video course: image and resolution enhancement 1dehaan/slides/2_moderndisplaysnew.pdf28 consequences...

25
1 Video course: Image and Resolution Enhancement Centre for Technical Training © Koninklijke Philips Electronics N.V. 2003 technische universiteit eindhoven Video processing G. de Haan technische universiteit eindhoven Schedule lectures 5P530 2 Week 1 Week 2 Week 3 Week 4 Basics (Ch 2, 3) Video displays (Ch 9) Filtering (Ch 4) Picture-Rate Conversion (Ch 7) Week 5 Week 6 Week 7 Week 8 De-interlacing (Ch 8) Motion Estimation (Ch 10) Object Detection (Ch 11) X technische universiteit eindhoven 3 Short recapitulation technische universiteit eindhoven 4 3D frequencies in video time f h (c/pw) f v (c/ph) f t (c/pp) technische universiteit eindhoven 5 The sampling theorem time We have a continuous signal f s f s 2 0 frequency Sampling theorem: we can reconstruct the continuous signal from its discrete representation, provided it contained no frequencies above half the sampling frequency We sample it to obtain a discrete representation T s technische universiteit eindhoven 6 What is the required sampling grid? (vertically) Limit eye: 30 cycles/degree At 6x picture height, viewing angle: ~10 degrees finest pattern on screen: 10*30=300 cycles Sampling theorem: we need >600 samples (lines)

Upload: lycong

Post on 25-Apr-2018

219 views

Category:

Documents


1 download

TRANSCRIPT

1Video course: Image and Resolution Enhancement

Centre for Technical Training © Koninklijke Philips Electronics N.V. 2003

technische universiteit eindhoven

Video processing

G. de Haan

technische universiteit eindhoven

Schedule lectures 5P5302

Week 1 Week 2 Week 3 Week 4

Basics

(Ch 2, 3)

Video displays

(Ch 9)

Filtering

(Ch 4)

Picture-Rate

Conversion (Ch 7)

Week 5 Week 6 Week 7 Week 8

De-interlacing

(Ch 8)

Motion Estimation

(Ch 10)

Object Detection

(Ch 11) X

technische universiteit eindhoven

3

Short

recapitulation

technische universiteit eindhoven

4 3D frequencies in video

time

fh (c/pw)

fv (c/ph)

ft (c/pp)

technische universiteit eindhoven

5 The sampling theorem

time

We have a continuous signal

fsfs

2

0 frequency

Sampling theorem: we can reconstruct the continuous signal

from its discrete representation, provided it contained no

frequencies above half the sampling frequency

We sample it to obtain a discrete representation

Ts

technische universiteit eindhoven

6 What is the required sampling grid? (vertically)

• Limit eye: 30 cycles/degree

• At 6x picture height, viewing angle: ~10 degrees

• finest pattern on screen: 10*30=300 cycles

• Sampling theorem: we need >600 samples (lines)

2Video course: Image and Resolution Enhancement

Centre for Technical Training © Koninklijke Philips Electronics N.V. 2003

technische universiteit eindhoven

7 What about the temporal sampling density?

Temporal response of average viewer + sampling theorem 100Hz?

Unfortunately, there is a complication…

technische universiteit eindhoven

8 Temporal frequency above Nyquist limit imaging system

time

Trackingeye

Temporal sampling

with e.g. 50 Hz

Temporal frequency of

e.g. 120 Hz!

technische universiteit eindhoven

9 Conclusion for the picture-rate

• Sampling causes ambiguity for frequencies >fs/2

• If high T-frequency due to motion, correct eye-tracking can transform it to DC

• For correct eye-tracking coarser patterns (below Nyquist) must be part of the same moving object.

