vipu exam r1

29
Written Exam for Dr. Vipu Norman S. Hoffman, PE 3651 Foremast. Dr. Galveston, TX 77554 Phone: (409)6216740 Email: [email protected] April 1, 2010

Upload: eshoffman007

Post on 02-Oct-2014

27 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Vipu Exam R1

      

Written Exam for Dr. Vipu       

Norman S.  Hoffman, PE 3651 Foremast. Dr. Galveston, TX 77554 

Phone:  (409)‐621‐6740 Email:  [email protected] 

 

April 1, 2010  

 

 

 

 

 

 

Page 2: Vipu Exam R1

April 1, 2010    Written Exam for Dr. Vipu    Norman S.  Hoffman, PE  3651 Foremast. Dr. Galveston, TX 77554 Phone:  (409)‐621‐6740, Email:  [email protected] 

  

Page 2 of 29  

Table of contents 

Plain Concrete Constitutive Laws                3 

Smeared Concrete Constitutive Laws                6 

Nano‐particle Concrete                    21 

 

Figures and Tables 

Figure 1, Smeared Constitutive Model for Concrete            7 

Figure 2, Stress Strain relationship for Panels TEF‐3, ‐4, and ‐5          9 

Table 1, Constitutive Equation Comparison for Plain Concrete and Fiber Concrete    11 

Table 2, Softened Membrane Model (SMM) Smeared Constitutive Equation 

         Comparison for Concrete and Steel Fiber Concrete            17 

References                      26 

 

 

 

 

 

 

 

 

 

Page 3: Vipu Exam R1

April 1, 2010    Written Exam for Dr. Vipu    Norman S.  Hoffman, PE  3651 Foremast. Dr. Galveston, TX 77554 Phone:  (409)‐621‐6740, Email:  [email protected] 

  

Page 3 of 29  

 

Summarize in complete and concise form the state of knowledge on the constitutive models 

for concrete (stress‐strain and failure). 

A survey of literature reveals that constitutive material models for plain concrete can be 

categorized into three very broad groups based on loading situation, namely: 

1) Unixial models 

2) Biaxial models 

3) Triaxial models 

The basic uniaxial stress strain model for plain concrete consists of an ascending branch and a 

descending branch.  The peak of the curve occurs at a location called concrete compressive 

strength while the corresponding strain is the peak compressive strain.   There have been 

numerous studies and approximations for modeling the stress strain curve of plain concrete 

(Popovics, 1970).  Important and straight forward approximations of the curve include those 

ranging from the Hognestad, 1952 parabola (to which Hognestad attributes to Stussi, 1932), to 

those of Desayi & Krishnan 1964 and Wang & Shah, 1978.  (See Table 1).   The basic approach 

for researchers modeling the curve is to base the shape on key parameters that can be 

obtained easily from physical tests of specimens, namely the failure criteria, fc’ and e0.  

Interestingly, for all the research done on the stress strain curve for plain concrete, the basic 

Stussi, 1932 model is still used today in flexural design.   

Tension models of plain concrete depend on the testing procedure used (Belarbi, 1994)  A 

linear behavior is obtained up to the tensile capacity which then ends abruptly with a brittle 

failure, thus providing no descending branch.  Gopal & Shah, 1985 developed a testing 

technique and corresponding analytic model for determining the descending branch of the 

tensile curve.   

Biaxial models for plain concrete include those developed Zaman 1993, and Gerstle, 1981.   

Please refer to Table 1 for a summary and short description of these models. 

 

 

Page 4: Vipu Exam R1

April 1, 2010    Written Exam for Dr. Vipu    Norman S.  Hoffman, PE  3651 Foremast. Dr. Galveston, TX 77554 Phone:  (409)‐621‐6740, Email:  [email protected] 

  

Page 4 of 29  

How will the constitutive models of concrete be affected if fibers are added? 

The addition of fiber to the constitutive models for concrete will by necessity have the same 

effect as on the physical or experimental test results.  The addition of fibers to plain concrete 

has an improving effect on the key material properties listed below, and thus affects the 

constitutive model for fiber concrete (Rao 2009, Thomas 2007, Vandewalle 2002, Li 1992, 

Traina 1991).   

