenskaper (1)Hydrostatik (3)Grundläggande ekvationer (5)Rörströmning (4)

VVR145 Vatten

2. Vätskors egenskaper (1.1, 4.1 och 2.8) (Föreläsningsanteckningar)

Vätska som kontinuerligt medium

Densitet

Kompressibilitet

Viskositet

Ytspänning, kapillaritet

Ö

VVR145 Vatten

Övningstal: B1, B2, B5 och B7

Page 2: Vatten(byggnad) - Lunds tekniska högskola · VVR145 Vatten. COMPRESSIBILITY All fluids can be compressed by application of pressure ⇒elastic energy being stored Modulus of elasticity

2007-8-30

2

FLUID AS A CONTINUUM

A fluid is considered to be a continuum in hi h h h l id which there are no holes or voids ⇒

velocity, pressure and temperature fields are continuous.

Validity criteria: Smallest length scale in a

VVR145 Vatten

Validity criteria: Smallest length scale in a flow >> average spacing between molecules composing the fluid.

VVR145 Vatten

Page 3: Vatten(byggnad) - Lunds tekniska högskola · VVR145 Vatten. COMPRESSIBILITY All fluids can be compressed by application of pressure ⇒elastic energy being stored Modulus of elasticity

2007-8-30

3

DENSITY (ρ)Mass/ unit volume (kg/m3)

Density decreases normally with increasing temperatureρwater = ρ(T,S,p)

i.e., dependent on- Temperature

VVR145 Vatten

- Salt content (ρ ≈ 1000 + 0.741⋅S, S in per mille;

S = 3.5% in ocean ⇒ ρ = 1026 kg/m3)

- Pressure (but only a small variability)

OTHER DEFINITIONS Weight = mass × gravity acceleration

(W = mg, [N = kg⋅m/s2]) (Eqn. 1.4)

Weight density (“tunghet”) (or specific weight)= g y ( g ) ( p g )density × gravity acceleration

(w = ρg, [N/m3 = kg⋅/(m2s2)]) (Eqn. 1.6)

Specific volume ν = reciprocal of density(ν = 1/ρ, [m3/kg])

Relative density (or specific gravity) s is the density

VVR145 Vatten

Relative density (or specific gravity), s, is the density normalized with the density of water at a specific temperature and pressure (normally 4°C and atmospheric pressure):

s = R.d. = ρ/ρwater (often = ρ/1000) (Eqn. 1.7)

Page 4: Vatten(byggnad) - Lunds tekniska högskola · VVR145 Vatten. COMPRESSIBILITY All fluids can be compressed by application of pressure ⇒elastic energy being stored Modulus of elasticity

2007-8-30

4

Example – density.

The specific weight of water at ordinary temperature and pressure is 9.81 kN/m3. The specific gravity of mercury is 13.56. Compute the density of water and the specific weight and density of mercury

VVR145 Vatten

specific weight and density of mercury.

COMPRESSIBILITY

All fluids can be compressed by application of pressure ⇒ elastic energy being storedpressure ⇒ elastic energy being stored

Modulus of elasticity (“elastitetsmodul”) describes the compressibility properties of the fluid and is defined on the basis of volume

VVR145 Vatten

volume

Page 5: Vatten(byggnad) - Lunds tekniska högskola · VVR145 Vatten. COMPRESSIBILITY All fluids can be compressed by application of pressure ⇒elastic energy being stored Modulus of elasticity

2007-8-30

5

Modulus of elasticity:

E = -dp/(dV/V1) [Pa]

For liquids, region of engineering interest is when V/V1 ∼ 1 ⇒pV Δ

−≈Δ

Ewater ~ 2⋅109 Pa (function of temperature)EV

VVR145 Vatten

B1 What pressure must be applied to water to reduce its volume 1 % ?

VVR145 Vatten

Page 6: Vatten(byggnad) - Lunds tekniska högskola · VVR145 Vatten. COMPRESSIBILITY All fluids can be compressed by application of pressure ⇒elastic energy being stored Modulus of elasticity

2007-8-30

6

Example – compressibility.

At a depth of 8 km in the ocean the pressure is 81.8 MPa. Assume that the specific weight of sea water at the surface is 10.05 kN/m3 and that the average volume modulus of elasticity is 2.34*109 N/m2 for the pressure range.