• In practice little ambiguity, and minimal picture rate determined by flicker

demo

technische universiteit eindhoven

10

Colour and the

eye

technische universiteit eindhoven

11 The human eye

•Two type of receptors: rods and cones

• Colour perception only with cones, (at higher brightness levels)

• Rods and cones are at the back of the retina, the nerves are at front

technische universiteit eindhoven

12

Consequences

of colour vision

for technology

3Video course: Image and Resolution Enhancement

Centre for Technical Training © Koninklijke Philips Electronics N.V. 2003

technische universiteit eindhoven

13Every wavelength between 400nm and 700nm

corresponds to a colour

technische universiteit eindhoven

Sun-light contains a continuous spectrum of

wavelengths, which appears white14

technische universiteit eindhoven

An incandescent lamp imitates the sun15

Continuous spectrum (black-body radiator), lower T

technische universiteit eindhoven

But we can make white light much more efficiently16

Spectrum fluorescent lamp

technische universiteit eindhoven

17

• Used in displays and in fluorescent lamps

• Based on red, green and blue primary =

RGB-model, sometimes white added for

improved efficiency (RGBY)

• Primaries defined by emission of phosphors

or LEDs (lamps, CRT, PDP, OLED), or

colour filters (LCD)

Additive colour mixing

technische universiteit eindhoven

18

Colour vision

and display

technology

4Video course: Image and Resolution Enhancement

Centre for Technical Training © Koninklijke Philips Electronics N.V. 2003

technische universiteit eindhoven

19 Colour synthesis – Optical superposition (projection)

technische universiteit eindhoven

20 Colour synthesis – temporal synthesis (colour

sequential)

Circle

colseq

technische universiteit eindhoven

21 Colour synthesis – spatial synthesis (CRT, LCD, PDP)

Shadow-mask (colour CRT) Matrix display panel

technische universiteit eindhoven

22

More

consequences of

motion tracking

technische universiteit eindhoven

23 The retina of the eye has a slow response (integration

effect)

technische universiteit eindhoven

24 If we do not track the motion, objects get blurred

Same thing as motion blur

with long shutter time

5Video course: Image and Resolution Enhancement

Centre for Technical Training © Koninklijke Philips Electronics N.V. 2003

technische universiteit eindhoven

25 Object tracking with the eye

Position on screen

technische universiteit eindhoven

26 A moving ball on the retina of the tracking eye

Position on screen

picture number

Po

sit

ion

on

reti

na

n-1 n n+1 n+2

technische universiteit eindhoven

27 With correct tracking, sharp object

technische universiteit eindhoven

28 Consequences of motion tracking of the eye

• A display image is projected on a moving target (retina of the eye)

• If the eye moves substantially while the pixel is shown, the pixel size increases (blur)

• A pixel is only valid at a single point in space AND time, spatial or temporal spreading or mis-positioning degrades quality

• If pixels are shown with different delays, their relative position is modified by the eye movement

• A single TV-image need not be complete, if soon enough complementary information is shown (interlace, colour sequential display)

• The quality of individual images is relevant for photography – Video is different!

technische universiteit eindhoven

29 Demo of difference video and photography

• A single image may contain alias

• But either the pixel-grid should move…

• Or the image-content should move…

• And the image must be stationary on the retina of

the eye, so:

• Stationary on the screen, fixed eye…; or

• Moving over the screen, tracking eye…; but

• Tracking only possible with predictable motion…

technische universiteit eindhoven

30 Why problems with displays?

• No artifacts as long as the delay from input to output is the same for all pixels

• Same scanning order not guaranteed with diverging imaging and display technologies

x

y

x

y

x

y

MuxDe-

mux x

y

Memoryre-order

6Video course: Image and Resolution Enhancement

Centre for Technical Training © Koninklijke Philips Electronics N.V. 2003

technische universiteit eindhoven

31

Popular display

concepts

technische universiteit eindhoven

32 A revolution started in 2000!

Source : Sony + Nikkei Electronics 2002-09-09

0

100

200

300

400

500

600

700

2000 2001 2002 2003 2004 2005

PDP TV

LCD TV

PJ TV

CRT TV

15%

8%

39%

38%

94%

28%

48%65%

82%

TV Shipment in Japan by Technologies (billions yen)

technische universiteit eindhoven

And a new winner seems to emerge…33

After the break, we shall see that video needs to be adapted to display

technische universiteit eindhoven

Video processing

G. de Haan

technische universiteit eindhoven

35

The cathode-Ray

Tube

technische universiteit eindhoven

36 Cathode ray tube

• 100 year old workhorse

• Beam scan device

• Now almost obsolete…

• Pixels are shown one-after-the-

other, i.e. not simultaneously,

and are visible for a very short

time (~0.1ms)!

