· web viewhow is each structure adapted to help maximize efficiency of respiration? structure:...

12
UNIT FOUR Reading Guide 1. Other than digested food molecules, what other substances are transported in the blood? 2. What are the functions of the following components of blood: Plasma Platelets Erythrocytes Leukocytes 3. Draw and label a simple diagram of the heart showing: Right and left atria and ventricles, atrio-ventricular and semi-lunar valves, aorta, pulmonary artey, pulmonary vein, vena cava and cardiac muscle.

Upload: hatu

Post on 04-May-2018

214 views

Category:

Documents


1 download

TRANSCRIPT

Page 1:  · Web viewHow is each structure adapted to help maximize efficiency of respiration? Structure: Function: Adapted to increase efficiency by: Outer membrane Inner membrane (including

UNIT FOUR Reading Guide

1. Other than digested food molecules, what other substances are transported in the blood?

2. What are the functions of the following components of blood:

Plasma

Platelets

Erythrocytes

Leukocytes

3. Draw and label a simple diagram of the heart showing: Right and left atria and ventricles, atrio-ventricular and semi-lunar valves, aorta, pulmonary artey, pulmonary vein, vena cava and cardiac muscle.

4. Where is the cardiac muscle thickest? Why?

Page 2:  · Web viewHow is each structure adapted to help maximize efficiency of respiration? Structure: Function: Adapted to increase efficiency by: Outer membrane Inner membrane (including

UNIT FOUR Reading Guide

5. Distinguish between oxygenated and deoxygenated blood.

6. Outline the journey of a single red blood cell taking one full circuit of the transport system, starting and finishing at the liver. You could use a flow chart/cycle for this.

7. Why is the flow of blood described as double circulation?

8. What is a myocyte?

9. Explain the myogenic origin of the heartbeat.

10. Name and label the parts of the heart responsible for initiation and propagation of the heart beat.

Page 3:  · Web viewHow is each structure adapted to help maximize efficiency of respiration? Structure: Function: Adapted to increase efficiency by: Outer membrane Inner membrane (including

UNIT FOUR Reading Guide

11. What is meant by the term indefatigable?

12. Complete a flow chart to show how heart rate changes with exercise. Include the roles of the blood, medulla oblongata, nerves, SA node and the Vagus nerve.

13. What is the effect of the hormone adrenalin?

14. Compare the structure and functions of these blood vessels: Artery Capillary Vein

Diagram(labeled, cross section)

Function

Travels… From… Through … To …

How is structure related to function?

15. Define cell respiration.

Page 4:  · Web viewHow is each structure adapted to help maximize efficiency of respiration? Structure: Function: Adapted to increase efficiency by: Outer membrane Inner membrane (including

UNIT FOUR Reading Guide

16. What are the reactants of cell respiration?

17. What are the products of cell respiration?

18. In the space below, draw a simplified diagram of the structure of ATP. Label the location of the high-energy bond.

19. Explain why ATP is a more useful store of energy within living organisms than glucose.

20. In which two parts of the cell does aerobic cell respiration take place?

21. Define aerobic.

22. Define anaerobic.

23. Label the diagram of aerobic cell respiration below.

Page 5:  · Web viewHow is each structure adapted to help maximize efficiency of respiration? Structure: Function: Adapted to increase efficiency by: Outer membrane Inner membrane (including

UNIT FOUR Reading Guide

24. Label the diagram of anaerobic cell respiration below.

25. Complete the table below, comparing aerobic and anaerobic respiration.

Aerobic Anaerobic Hexose sugar inOxygen in

2 ATP producedPyruvate as an intermediate

Animals YeastCarbon dioxide producedWater produced

26. Complete the table below summarizing the events of aerobic cell respiration. Reaction Location Purpose ATP yield

Glycolysis 2

Matrix of the mitochondrion

Convert pyruvate (3C) to acetyl CoA (2C) 0

Krebs Cycle

Inner mitochondrial membrane

Oxidative phosphorylation

Page 6:  · Web viewHow is each structure adapted to help maximize efficiency of respiration? Structure: Function: Adapted to increase efficiency by: Outer membrane Inner membrane (including

UNIT FOUR Reading Guide

27. Many reactions in living things can be classified as either oxidation or reduction reactions. These are particularly important in cell respiration and photosynthesis. Complete the table below to compare oxidation and reduction reactions.

OXIDATION REDUCTION

Electrons are… lost

Oxygen is…

Hydrogen is…

28. Define phosphorylation.

29. List two ways in which phosporylation is used in cell respiration.

30. In the space below, draw a diagram to show the process of glycolysis. Include phosporylation, lysis, oxidation and ATP formation.

31. Draw and label a diagram showing the structure of the mitochondrion as seen in a TEM image. Include the inner and outer mitochondrial membranes, matrix, christae, mitochondrial DNA and ribosomes and a scale bar.

32. Complete the table below with the functions of the structures of the mitochondrion.

Page 7:  · Web viewHow is each structure adapted to help maximize efficiency of respiration? Structure: Function: Adapted to increase efficiency by: Outer membrane Inner membrane (including

UNIT FOUR Reading Guide

How is each structure adapted to help maximize efficiency of respiration?

Structure: Function: Adapted to increase efficiency by: Outer membrane

Inner membrane(including christae)

Matrix

Mitochondrial DNA and ribosomes

Inter-membrane space

33. Explain the link reaction, including oxidative decarboxylation and conversion of pyruvate to acetyl CoA and CO2.

34. The link reaction produces Acetyl CoA (2C) from the input substrate (usually pyruvate). The extra carbon is released as carbon dioxide. Acetyl CoA can also be produced from fatty acids. When the fatty acid chain contains an even number of carbons, no CO2 is released. How many Acetyl CoA molecules can be produced with the following fatty acids? a. 23Cb. 18Cc. 31C

35. What is an electron carrier?

36. Name two electron carriers that are used in cell respiration.

37. Where do the electron carriers produced in the link reaction and the Krebs cycle go?

Page 8:  · Web viewHow is each structure adapted to help maximize efficiency of respiration? Structure: Function: Adapted to increase efficiency by: Outer membrane Inner membrane (including

UNIT FOUR Reading Guide

38. In the space below, draw a diagram of the Krebs cycle. Include formation of citrate, oxidation, decarboxylation, substrate-level phosphorylation (ATP formation) and production of electron carriers.

39. Annotate the diagram below with the stages of the electron transport chain and oxidative phosphorylation. Include generation of a H+ concentration gradient in the inter-membrane space, movement of electrons, oxidative phosphorylation by ATP synthase, use of O2 as the terminal electron acceptor.

Page 9:  · Web viewHow is each structure adapted to help maximize efficiency of respiration? Structure: Function: Adapted to increase efficiency by: Outer membrane Inner membrane (including

UNIT FOUR Reading Guide

40. In the space below, using the term ‘chemiosmosis’, describe how ATP synthase works.

41. Name compounds in cell respiration that contain:

a. Six carbons

b. Four carbons

c. Three carbons

d. Two carbons

e. One carbon

Page 10:  · Web viewHow is each structure adapted to help maximize efficiency of respiration? Structure: Function: Adapted to increase efficiency by: Outer membrane Inner membrane (including

UNIT FOUR Reading Guide

f. Zero carbons

42. Name (with reasons) three tissues in the body that contain high numbers of mitochondria.

43. A runner is tested and high levels of lactic acid are found. Can you explain why?

44. Explain why ATP yield in aerobic cell respiration is so much higher than in anaerobic respiration. (Long answer question – think about knock-on effects of reduced O2).