A) What will be the change in specific volume b t th t t th f d t th t d th?

VVR145 Vatten

between that at the surface and at that depth?B) What will be the specific volume at that depth?C) What will be the specific weight at that depth?

IDEAL FLUIDA fluid in which there is no friction

REAL FLUIDA fluid in which shearing forces always exist whenever motion takes place due to the fluid’s inner friction – viscosity.

VVR145 Vatten

Page 7: Vatten(byggnad) - Lunds tekniska högskola · VVR145 Vatten. COMPRESSIBILITY All fluids can be compressed by application of pressure ⇒elastic energy being stored Modulus of elasticity

2007-8-30

7

VISCOSITYViscosity is a measure of a fluid’s “inner friction” or resistance to shear stress. friction or resistance to shear stress.

It arises from the interaction and cohesion of fluid molecules.

All fluids posses viscosity, but to a varying

VVR145 Vatten

degree. For instance, syrup has a considerably higher viscosity than water.

DEFINITION OF DYNAMIC VISCOSITY - μ

yy

Shearing of thin fluid film between two plates. The upper plate has an area A.

VVR145 Vatten

Experiments have shown that for a large number of fluids:

F ~ AV/h (if V and h not too large)

Linear velocity profile ⇒ V/h = dv/dy

Page 8: Vatten(byggnad) - Lunds tekniska högskola · VVR145 Vatten. COMPRESSIBILITY All fluids can be compressed by application of pressure ⇒elastic energy being stored Modulus of elasticity

2007-8-30

8

Introduction of the proportionality constant μ, named dynamic viscosity, gives Newton’s viscosity law shear force (“skjuvspänning”):

dvVF (Eqn 4 1 4 2) N/m2

μ [Pa⋅s or kg/ms] - Dynamic viscosity

ν = μ/ρ [m2/s] - Kinematic viscosity

dyhAμμτ === (Eqn. 4.1-4.2) N/m2

VVR145 Vatten

ν μ/ρ [m /s] Kinematic viscosity

No-slip condition – water particles adjacent to solid boundary has zero velocity (observational fact)

μ (Pa·s)μ (Pa s)

VVR145 Vatten

Page 9: Vatten(byggnad) - Lunds tekniska högskola · VVR145 Vatten. COMPRESSIBILITY All fluids can be compressed by application of pressure ⇒elastic energy being stored Modulus of elasticity

2007-8-30

9

Implication of viscosity: a fluid cannot sustain a shear stress without deformation

VVR145 Vatten

Implications of Newton’s law:

• τ, μ independent of pressure (in contrast to solids)

• no velocity gradient ⇒ no shear stress

Restriction of Newton’s law:

• law only valid if the fluid flow is laminar in which viscous action is strong

VVR145 Vatten

in which viscous action is strong

Page 10: Vatten(byggnad) - Lunds tekniska högskola · VVR145 Vatten. COMPRESSIBILITY All fluids can be compressed by application of pressure ⇒elastic energy being stored Modulus of elasticity

2007-8-30

10

Laminar flow: smooth, orderly motion in which fluid elements appears to slide over each other in layers (little exchange b t l )between layers).

Turbulent flow: random or chaotic motion of individual fluid particles, and rapid mixing and exchange of these particles through the flow

VVR145 Vatten

Turbulent flow is most common in nature.

Newtonian – non-Newtonian fluidsExamples non-Newtonian fluids:

Plastics, blood, suspensions, paints, foods

Shear vs. rate of strain re-lations for non-Newtonian

ii dy

duττμττ >=− ,

fluids:

Bingham plastic

n>1: Shear-thickening fluid,

VVR145 Vatten

n>1: Shear thickening fluid, n<1: Shear-thinning fluid

n

dy

du)(μτ =

Page 11: Vatten(byggnad) - Lunds tekniska högskola · VVR145 Vatten. COMPRESSIBILITY All fluids can be compressed by application of pressure ⇒elastic energy being stored Modulus of elasticity

2007-8-30

11

Example – viscosity.

A 3 id b t t l A space, 3 cm wide, between two plane horizontal surfaces is filled with SAE 30 Western lubricating oil at 20°°C. What force is required to drag a very thin plate of 1 m2 area through the oil at a velocity of 0 1 m/s if the plate is 1 cm from one

VVR145 Vatten

of 0.1 m/s if the plate is 1 cm from one surface?