7Video course: Image and Resolution Enhancement

Centre for Technical Training © Koninklijke Philips Electronics N.V. 2003

technische universiteit eindhoven

37 Why problems with displays?

• No artifacts as long as the delay from input to output is the same for all pixels

• So for CRT no problem if also camera scans the pixels one-after-the-other

x

y

x

y

x

y

MuxDe-

mux x

y

Memoryre-order

technische universiteit eindhoven

38

The Liquid Crystal

Display

technische universiteit eindhoven

39

• A voltage across the Liquid

Crystal material changes the

polarization of the light

• With two polarizing filters,

around the crystal, the

intensity of the light traveling

through the panel can be

modulated

LCD principle

technische universiteit eindhoven

40

• Most mature flat panel technology

• Major share of FPD market

• Pixels are shown line-by-line, and

are visible the entire picture-period,

unless the backlight is non-

continuous

Liquid Crystal Display

technische universiteit eindhoven

41 Why problems with displays?

• No artifacts as long as the delay from input to output is the same for all pixels

• So for LCD ‘no problem’ if also camera scans the pixels line-by-line

x

y

x

y

x

y

MuxDe-

mux x

y

Memoryre-order

technische universiteit eindhoven

42

The Plasma

Display Panel

8Video course: Image and Resolution Enhancement

Centre for Technical Training © Koninklijke Philips Electronics N.V. 2003

technische universiteit eindhoven

Plasma display panels; when it must be really large43

technische universiteit eindhoven

44PDP principlean array of small fluorescent lamps, i.e. an emissive matrix-type display

technische universiteit eindhoven

45 Sub-field addressed displays (grey with on/off display)

time

Po

sit

ion

(p

ixe

ls)

sf01 2 3 4 5 6 7

sf0...

Current frame Next frame

255

128

54

75

159

32

64

1 2 4 8 16 32 64 128

technische universiteit eindhoven

46 Plasma Display Panel

• Large Displays, up to 150”

• High Resolution

• High Brightness

• Good Contrast

• Pixels are shown

simultaneously and are

either on-or-off, i.e. making

intermediate values requires

sub-fields, so pixels are

shown with different

duration!

technische universiteit eindhoven

47 Why problems with displays?

• No artifacts as long as the delay from input to output is the same for all pixels

• So, rather unclear how the camera should operate to achieve this….

x

y

x

y

x

y

MuxDe-

mux x

y

Memoryre-order

technische universiteit eindhoven

48

The Digital Micro-

Mirror Device

(DLPTM)

9Video course: Image and Resolution Enhancement

Centre for Technical Training © Koninklijke Philips Electronics N.V. 2003

technische universiteit eindhoven

49 Digital Mirror Device

• The DMD is an array of

several aluminium

mirrors, each of which

acts as a light switch.

technische universiteit eindhoven

50 DMD principle

• Each mirror can rotate

in one of two direction:

• +10 degrees

• -10 degrees

• + 10 degrees is ON

• - 10 degrees is OFF

technische universiteit eindhoven

51 Mirrors can only switch pixel on and off

technische universiteit eindhoven

52 DMD is also an on/off display (binary)

time

Po

sit

ion

(p

ixe

ls)

sf01 2 3 4 5 6 7

sf0...