Unixial Compressive Strength, fc’ 

Uniaxial Peak strain at compressive strength, e0 

Modulus of Elasticity, Ec  

Uniaxial Tensile Strength, ft 

Modulus of Rupture Ductility 

Poisson’s Ratio,   

The addition of fiber, particularly steel fiber, affects most significantly the tensile strength and 

ductility of concrete. Thomas 2007 achieved 38.2% increase in tensile split cylinder strength 

using just 1.5% fiber content by volume.   Tests by Rao 2009 on standard Modulus of Rupture 

test prisms (6” x 6” x 24”) show a marked post peak improvement in load carrying capacity of 

fiber concrete as compared to plain concrete.   Whereas the plain concrete specimens failed 

completely and suddenly upon reaching peak load, the fiber concrete specimens sustained 

significant load post‐peak (steel fiber content ranged from 0.5% to 1.5% by volume).   Rao 

attributes this to the bridging effect of the fibers across the tensile crack.  Other researchers (Li 

1992, Thomas 2007) show similar tensile results.   

The affect of fiber on uniaxial cylinder compressive strength was modest, as compared to its 

affect on the tensile strength.  Thomas 2007 found an 8.3% increase in compressive capacity 

using 1.5% fiber content by volume.  He found that there is an increasing linear relation 

between fiber content and compressive strength, up to 1.5% fiber, which was the limit of his 

investigation.   

Page 5: Vipu Exam R1

April 1, 2010    Written Exam for Dr. Vipu    Norman S.  Hoffman, PE  3651 Foremast. Dr. Galveston, TX 77554 Phone:  (409)‐621‐6740, Email:  [email protected] 

  

Page 5 of 29  

Although there is only a modest increase in compressive strength, there is a substantial 

increase in compressive strain, e0.  Thomas attributes the gain in strain to the confinement 

effect of the fibers within the concrete matrix.  Again, the relation is linear with increasing fiber 

content and the improvement over plain concrete is up to 29% for 1.5% fiber by volume.   

Thomas 2007 also found only a slight gain in Ec (8%) with increasing fiber content, up to 1.5% 

by volume.  There was a lesser gain in poisons ratio.   

Key investigation into the biaxial behavior of fiber reinforced concrete was performed by 

Kupfer 1969, Traina 1991 and Yin & Hsu 1989.  These researchers established the basic failure 

envelope for fiber concrete, with respect to plain concrete.  Both show that there are 

differences between the two types of concrete.   The primary difference under biaxial loading is 

the increase in compressive strength over plain concrete, for all stress ratios.  Furthermore, 

when compared to the uniaxial strength, the biaxial strength increases by as much as 85% with 

1.5% fiber volume over plain concrete (Traina 1991).  

Important Constitutive models for fiber concrete include biaxial models developed by Tan 1993 

and Hu 2003.  The Tan 1994 model considers only compression‐compression while Hu 2003 

considers both compression and tension.  Hu presents a single smooth biaxial failure curve.  

These models utilize the Traina and Yin experimental data.   

 

To what problems can you apply these constitutive models. 

Fiber concrete has been used for many years to reduce cracking of floor slabs.  It is anticipated 

though that fiber concrete can be used in beams and girders to reduce or minimize shear 

stirrups.  The analytic models can be used in computer simulation models (finite element) to 

predict behavior of plain and steel fiber concrete structures without the necessity of 

performing actual testing.  (Although it is good practice to perform some physical testing to 

calibrate the finite element model).   

 

Use Tables to Summarize equations. (See Table 1) 

 

Page 6: Vipu Exam R1

April 1, 2010    Written Exam for Dr. Vipu    Norman S.  Hoffman, PE  3651 Foremast. Dr. Galveston, TX 77554 Phone:  (409)‐621‐6740, Email:  [email protected] 

  

Page 6 of 29  

Summarize in complete and concise form the state of knowledge on the Smeared constitutive 

models for concrete. 

The most current and complete model for prestressed and reinforced concrete is the Softened 

Membrane Model or SMM (Hsu, 2009).    This is a 2‐D model which applies to membrane 

elements and broadly encompasses all shear members such as walls, girder webs, particularly 

deep beams.    