B2 A very large thin plate is centred in a gap of width 0.06 m with different oils of

unknown viscosities above and below; one viscosity is twice the other. When the plate is pulled at a velocity of 0.3 m/s, the resulting force on one square meter of plate due to the viscous shear on both sides is 29 N Assuming viscous flow and

VVR145 Vatten

sides is 29 N. Assuming viscous flow, and neglecting all end effects, calculate the viscosities of the oils.

Page 12: Vatten(byggnad) - Lunds tekniska högskola · VVR145 Vatten. COMPRESSIBILITY All fluids can be compressed by application of pressure ⇒elastic energy being stored Modulus of elasticity

2007-8-30

12

B5* A circular disc of diameter d is slowly rotated in a liquid of large viscosity m at a small distance h from a fixed surface. Derive an expression for the torque T necessary to maintain an angular velocity ω . Neglect centrifugal effects.

(T t ti l f T F

VVR145 Vatten

(Torque = rotational force, T = F · rangular velocity ω = V/r)

SURFACE TENSION (“ytspänning”), CAPILLARITY

Surface tension effects occur at liquid surfaces (interfaces of liquid-liquid, liquid-gas, liquid-solid).

Surface tension effects are often negligible in engineering problems. Exceptions:1. Bubble formation2. Capillary rise of liquids in narrow spaces

VVR145 Vatten

3. Break-up of liquid drops4. Formation of liquid drops5. Investigations using small physical models

Page 13: Vatten(byggnad) - Lunds tekniska högskola · VVR145 Vatten. COMPRESSIBILITY All fluids can be compressed by application of pressure ⇒elastic energy being stored Modulus of elasticity

2007-8-30

13

Surface tension, σ [N/m], is thought of as a molecular force in the liquid surface. Surface tension decreases with temperature and is

VVR145 Vatten

pdependent on the contact fluid (surface tension usually quoted in contact with air).The surface tension force will support small loads if liquid surface is curved.

Implications of surface tension1) Capillary rise/drop

Contact angle θ between glassand water Vertical force balanceand water. Vertical force balancebetween surface tension forceand weight of water column gives

σ · 2π r · cosθ = ρ g · h · π r2 →

h = (2 σ · cosθ)/ (ρ g · r)

VVR145 Vatten

(valid if r<2.5 mm)

Page 14: Vatten(byggnad) - Lunds tekniska högskola · VVR145 Vatten. COMPRESSIBILITY All fluids can be compressed by application of pressure ⇒elastic energy being stored Modulus of elasticity

2007-8-30

14

Angle of contact θ

VVR145 Vatten

θ depends on relation between cohesive and adhesive forces.

2) For spherical droplet

Balance between internal pressure force and surfacepressure force and surfacetension force:

p · πR2 = 2πR · σ →

p = 2 · σ /R

VVR145 Vatten

Page 15: Vatten(byggnad) - Lunds tekniska högskola · VVR145 Vatten. COMPRESSIBILITY All fluids can be compressed by application of pressure ⇒elastic energy being stored Modulus of elasticity

2007-8-30

15

3) For bubble

Balance between internalpressure force and surfacetension force:

p · πR2 =2 · 2πR · σ →

p = 4 · σ /R

VVR145 Vatten

Measurement of surface tension

VVR145 Vatten

F = 2σπD ⇒ σ = F/(2πD)

Page 16: Vatten(byggnad) - Lunds tekniska högskola · VVR145 Vatten. COMPRESSIBILITY All fluids can be compressed by application of pressure ⇒elastic energy being stored Modulus of elasticity

2007-8-30

16

B7 Calculate the maximum capillary B7 Calculate the maximum capillary rise of water (T = 20°C) to be expected in a vertical glass tube, diameter 1 mm.

VVR145 Vatten

Tal – Delprov 1, 010921

En insekt hålls uppe på ytan av en damm av ytspänningen (vattnet väter inte insektens ben), se Figur. Insekten har sex ben och varje ben är i kontakt med vattnet över en längd av 5 mm. Vad är den maximala massan (i gram) för insekten om den skall undvika att sjunka? Ytspänningen för

VVR145 Vatten

att sjunka? Ytspänningen för dammens vatten är 0.0728 N/m.