Current frame Next frame

255

128

54

75

159

32

64

1 2 4 8 16 32 64 128

technische universiteit eindhoven

53 DMD

• High resolutions are possible and available on the market

• No polarizers required higher efficiency than LCD

• Excellent contrast

• No electrodes visible on screen

• Pixels are shown simultaneously and are either on-or-off, i.e.

making intermediate values requires sub-fields, so pixels are

shown with different duration!

technische universiteit eindhoven

54 So what problems do we have with displays?

• A pixel is only valid at a single point in space AND time, spatial or temporal spreading or mis-positioning degrades quality

• If pixels are shown with different delays, their relative position is modified by the eye movement

• CRT flashes pixels one-after-the-other

• LCD hold pixels complete picture-period

• DMD and PDP use PWM, i.e. pixel timing depends on brightness…

Motion

10Video course: Image and Resolution Enhancement

Centre for Technical Training © Koninklijke Philips Electronics N.V. 2003

technische universiteit eindhoven

55

Motion blur and

LCDs

technische universiteit eindhoven

56 Motion blur on display and camera

Camera

The object moves relative to a

stationary camera that integrates the

image during the shutter time

Hold time

Shutter time

The eye smoothly follows a moving

object that remains stationary during

the display hold time

Display

technische universiteit eindhoven

57 Dynamic resolution – Sharpness of moving images

Object moves while

shutter of photo-

camera is open…

Eye moves over TV-screen, while

image remains the same during

picture period…

analogy

Two phenomena with the same result, i.e. motion blur:

technische universiteit eindhoven

58 Motion blur on S&H displays: NOT because LCD too slow

technische universiteit eindhoven

59 It is NOT because the LCD is too slow

Frame store

Video in Video out

start

desired (over)drive

Overdrive LUT

THAT is solved with a technique called “overdrive”

time (frames)

Lum

-1 0 1 2 3 4

time (frames)

Lum

-1 0 1 2 3 4

technische universiteit eindhoven

60 Consequences of motion tracking ability of viewer

• We should NOT (temporarily) display objects at other

places than where the viewer expects them

• A picture element (pixel) is only valid at ONE point in time!

• The relative timing of images, or image parts, in an image

sequence may NOT be altered

11Video course: Image and Resolution Enhancement

Centre for Technical Training © Koninklijke Philips Electronics N.V. 2003

technische universiteit eindhoven

Video processing

G. de Haan

technische universiteit eindhoven

62 Why problems, and what are they?

• No artifacts as long as the delay from input to output is the same for all pixels

• Same scanning order not guaranteed with diverging imaging and display technologies

x

y

x

y

x

y

MuxDe-

mux x

y

Memoryre-order

technische universiteit eindhoven

63

• Delay is a linear function of the spatial position:

• Motion translates time differences into space differences:

• Therefore, motion causes geometrical distortions:

ycxcct 321

First category of artifacts due to technology divergence

tvx

vycvxcvcx

321

technische universiteit eindhoven

64

Scanning camera

and display

technische universiteit eindhoven

Tube-to-tube (the original video chain)65

Scanning order registrationScanning order display

technische universiteit eindhoven

66 Tube to tube

0

0

0

0

0x

Circle

motion

12Video course: Image and Resolution Enhancement

Centre for Technical Training © Koninklijke Philips Electronics N.V. 2003

technische universiteit eindhoven

67

FT-CCD camera

and LCD

technische universiteit eindhoven

Frame-transfer CCD to LCD68

Simultaneous registration Line-sequential display

technische universiteit eindhoven

69 FT-CCD to tube or LCD

0

20

0

20

vycx

3

technische universiteit eindhoven

70 Explanation of the trapezium distortion

1. The image is shown on the

screen as captured by

the camera …

2.The eye tracks the average

motion

3. The bottom line is shown

20ms later than the top line4. And will, therefore, land on a

shifted position on the retina _____

technische universiteit eindhoven

71

Scanning camera

and PDP

technische universiteit eindhoven

Tube-to-PDP72

Scanning order registrationSimultaneous display

13Video course: Image and Resolution Enhancement

Centre for Technical Training © Koninklijke Philips Electronics N.V. 2003

technische universiteit eindhoven

73 Tube to plasma panel

0

-20

0

-20

vycx

3

technische universiteit eindhoven

74 Explanation of the trapezium distortion

The image moves

to the right …

The bottom line is registered

20ms later than the top lineTherefore, the image is

distorted at the display, when it

shows all pixels simultaneously ____

technische universiteit eindhoven

75 Intermediate conclusion

• Category 1 imaging and display combinations yield

geometrical distortion with motion

• This degradation is usually seen as mild, and totally

acceptable for consumer vision

technische universiteit eindhoven

76

• Delay is a linear function of the spatial position, and motion. Therefore causes geometrical distortions:

• but the parameters cn are no constants, but vary as a function of:

• The position on the screen• Tiled displays, e.g. vidiwall and large size LCDs

• The picture number • Film on TV, TV on PC, 100 Hz TV

• The colour channel • Colour sequential display

• The bit slice of the digitised video• Plasma display panels

Second category of artifacts

vycvxcvcx

321

technische universiteit eindhoven

77

Tiled displays

technische universiteit eindhoven

Example tiled display78

14Video course: Image and Resolution Enhancement

Centre for Technical Training © Koninklijke Philips Electronics N.V. 2003

technische universiteit eindhoven

79 FT-CCD to multi-CRT/LCD vidiwall

0

20

0

20

20 20

0 0

)(,

)(,

23

21

bottomvycvc

topvycvc

x

technische universiteit eindhoven

80 Explanation of the distortion

1. The image moves

to the right …

2. The bottom line of every tile

is written 20ms later than

the top line

3. So, the bottom line of the top tiles don’t

match with the top line of the bottom tiles

technische universiteit eindhoven

81

Picture repetition

displays

technische universiteit eindhoven

25 Hz film on 50 Hz CRT82

50Hz Line-sequential display25Hz simultaneous

registration

technische universiteit eindhoven

83 25 Hz film to 50Hz CRT

0/20

20/40

0/20

20/40

)_(,

)_(,

23

21

imageevenvycvc

imageoddvycvc

x

technische universiteit eindhoven

84 Explanation of the trapezium distortion

1. The image is shown on the

screen as captured by

the camera …

2. The eye tracks the average

motion

3. The bottom line is shown

10ms later than the top line4. and 10 ms later, the image is repeated

15Video course: Image and Resolution Enhancement

Centre for Technical Training © Koninklijke Philips Electronics N.V. 2003

technische universiteit eindhoven

85 Motion rendering, picture repetition

time

Po

sit

ion

(p

ixe

ls)

Result

seen by

viewer

n n+1 n+2

technische universiteit eindhoven

86 Motion rendering, picture repetition

frame period, T = hold time, ti

time

Po

sit

ion

(p

ixe

ls)

n n+1 n+2

Result

seen by

viewer

tracking

the

motion

Renata

technische universiteit eindhoven

87

n-1

MC-picture interpolation

n

n-1/2

picture number

D

2

1

D

2

1

technische universiteit eindhoven

88

Colour sequential

displays

technische universiteit eindhoven

89 Single-panel, colour sequential, projection system

Circle

colseq

Color

wheel

Lens

Lens

Lamp

ScreenLight

valve

technische universiteit eindhoven

90 Advantages and drawbacks of colour sequential

• Cost advantage:

• Only one light valve device (LCD, DMD) required

• Spatial resolution advantage:

• No division of pixels over RGB, i.e. resolution loss

• Higher speed drawback:

• In one picture period 3 (R, G, B) images must be shown

• Motion portrayal drawback:

• R, G, and B images NOT shown at the same time

16Video course: Image and Resolution Enhancement

Centre for Technical Training © Koninklijke Philips Electronics N.V. 2003

technische universiteit eindhoven

Video processing

G. de Haan

technische universiteit eindhoven

92 Motion rendering, color sequential

time

Po

sit

ion

(p

ixe

ls)