The individual SMM constitutive equations are summarized in Table2 and illustrated in Fig. 1 for 

concrete.  The equations cover the following: 

Concrete in Tension (pre‐cracking and post cracking branches) 

Concrete in Compression (ascending and descending branches) 

Equilibrium Equations 

Compatibility Equations 

Post‐Cracking Hsu/Zhu  (Poisson) Ratios  

Uniaxial – Biaxial Transformation Equations 

Embedded Mild Steel 

Embedded Prestressing Tendon 

 

Constitutive Models for Concrete, Discussion: 

Constitutive models for concrete are being investigated by two general groups of concrete 

researchers.  There are those models that have been developed by materials researchers and 

there are those models developed by researchers attempting to predict the behavior of whole 

structural assemblies, including reinforcing.  The latter group of models is generally referred to 

as smeared models.  The models overlap and indeed the materials models form the basis of the 

structures models.  It must be clearly understood that the distinctive difference between the 

two sets of research is the presence of reinforcing steel such as deformed mild steel rebar or 

stressing tendon.  Concrete with reinforcing steel behaves differently than concrete without 

reinforcing steel.   

The research at the University of Houston with respect to concrete Dr. Hsu’s constitutive 

models (such as the SMM) has focused on structural assemblies of concrete and reinforcing 

Page 7: Vipu Exam R1

April 1, 2010    Written Exam for Dr. Vipu    Norman S.  Hoffman, PE  3651 Foremast. Dr. Galveston, TX 77554 Phone:  (409)‐621‐6740, Email:  [email protected] 

  

Page 7 of 29  

steel.  These assemblies are tested to determine the constitutive properties on what is called a 

smeared or average basis.  Smeared model properties by definition span multiple cracks in the 

concrete.  The smeared constitutive model is a macro or full scale model which is used to model 

whole structural behavior, particularly shear behavior of reinforced concrete continuums such 

as walls beam webs, and other membrane structures.  Smeared constitutive models are 

designed and calibrated to full‐scale structures.   

The materials research models for concrete focus on the mirco level of concrete.  They 

generally consider concrete on the single crack level, and may even model the cracks 

themselves.   

The overlap of model groups occurs at the concrete‐rebar interface.  Constitutive bond 

researchers model the bond between concrete and reinforcing.  These models form a bridge 

between the materials models and the smeared model research.   

 

Fig. 1  Smeared Constitutive Model for Concrete (Hoffman, 2009) 

Page 8: Vipu Exam R1

April 1, 2010    Written Exam for Dr. Vipu    Norman S.  Hoffman, PE  3651 Foremast. Dr. Galveston, TX 77554 Phone:  (409)‐621‐6740, Email:  [email protected] 

  

Page 8 of 29  

To what problems can we apply these constitutive models for Concrete with Fibers? 

Fiber Concrete has been used for many years to reduce cracking of floor slabs.  It is anticipated 

though that concrete containing steel fibers (SFC) can be used in beams and girders to reduce 

or minimize shear stirrups.  Phase 2 of this research is underway at U of H (Rao, 2009) to test 

full scale prestressed SFC bridge girders without shear steel.  The models can also be used to 

predict post peak behavior of any shear dominant structure, such as low‐rise shear walls, deep 

beams, etc.   

The distinctive feature of the SMM is that it can predict post peak shear behavior (descending 

branch behavior) because Poisson effects (Hsu‐Zhu ratios) are included in the elasticity function 

that bridges between stress and strain.  Post‐peak behavior of concrete structures is important 

in seismic design and research where prediction of deflection and strength of damaged 

structures is critical.   

The solution to the constitutive, equilibrium, and compatibility equations requires an iterative 

algorithm in order to generate the complete monotonic shear stress‐strain curve.  The 

constitutive models are ultimately be used in finite element software, such as Open Sees, to 

model structural behavior concrete structures.   

By testing individual macro‐elements of prestressed SFC in the Universal Element Testing 

machine, one can likewise determine the constitutive laws within the SMM framework that 

govern prestress SFC behavior.  These laws can then be put into Open Sees to model the 

behavior of complete prestressed SFC structures. 

 

The effect of steel fibers on the Constitutive Models: 

Please refer to Table 2 for a comparison and remarks regarding the effect of steel fiber on the 

SMM. 

