vibs lecture 2

16
Always the Same Equation of Motion 0 2 2 ! Kx dt  x d M Mass m on a spring: Pendulum: 0 2 2 ! k  x dt  x d m 0 ) / ( 2 2 ! U U  L mg dt d m 0 4 5 2 2 ! k  x dt  x d m T wo-mass/Pulley system: Equation of Motion always of the form: M = ³mass-like´ quantity K = ³spring-like´ quantity x = ³position-lik e´ variable 0 2 2 ! x M  K dt  x d General solution can only depend on the combined quantity K/M Rotating bar: 0 2 2 1 2 2 ! U U kL dt d  I c

Upload: elcaelca

Post on 08-Apr-2018

226 views

Category:

Documents


0 download

TRANSCRIPT

8/7/2019 Vibs Lecture 2

http://slidepdf.com/reader/full/vibs-lecture-2 1/16

Always the Same Equation of Motion

02

2

! Kxdt 

 xd 

Mass m on a spring:

Pendulum:

02

2

! k  xdt 

 xd m

0)/(2

2

! UU

 Lmg dt 

d m

04

52

2

! k  xdt 

 xd mTwo-mass/Pulley system:

Equation of Motion always of the form:

M = ³mass-like´ quantity

K = ³spring-like´ quantityx = ³position-like´ variable

02

2

! x

 K 

dt 

 xd  General solution can only depend on

the combined quantity K/M

Rotating bar: 02

21

2

2

! UU

kLdt 

d  I c

8/7/2019 Vibs Lecture 2

http://slidepdf.com/reader/full/vibs-lecture-2 2/16

 )(sin)( ] [ ! t  X t  x n

2

2

¹¹ º

 ¸©©ª

¨!

n

oo

v x X 

[ ¹¹

 º

 ¸©©

ª

¨!

o

no

v

 x []  1tan

 X 

-X 

ov

Period of oscillation:

2

n

X  [ ! (seconds)

Natural Frequency:n[ (radians/s) (Hz or cycles per second)

2

nn

 f  [

T !

(Amplitude) (phase angle)

So«..always the Same solution:

8/7/2019 Vibs Lecture 2

http://slidepdf.com/reader/full/vibs-lecture-2 3/16

Strategy for Problem Solving:

2

n[

Very straightfor ward ± the subtleties are in getting the initial conditions

and the equilibrium position, but these come from other considerations

 Apply initial conditions to determine amplitude and phase

Draw F.B.D.

0)/(2

2

! UU

 Lm g dt 

d mGet Equation of Motion

0)/(2

2

! UU

 L g 

dt 

d Identify Natural Frequency of Vibration

 )(sin)( ] [U 5! t t  nWrite down general solution for motion

8/7/2019 Vibs Lecture 2

http://slidepdf.com/reader/full/vibs-lecture-2 4/16

Damped Vibrations

�Force depends on

Velocity

� Pull quickly larger resistance

� Pull slowly small resistance

� Force opposes direction of (linear) motion

� Mechanical Energy is lost; dissipated in moving viscous fluid

 All systems have some damping ± friction, air resistance, etc.

Here, we consider damping by ³linear viscous dampers´, i.e. ³dashpots´

Dashpot (viscous damper ):

Piston filledwith a viscous fluid

Resisting force cv F  !

Velocity v

c = viscous damping coefficient

8/7/2019 Vibs Lecture 2

http://slidepdf.com/reader/full/vibs-lecture-2 5/16

 A true dashpot consists of a plunger inside a fluid-filled cylinder.

³c´  then depends on the fluid viscosity and plunger dimension

� If  A}1 cm2:

� cair =2.6x10-8 N-s/m

� cw

ater =10 x c

air 

� coil=103 x cwater 

� cmaple syrup=10 x coil

�cchoc syrup=

10x cmaple syrup

� cpeanut butter =10 x cchoc syr 

(Other types of damping exist and obey different equations, e.g. friction, but

we stick with a linear damping ± usual assumption for many engineering

systems)

8/7/2019 Vibs Lecture 2

http://slidepdf.com/reader/full/vibs-lecture-2 6/16

Damped Vibrations: Equation of Motion

 x measured from the

equilibrium position

Equation of motion:2

2

dt  xd m

dt dxck  x !

 Again introduced a dimensionless time t t m

k t  n[ !!~

n

m[ !0

2

2

! xm

d  x

m

c

 xd 

0~~2

2

!¹¹

 º

 ¸©©

ª

¨ x

t d 

d  x

m

c

t d 

 xd 

n[

 Another 

dimensionless

parameter: nm

c

1/

/

/!!

 sk  g 

 sk  g 

 sk  g 

m N  s

8/7/2019 Vibs Lecture 2

http://slidepdf.com/reader/full/vibs-lecture-2 7/16

n

m[  !0

2

2

! x

m

dt 

dx

m

c

dt 

 xd 

02

2

2

2

! xdt 

dx

dt 

 xd 

nn [ :[ nm

c

 zeta [ :  2"" !!

³Viscous Damping Factor´

Characterizes strength of damping

Solution must be a function of time with two parameters: ),;( : [nt  x

8/7/2019 Vibs Lecture 2

http://slidepdf.com/reader/full/vibs-lecture-2 8/16

Damped Vibrations: Solution for Motion

( ) t   x t CeP!Still try solution:

2 22 0t t t 

n ne e eP P PP ^ [ P [ !

General solution is a sum of the two possibilities:

n

m

[  !

nm

c

2!02 2

2

2

! xd t 

d  x

d t 

 xd 

nn

[: [

Plug in:

2 22 0n nP ^ [  P [  !