Result

seen by

viewer

n n+1 n+2

technische universiteit eindhoven

93 However, if objects move…

The eye will track the average motion

And red, green and blue land at

different locations of retina

technische universiteit eindhoven

94 Motion rendering, color sequential

time

Po

sit

ion

(p

ixe

ls)

n n+1 n+2

Result

seen by

viewer

tracking

the

motion

technische universiteit eindhoven

95 FT-CCD to colour sequential display

0

7

14

0

7

14

0

7

14

0

7

14

)(,

)(,

)(,

3

2

1

bluevc

greenvc

redvc

x

Colseq

moving

technische universiteit eindhoven

96

Bit-sequential

displays

17Video course: Image and Resolution Enhancement

Centre for Technical Training © Koninklijke Philips Electronics N.V. 2003

technische universiteit eindhoven

97 What if the display can only be “on” or “off”

• Plasma Display Panels (PDPs) are basically arrays of

small fluorescent lamps in three colours that can be

individually switched on or off.

• Digital Micro-mirror Devices (DMDs) are basically arrays

of mirrors that can be slightly tilted to either totally reflect

light to the screen, or deflect it in a direction where it will

not pass through the projection lens

technische universiteit eindhoven

98 PDP is an array of miniature fluorescent lamps

technische universiteit eindhoven

99 DMD is an array of miniature mirrors that can move

technische universiteit eindhoven

100 Sub-field addressed displays, like PDP and DMD

time

Po

sit

ion

(p

ixe

ls)

sf01 2 3 4 5 6 7

sf0...

Current frame Next frame

255

128

54

75

159

32

64

1 2 4 8 16 32 64 128

technische universiteit eindhoven

101 Motion artifact, moving bars

127

128

time

po

sit

ion

sf01 2 3 4 5 6 7

sf0...

255

0

127

128

?

current

frame

next

frame

technische universiteit eindhoven

102 Motion rendering, PDP

time

Po

sit

ion

(p

ixe

ls)

Result

seen by

viewer

n n+1 n+2yvonne

18Video course: Image and Resolution Enhancement

Centre for Technical Training © Koninklijke Philips Electronics N.V. 2003

technische universiteit eindhoven

103 Motion rendering, PDP

time

Po

sit

ion

(p

ixe

ls)

n n+1 n+2

Result

seen by

viewer

tracking

the

motion

technische universiteit eindhoven

104 Understanding the artifacts

1. The image moves

to the right …

2. The eye tracks the average

motion

3. The bit-slices appear sequentially in time,…

and therefore land at different locations on the retina

technische universiteit eindhoven

105 FT-CCD to Plasma Display Panel (PDP)

)(,

......................

......................

)2(,

)(,

3

2

1

LSBvc

MSBvc

MSBvc

x

nd

technische universiteit eindhoven

106 Motion compensation: Shift bits

time

po

sit

ion

(pix

els

)

sf01 2 3 4 5 6 7

sf0...

current

frame

next

frame

011 1 1 1 11

motion vector

0

1

1 1

1 1

1

no

MC

shift

bit

technische universiteit eindhoven

107 Motion compensation: Shift bits

time

po

sit

ion

(pix

els

)

sf01 2 3 4 5 6 7

sf0...

t

x

hole

double

assignment

current

frame

next

frame

011 1 1 1 11

motion vector

0

1

1 1

1 1

1

technische universiteit eindhoven

108 Alternative approach: Do not shift but fetch values

timesf01 2 3 4 5 6 7

sf0...

po

sit

ion

(pix

els

)

original

frame

current

sub-frame

fetch1

135

123shift

?0?

125

99

19Video course: Image and Resolution Enhancement

Centre for Technical Training © Koninklijke Philips Electronics N.V. 2003

technische universiteit eindhoven

109 Results comparison

no MC

shift bit

fetch bit

SA

technische universiteit eindhoven

110 Intermediate conclusion

• Category 2 imaging and display combinations yield spatial

discontinuities, false colours, false contours and echoes

• These degradations are usually very annoying, and repair

is almost necessary for consumer vision

• Motion compensated temporal interpolation

• True-motion estimation required

• Interpolation of bit planes not trivial

technische universiteit eindhoven

111

Sample & hold

displays

technische universiteit eindhoven

112 Third category of artifacts

• Non-impulsive displays

• Light results as the integral over a

• fixed amount of time (LCD)