The softened membrane model consists of the constitutive equations listed in the summary 

table below.  These equations are bound together and satisfy the necessary conditions of 

compatibility and equilibrium.   

The smeared constitutive laws for concrete comprise those for concrete, for mild steel, and for 

Page 9: Vipu Exam R1

April 1, 2010    Written Exam for Dr. Vipu    Norman S.  Hoffman, PE  3651 Foremast. Dr. Galveston, TX 77554 Phone:  (409)‐621‐6740, Email:  [email protected] 

  

Page 9 of 29  

steel prestressing strand.  The laws are depicted graphically in the figures below.  The effects of 

fiber are given with respect to the Fiber Factor which is fiber volume times fiber aspect ratio:  

FF=Vf*(lf/Df) 

The two constitutive laws that will be influenced the most are the post cracking Tensile Stress 

curve and the embedded mild steel and embedded tendon curves.  The most significant though 

is the steel fiber conctete in tension curve.  Regular concrete undergoes a simple smooth decay 

of strength post‐cracking.   Steel fiber concrete on the other hand exhibits initially higher 

tension stiffening characteristics just past cracking due to the fibers “bridging” the crack with a 

tensile force.  However, as cracking increases, the steel fibers begin to pullout or otherwise fail.  

The point where this begins to happen is roughly at the yield strain of the steel.  As the fibers 

fail the bridging force decreases until finally a dominant crack opens where most of the bridging 

fibers failed.  The bridging force is transferred to the tendon.   

The influence of steel fiber on the tensile behavior of concrete is illustrated in the figure above.  

The results of prestresed steel fiber concrete panels (dashed lines) are plotted concurrently 

Fig. 5.2 11 relationships of panels TEF-3, 4, and 5

Cracking of the panels

Tensile Strain, 1

Tens

ile S

tres

s σ

1 , M

Pa

(ks

i)

Fig. 2

Page 10: Vipu Exam R1

April 1, 2010    Written Exam for Dr. Vipu    Norman S.  Hoffman, PE  3651 Foremast. Dr. Galveston, TX 77554 Phone:  (409)‐621‐6740, Email:  [email protected] 

  

Page 10 of 29  

with the results for prestressed regular concrete (solid lines).  The steel fibers increase the 

stiffness post‐cracking and greatly improve toughness.   

How the effects of fiber are being determined:   

The purpose of the current testing is to determine the effect of fiber content, specifically Fiber 

Factor, on the constitutive laws of prestressed SFC.  To determine this, five prestressed SFC 

panels were tested under the sequential loading. The data in the two loading stages were 

recorded separately.  In the first stage of tensile loading, all five panels were used to obtain the 

tensile constitutive laws of SFC and prestressing tendons. In the second stage compressive 

loading, the softening coefficients of prestressed SFC were determined as related to the 

perpendicular tensile strains, and fiber factor.   In the first series of panels TEF‐1, 2, and 3, the 

prestress level and fiber aspect ratio was held constant while the fiber percentage was 

increased.  The tensile strain targets ranged from 0.005 to 0.016.  Wang (2006) showed that the 

softening coefficient,  , decreases with increased tensile strain,  1 , in prestressed concrete.  

The SFC results were normalized with respect to tensile strain level to show the effect of 

softening with respect to fiber factor.   

The tensile target strains for the sequential load panels (TEF) were not designed to examine 

ultimate tensile properties of the SFC.  Fortunately, panel TEF‐5 was tested (inadvertently) until 

tensile failure of the strand, so there is data available for this range of tensile strain for SFC.   

 For proportional loading, it is anticipated that the simultaneous application of compressive 

force in conjunction with tensile forces will increase the pull‐out capacity of the steel fibers, 

thus enhancing their performance.  Yin (1989) has shown that this is the case for biaxial 

compression‐compression loading and Hu (2003) prepared an analytic model for compression‐

tension loading.  This factor will show up in f1(x) as a function of the compressive force or 

strain.   