Characteristic

Equation

2 2 2

22 4 4 12

n n n

n n^ [ ^  [ [P ^ [ [ ^  s ! ! s

Solution of Characteristic Equation:

t t  nnnn

eet  x

)1(

2

)1(

1

22

)(

!

^ [^ [^ [^ [

M ATL AB TIME ±

let¶s just see what

comes out««

DEMO TIME ±

let¶s just seewhat r eally 

happens««

8/7/2019 Vibs Lecture 2

http://slidepdf.com/reader/full/vibs-lecture-2 9/16

t t  nnnn eC eC t  x)1(

2

)1(

1

22

)(

!^ [ ^ [ ^ [ ^ [ 

][)( 1

2

 1

1

22 t t t  nnn eeet  x

!^ [^ [^ [

^  can vary from 0 to g can be positive, negative or zero21^ 

1^ "³Overdamped´:

12 ^  real

012

1 ! ^ [^ [P nn

0122 ! ^ [ ^ [ P nn

Damping is ³strong´

Motion decays exponentially ± no oscillations at all !

t t eet  x 21

21)(PP

!

8/7/2019 Vibs Lecture 2

http://slidepdf.com/reader/full/vibs-lecture-2 10/16

012 !^ 

n[ P !1 n[ P !2

t t t  nnn eeet  x[[[

!! )()( 2121

Only one constant C1+C2 ± not a general solution

³Critical Damping´: Damping just at a ³Goldilocks´ value1!^ 

Special C ase ± actual sol uti on is t net t  x [! )()( 21

Why critical? Exponent is more negative than in the overdamped case !

12 ^ [ ^ [ [  nnn

³  Cr itical ́   :

F ast est  r eturn of moti on t o z ero  positi on

8/7/2019 Vibs Lecture 2

http://slidepdf.com/reader/full/vibs-lecture-2 11/16

Damped

natural

frequency

12 ^  imaginary

  x t e e en n nt  i t i t  ( ) !

^ [ ^  [ ^  [

1

1

2

12 2

Damping is ³weak´ ± most typical case³Underdamped´: 10 ^ 

][)( 1

2

 1

1

22 t it it  nnn eeet  x^ [^ [^ [

!

21d n[  ^  [ ! ][)(

 

2

 

1

t it it  d d n eC eC et  x[ [ ^ [ 

!

Looks like undamped case but

with different frequency

)sin()( ] [^ [ ! t  X et  xd 

t n

Oscillatory

motion

Decaying

exponential

0)(  pgp t  xt Motion always decays to zero; dashpot is

continually sucking energy out of the system

8/7/2019 Vibs Lecture 2

http://slidepdf.com/reader/full/vibs-lecture-2 12/16

Underdamped Case 1^ 

( ) sinnt 

d   x t Xe t  

^ [[ ] 

!

2d 

T X 

[ !

8/7/2019 Vibs Lecture 2

http://slidepdf.com/reader/full/vibs-lecture-2 13/16

Underdamped Case:

Observ e motion, ext r act system parameters

1

2

11

2 2

sin

sin

n

n

  Xe t   x

  x Xe t  

^ [

^ [

[ ] 

[ ] 

!

Experiment: Apply initial disturbance and measure response

Look at successive peak values at times t1 and t2=t1+X d

2 1 1sin sin 2 sin

d d d t t t [ ] [ T ] [ ]   ! !

1

2 22

2 2ln

1 1n d  n

n

 x

 x

T T ̂  H ^ [ X  ^ [

[ ^ ^ ! ! ! !

³Logarithmic Decrement´:

1

1

1

2

n

n d 

n d 

 x ee

 x e

^ [^ [ X 

^ [ X 

! !

22

)2( T H 

H ^ 

!

21

2

^ X 

T [

!

n

8/7/2019 Vibs Lecture 2

http://slidepdf.com/reader/full/vibs-lecture-2 14/16

Total weight W = 3400 lb

Weight supported by rear end W/2 = 1700 lb

Test #1:  Apply 100 lb force; observe 3´ displacement

Test #2: Release force, measure rebound:

Rises then falls to 0.5´ below equilibrium, then oscillates back toward zero

1 spring k, 1 shock absorber c on each side

What are values of k and c?

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

0 2 4 6 8

Task: Determine Degradation of Truck Suspension System

8/7/2019 Vibs Lecture 2

http://slidepdf.com/reader/full/vibs-lecture-2 15/16

k

c c

k

Idealize system: mass on two springs,

two viscous dampers

Static deflection gives k: 01002 ! lbk  st H 

100200 /

2(0.25 )

lbk  lb ft 

 ft ! !

2

2/75.2

/2.32/1700

/400)2( srad 

 s ft lb

 ft lb

m

k n !!![ 

2 dashpots in parallel:

Rebound gives H  ^ c: 79.1)"5.0

"3ln( !

!H 

nm

c

[^ 

2

)2(!

274.0)2( 22

!

!T H 

H ^ 

 ft  slb s

 s ft 

lbm

c n /8.39)274.0)(/75.2(/2.32

1700 2

2 !!! ^ [

8/7/2019 Vibs Lecture 2

http://slidepdf.com/reader/full/vibs-lecture-2 16/16

Strategy for Problem Solving:

2

n[

 Apply initial conditions to determine constants

Draw F.B.D.

2

2 0

d x dx

m ck  xdt dt   !Get Equation of Motion

2

2

0d x c dx k 

 xdt m dt m

!Identify parameters [n and  ^ :

Write down general solution, for appropriate value of  ^:

Put equation in standard form:

2

20

d x c dx k  x

dt m dt m !

n^ [ 2

 )(sin)( ] [^ [

!

t  Xet  x n

t n³Underdamped´: 10 ^ 

³Critical Damping´: 1!^ t n

et t  x[

! )()( 21

³Overdamped´: 1^ t t 

eet  x 21

21)(PP

!