• a data dependent amount of time (PDP)

• No single delay can be defined between input and output

pixels

technische universiteit eindhoven

113 FT-CCD to LCD (fixed integration time)

0-20

0-20

0-20

0-20

technische universiteit eindhoven

114 Motion rendering LCD

Previous

frame

time

Po

sit

ion

(p

ixe

ls)

Current

frame

tracking

the

motion

Next

frame

Result

seen by

viewer

intensityn n+1 n+2

frame period, T, hold time, ti

20Video course: Image and Resolution Enhancement

Centre for Technical Training © Koninklijke Philips Electronics N.V. 2003

technische universiteit eindhoven

115

First solution:

Change backlight

technische universiteit eindhoven

116 Motion rendering, flash backlight when LCD stable

frame period, T

time

Po

sit

ion

(p

ixe

ls)

Result

seen by

viewer

tracking

the

motion

n n+1 n+2

technische universiteit eindhoven

117

The scanning speed is synchronized with the speed of

entering information to the screen.

Flash the backlight when LC reaches desired value

Scanning Backlight, practical implementation

Frame time

Address Flash

technische universiteit eindhoven

118

The scanning speed is synchronized with the speed of

entering information to the screen.

Flash the backlight when LC reaches desired value

Frame time

Address Flash

Scanning Backlight

technische universiteit eindhoven

119

The scanning speed is synchronized with the speed of

entering information to the screen.

Flash the backlight when LC reaches desired value

Frame time

Address Flash

Scanning Backlight

technische universiteit eindhoven

120

The scanning speed is synchronized with the speed of

entering information to the screen.

Flash the backlight when LC reaches desired value

Frame time

Address Flash

Scanning Backlight

21Video course: Image and Resolution Enhancement

Centre for Technical Training © Koninklijke Philips Electronics N.V. 2003

technische universiteit eindhoven

121

The scanning speed is synchronized with the speed of

entering information to the screen.

Flash the backlight when LC reaches desired value

Frame time

Address Flash

Scanning Backlight

technische universiteit eindhoven

122

The scanning speed is synchronized with the speed of

entering information to the screen.

Flash the backlight when LC reaches desired value

Frame time

Address Flash

Scanning Backlight

technische universiteit eindhoven

123

The scanning speed is synchronized with the speed of

entering information to the screen.

Flash the backlight when LC reaches desired value

Frame time

Address Flash

Scanning Backlight

technische universiteit eindhoven

124 Motion rendering, scanning backlight LCD

hold time, ti < frame period, T

time

Po

sit

ion

(p

ixe

ls)

Result

seen by

viewer

n n+1 n+2

Backlight: off on

technische universiteit eindhoven

125 Motion rendering, scanning backlight LCD

time

Po

sit

ion

(p

ixe

ls)

Result

seen by

viewer

tracking

the

motion

n n+1 n+2

hold time, ti < frame period, T

Backlight: off on

technische universiteit eindhoven

126 This is what it looks like

22Video course: Image and Resolution Enhancement

Centre for Technical Training © Koninklijke Philips Electronics N.V. 2003

technische universiteit eindhoven

127

Lamp

driver

8 light

sources

Reflective

polarizer

diffuser

collimator

see through view of an Aptura scanning backlight

This is what it looks like

See through view of an Aptura scanning backlight

technische universiteit eindhoven

128 Alternative: Scanning Highlighting Backlight

stripe in scattering mode

is scanned through

the light guide

light output

common electrode

Glass substrates row electrodesLight source

technische universiteit eindhoven

129

Second solution:

Change picture-rate

technische universiteit eindhoven

130 Simplest option: Black frame insertion

Original imageintermediate image:

black

Combined image as

seen by viewer

input frame periodtime

(frames)

n

n+1

Shortening the light emission time of each frame decreases motion blur

technische universiteit eindhoven

131 Motion rendering standard LCD

Previous

frame

time

Po

sit

ion

(p

ixe

ls)