 

 

Page 11: Vipu Exam R1

April 1, 2010    Written Exam for Dr. Vipu    Norman S.  Hoffman, PE  3651 Foremast. Dr. Galveston, TX 77554 Phone:  (409)‐621‐6740, Email:  [email protected] 

  

Page 11 of 29  

Table1   Constitutive Equation Comparison for Plain Concrete and Fiber Concrete 

Constitutive Property 

Equation for Plain Concrete  Equation for Fiber Concrete Remarks 

Plain Concrete, or Fiber in Uniaxial Tension 

  

Ascending Branch, Gopal and Shah, 1985 

 

  

Descending Branch, Gopal and Shah, 1985 

 

 

 1.01 

             

 

See Table 2, Eq. 17 & 18 for constitutive equation for Fiber Concrete in tension 

  

Eq. 1 

Eq. 2 

Page 12: Vipu Exam R1

April 1, 2010    Written Exam for Dr. Vipu    Norman S.  Hoffman, PE  3651 Foremast. Dr. Galveston, TX 77554 Phone:  (409)‐621‐6740, Email:  [email protected] 

  

Page 12 of 29  

Constitutive Property 

Equation for Plain Concrete  Equation for Fiber Concrete Remarks 

Plain Concrete or fiber Concrete in Uniaxial Compression 

  Hogenstad, 1952 and Stussi, 1932   

  k1 ranges from 0.7 to 0.9 k2 ranges from 0.35 to 0.45 k3 ranges from 0.85 to 1.0  eu ranges from 0.003 to 0.005   

See Table 2, Eq. 21, 22 for constitutive equation for Fiber Concrete in Compression. 

 

 

 

 

 

  The Hognestad/Stussi Curve is what is used today for concrete design.  The curve is defined by key parameters k1, k2, and k3.  It is more a method for applying an assumed stress strain distribution or gradient to a concrete bending member, as opposed to being a true model relating stress to strain.                 

Plain Concrete or fiber Concrete in Uniaxial Compression 

 Desayi, 1964 (equation for the full curve)  

 

    

 Desayi equation is for the full ascending and descending stress strain curve.  The descending branch inflection point is not well captured.  Eq. 3 

Page 13: Vipu Exam R1

April 1, 2010    Written Exam for Dr. Vipu    Norman S.  Hoffman, PE  3651 Foremast. Dr. Galveston, TX 77554 Phone:  (409)‐621‐6740, Email:  [email protected] 

  

Page 13 of 29  

Constitutive Property 

Equation for Plain Concrete  Equation for Fiber Concrete Remarks 

  

Plain Concrete or fiber Concrete in Uniaxial Compression 

 Wang 1978 (equation for the full curve)  

 

   

The Wang equation is for the full ascending and descending stress strain curve.  This equation does a better job at capturing the descending branch inflection point than the Desayi equation.   

Plain Concrete or fiber Concrete in Biaxial Compression 

  Gerstle, 1981  

 

Hu 2003 

 where, 

 And kappa values are material constants determined from a experimental test curve for any specific fiber concrete …   

  

 

Hu utilizes a single smooth biaxial failure curve.   Requires test data points.  Model is solved iterativly.                         

Eq. 4 

Eq. 5 

Eq. 6

Page 14: Vipu Exam R1

April 1, 2010    Written Exam for Dr. Vipu    Norman S.  Hoffman, PE  3651 Foremast. Dr. Galveston, TX 77554 Phone:  (409)‐621‐6740, Email:  [email protected] 

  

Page 14 of 29  

Constitutive Property 

Equation for Plain Concrete  Equation for Fiber Concrete Remarks 

 

Plain Concrete or fiber Concrete in Biaxial Compression 

Chen, 1994 

  

Tan, 1994 Biaxial stress‐strain curve is given by 

 

where, 

   ,

 , and

, finally, 

  

where  nu1, nu0, l, r’ , Vf and tau are 

properties of the fibers with the concrete matrix. 