Current

frame

tracking

the

motion

Next

frame

Result

seen by

viewer

intensityn n+1 n+2

frame period, T, hold time, ti

technische universiteit eindhoven

132 Motion rendering, black frame insertion

frame period, T/2 = hold time, ti

time

Po

sit

ion

(p

ixe

ls)

Result

seen by

viewer

tracking

the

motion

n n+1 n+2

Insert black

frame

23Video course: Image and Resolution Enhancement

Centre for Technical Training © Koninklijke Philips Electronics N.V. 2003

technische universiteit eindhoven

133 Improved option: Motion compensated picture rate

doubling

frame period, T = hold time, ti

time

Po

sit

ion

(p

ixe

ls)

n n+1 n+2

Result

seen by

viewer

tracking

the

motion

motion

compensated

interpolation

technische universiteit eindhoven

134 Improvement with MC picture-rate doubling

frame period, T/2

time

Po

sit

ion

(p

ixe

ls)

Result

seen by

viewer

tracking

the

motion

n n+1 n+2

technische universiteit eindhoven

135 Blur of BFI same as MC picture-rate doubling

frame period, T/2

time

Po

sit

ion

(p

ixe

ls)

Result

seen by

viewer

tracking

the

motion

n n+1 n+2

• But with half intensity and reduced contrast!

technische universiteit eindhoven

136

Third solution:

Video pre-

processing

technische universiteit eindhoven

137 This is our problem:

LCD & EYE (Spatial low-pass filter)

Compensation

(Spatial high-pass filter)

H(f)1

H(f)

technische universiteit eindhoven

138 A video processing solution: Inverse filtering

LCD & EYE (Spatial low-pass filter)

Compensation

(Spatial high-pass filter)

H(f)1

H(f)

24Video course: Image and Resolution Enhancement

Centre for Technical Training © Koninklijke Philips Electronics N.V. 2003

technische universiteit eindhoven

139 Motion compensated inverse filtering MCIF

LCD&EYE

Spatial Low-Pass Filter

video

input

Simple filter few taps, rotate with motion direction, tap-distance

varies with motion vector length

Motion Compensated Inverse Filter

Motion

estimation

High-pass

filter

+

Orientation &

Tap-distance

technische universiteit eindhoven

140 Results: (simulation)

MCIF

Display + eye-

tracking (simulation):

Video on the screen:

Original

technische universiteit eindhoven

141 Options to improve motion on LCD

1. Pulsing backlight

2. Shorten picture time (more pictures/second)

3. Sharpening dependent on object velocity

50 pictures/

second

100 pictures/

second

technische universiteit eindhoven

142

Motion sharpness

Slow LCD Fast LCD 100Hz scan +MCIF

LCD motion portrayal improvement

technische universiteit eindhoven

143 Intermediate conclusion

• Category 3 display artifacts yield spatial blur proportional

to motion (and depending on brightness)

• This degradation is usually annoying, and repair is

required for consumer vision

• Flashing or scrolling back light

• Or black field insertion (inferior)

• Picture rate increase with motion compensation

• Inverse filtering (velocity dependent spatial filtering)

technische universiteit eindhoven

144 Display model and remedial video processing

(Variable)

spatial filter

Model for light

integration

Variable

delay

Model for scan

raster

mismatch

Display model

V-steered

“inverse”

filter

Integration

artifact

reduction

MC Picture

interpolation

Scan

mismatch

artifact

elimination

In Out

Remedial processing

25Video course: Image and Resolution Enhancement

Centre for Technical Training © Koninklijke Philips Electronics N.V. 2003

technische universiteit eindhoven

145 Consequences of motion tracking of the eye

• A display image is projected on a moving target (retina of the eye)

• If the eye moves substantially while the pixel is shown, the pixel size increases (blur)

• A pixel is only valid at a single point in space AND time, spatial or temporal spreading or mis-positioning degrades quality

• If pixels are not shown simultaneously, there relative position is modified by the eye movement

• A single TV-image need not be complete, if soon enough complementary information is shown (interlace, colour sequential display)

• The quality of individual images is relevant for photography – Video is different!