Tan equations do not require test points, unlike Hu.                                      

Eq. 7 Eq. 8

Eq. 9

Page 15: Vipu Exam R1

April 1, 2010    Written Exam for Dr. Vipu    Norman S.  Hoffman, PE  3651 Foremast. Dr. Galveston, TX 77554 Phone:  (409)‐621‐6740, Email:  [email protected] 

  

Page 15 of 29  

Constitutive Property 

Equation for Plain Concrete  Equation for Fiber Concrete Remarks 

Tan 1994 further defines the failure envelope by: 

 

where, 

 and,   

 

 

 

 

 

 

 

 

  

Eq. 10

Page 16: Vipu Exam R1

April 1, 2010    Written Exam for Dr. Vipu    Norman S.  Hoffman, PE  3651 Foremast. Dr. Galveston, TX 77554 Phone:  (409)‐621‐6740, Email:  [email protected] 

  

Page 16 of 29  

Constitutive Property 

Equation for Plain Concrete  Equation for Fiber Concrete Remarks 

Plain Concrete or fiber Concrete in Triaxial Compression 

 Warkne 1975 

 where: 

 

 

    

   

 

 

 

 

 

 

 

 

 

 

 

Eq. 11

Page 17: Vipu Exam R1

April 1, 2010    Written Exam for Dr. Vipu    Norman S.  Hoffman, PE  3651 Foremast. Dr. Galveston, TX 77554 Phone:  (409)‐621‐6740, Email:  [email protected] 

  

Page 17 of 29  

Table 2   Softened Membrane Model (SMM) Smeared Constitutive Equation Comparison for Concrete and Steel Fiber Concrete 

Constitutive Property 

SMM Equation for Reinforced Concrete (RC), including prestressed  Proposed SMM Equation for Steel Fiber Concrete (SFC), including prestressed Remarks

Concrete, or SFC in Tension 

  

   

 

 

 

For SFC, there is a tension stiffening effect that occurs during Stage T2.  After the reinforcing steel yields, there begins a softening region when the fibers bridging the cracks begin to pull out.  This effect was not modeled by Mansour (2005) for sequential loading.  Korb (2006) attempted to model this behavior from the results of his proportional load panel tests, but the cause was not realized and the equation used is awkward.   Thus stage T2 is modified and Stage T3 is added to account for fiber failure across the crack bridge.  Stage T3 will tend to zero as strain increases.  Equations proposed by Mansour (2005) account for increases ductility and stiffness of the SFC, but do not tend to zero with increasing strain.    Functions f1(F) and F2(F) are functions of the Fiber Factor, F = (Lf/Df)Vf  Proper understanding of SFC in tension is crucial to being able to properly model it and predict experimental curves with analytic functions.   

‐1

‐0.8

‐0.6

‐0.4

‐0.2

0

0.2

0.4

‐0.005 0 0.005 0.01 0.015 0.02

Concrete Stress (MPa)

Concrete Strain (mm/mm)

TEF‐3, Concrete Stress vs Strain (ksi)

Experimental Results, 1.5% Steel Fibers

Existing Theory (No Fibers)

Stage UC

Stage T1

StageT2 Stage T3

Eq. 12

Eq. 13

Eq. 14

Eq. 16 

Eq. 17 

Eq. 18 

Eq. 15 

Page 18: Vipu Exam R1

April 1, 2010    Written Exam for Dr. Vipu    Norman S.  Hoffman, PE  3651 Foremast. Dr. Galveston, TX 77554 Phone:  (409)‐621‐6740, Email:  [email protected] 

  

Page 18 of 29  

Constitutive Property 

SMM Equation for Reinforced Concrete (RC), including prestressed  Proposed SMM Equation for Steel Fiber Concrete (SFC), including prestressed Remarks

Concrete or SFC in Compression 

 

 Softening for RC: 

  

 .  

 

Softening for presteressed SFC: 

9.01 pc WffffFf , where 

FFf 2.01  

 

SFC will effect the descending branch of the SFC in compression curve, stage C2.  Function f2(F) will be used to adjust the shape of the parabolic curve to fit the experimental data.    Additionally, the experimental data shows that increasing the fiber factor, increases the softening coefficient (increases the peak compressive concrete stress).   The softening factor will thus influence the shape of both Stage C1 and C2 of the SFC in compression curve.   

Eq. 20 

Eq. 19 

Eq. 22 

Eq. 21 

Page 19: Vipu Exam R1

April 1, 2010    Written Exam for Dr. Vipu    Norman S.  Hoffman, PE  3651 Foremast. Dr. Galveston, TX 77554 Phone:  (409)‐621‐6740, Email:  [email protected] 

  

Page 19 of 29  

Constitutive Property 

SMM Equation for Reinforced Concrete (RC), including prestressed  Proposed SMM Equation for Steel Fiber Concrete (SFC), including prestressed Remarks

Mild Steel 

 

 

     ))(293.0( 5 FfByn

 

   

Steel Fibers have two effects on embedded steel.  First it lowers the apparent yield stress and second, it stiffens the post yield behavior, which for the bare bar is typically perfectly plastic. The factors F5(F) and F6(F) are used to adjust the apparent yield of steel and post‐yield slope.  These factors are obtained from the experimental results.   

Embedded Prestressing Strand 

 

 

The prestressing tendon embedded in SFC displays stiffer post yield modulus than concrete without steel fiber.  As such, function f4(F) will be used to adjust the post yield stiffness and will be fitted from the experimental results of the sequential load tests.   Because of the shape of the knee of the tendon stress strain curve, the yield stress is not a well defined point as it is with mild steel.  As such the apparent yield stress for tendon embedded in SFC should not require modification to the 0.7fpu apparent yield value currently being used for tendon embedded in regular concrete.   

Equilibrium 

  

Same as RC 

 

Eq. 23

Eq. 25

Eq. 24

Eq. 27 

Eq. 28 

Eq. 26 

Eq. 30 

Eq. 29 

Eq. 31 

Eq. 32 

Eq. 35

Eq. 34

Eq. 33

Page 20: Vipu Exam R1

April 1, 2010    Written Exam for Dr. Vipu    Norman S.  Hoffman, PE  3651 Foremast. Dr. Galveston, TX 77554 Phone:  (409)‐621‐6740, Email:  [email protected] 

  

Page 20 of 29  

Constitutive Property 

SMM Equation for Reinforced Concrete (RC), including prestressed  Proposed SMM Equation for Steel Fiber Concrete (SFC), including prestressed Remarks

Compatibility 

 

Same as RC 

 

Poisson (Hsu‐Zhu)         

  

The Hsu‐Zhu ratios are presumed to be the same as RC, however, literature review for tests on un‐reinforced SFC (“plain” SFC) indicates that SFC tends to be increase confinement and this could influence (reduce) the Poisson ratio of plain SFC.  However, panel cracking (reinforced concrete and reinforced SFC) is usually so extensive at the target tensile strains (usually 1% or more) that that the effect may not be significant.       

For SFC, this could have effect on peak and post‐peak shear behavior.  If experimental peak shear strains are difficult to correlate with the analytic model, then the Hsu‐Zhu relation may need refinement.             

Uniaxial‐biaxial transformation  2

2112

121

21121 11

1

22112

12112

212 1

1

1

2221

22

122

2 cossin22

sincos

2221

22

122

2 cossin22

cossin

t . 

The uniaxial‐biaxial strain relationships are the same as for RC Note that the stress and strains in the compatibility and equilibrium equations are biaxial.  The key to a relatively simple solution algorithm is this straight‐forward transformation between uniaxial and biaxial strain.   

 

Eq. 37 

Eq. 38 

Eq. 36 

Eq. 41 

Eq. 40 

Eq. 39 

Eq. 45 

Eq. 44 

Eq. 43 

Eq. 42 

Page 21: Vipu Exam R1

April 1, 2010    Written Exam for Dr. Vipu    Norman S.  Hoffman, PE  3651 Foremast. Dr. Galveston, TX 77554 Phone:  (409)‐621‐6740, Email:  [email protected] 

  

Page 21 of 29  

Concrete Mixtures with Nanoparticles 

 

What are the types of nanoparticles used in concrete? 

Although there are many types of nanoparticles that can be added to concrete, research has 

generally focuses on three types of particles (Chung, 2004, Hui 2007, Gao 2009): 

a) Nanosilica (SiO2) 

b) Nanotitaniates (TiO2) 

c) Nanocarbon fibers  

Nanosilicates are spherical particles of SiO2 with a diameter on the order of 10‐9 m. Nanosilcates 

are popular because they are readily available as they are a byproduct of the extraction of 

metallic silica and alumina from electric arc furnaces.   

Nano carbon fibers are extremely short length of carbon fiber with diameters on the order of 

10‐9 m and aspect ratios ranging from (L/d) of 50 – 200.   

Properties of nanoparticle concrete that are being studied include: 

a) Increased Compressive strength 

b) Improved Tensile toughness, strength, and fatigue behavior 

c) Reduced Creep  

d) Electrical resistivity, particularly for nanaocarbon fibers. 

What factors must be considered in designing concrete mixtures with nanoparticles? 

Factors to be considered in designing mixes include: 

a) Dispersion due to high specific surface electrical charge 

b) Effect of dispersants on the concrete mix 

c) Influence of flocking or aggregation of nanoparticles and formation of inclusions or 

weak pockets 

d) Increase in density affects strength and creep for nanosilcate. 

e) Increase in water demand vs. strength and workability (see discussion item 3) 

Page 22: Vipu Exam R1

April 1, 2010    Written Exam for Dr. Vipu    Norman S.  Hoffman, PE  3651 Foremast. Dr. Galveston, TX 77554 Phone:  (409)‐621‐6740, Email:  [email protected] 

  

Page 22 of 29  

Dispersion: 

To minimize aggregation of nanoparticles in the cement matrix where inclusions or weakness 

could form, nanoparticle concrete additives must be thoroughly dispersed thoroughly and 

uniformly dispersed throughout the cement paste during mixing. 

Dispersants and special multi‐step mixing techniques and sequences are required for mixing 

nanoparticles and fibers in concrete due to their high specific surface energy.   High speed pre‐

mixing of small batches of nanoparticles or fibers in special “blenders” helps with dispersion, as 

does the use of chemical surfactants, such as liquid soap and superplasticizers.  Sonication is 

another method to disperse nanoparticles.  Soncation is the use of sound or ultrasound energy 

to agitate and mix the nanoparticles by breaking the inter‐particle attraction.   The un‐clumped 

particles are then free to disperse within the water and ultimately the concrete paste.    

Jo (2007), for example, used a 5 step procedure for mixing a 50 cubic inch batch of nanosilicate 

concrete:   

1) Mix nanoparticles with water at high speed for 1 minute (120 rpm) 

2) Cement was added and mixed at medium speed (80 rpm) for 30 seconds 

3) Sand was then added, gradually, at medium speed 

4) Superplasticizer was added and stirred at high speed for 30 seconds 

5) The mixture was allowed to rest for 90 seconds, then mixed for an additional minute at 

high speed.   

Creep:   

A more creep resistant concrete (long term) is desirable; however, current concrete design 

codes would need to be extended for applications where creep resistant concrete is used.  Long 

term creep influences residual steel forces in prestressed and post tensioned concrete 

structures significantly.  Serviceability considerations would be improved.   Particular attention, 

for example, would need to be paid to ACI sect. 18.4.  For example, section 18.4.2 limits on 

stress for structures with relatively high sustained service loadings could be increased for 

structures using low creep concrete.  

 

Page 23: Vipu Exam R1

April 1, 2010    Written Exam for Dr. Vipu    Norman S.  Hoffman, PE  3651 Foremast. Dr. Galveston, TX 77554 Phone:  (409)‐621‐6740, Email:  [email protected] 

  

Page 23 of 29  

What are the mechanisms that will explain the modified behavior of nanoparticle concrete? 

Mechanisms that explain nanoparticle behavior, particularly silicates, revolve around the 

increased homogeneity of Ca(OH)2 crystal growth during hydration.  Hydrate products 

crystallize around a nanoparticle “kernel” during hydration.  If the appropriate content of 

nanoparticles with respect to hydrate products is incorporated in the mix, the hydrate crystal 

growth will tend to be controlled and the resulting product will be more homogeneous.  This 

homogeneity makes the cement matrix more compact and thus improves density and reduces 

porosity.  This denser, more uniform matrix helps explain the improved flexural and fatigue 

properties found by researchers (Li 2002).     

The hardness of the hydrated Ca(OH)2 crystals has been studied by Ulm (2009) in order to 

determine how creep behavior is influenced.  The controlled growth crystals are denser and 

thus exhibit better creep performance.  Because of the more uniform crystal growth around the 

nano‐kernel, pores typically filled with water are now filled with these nanocrystals.  The more 

densely packed crystals inhibit C‐S‐H movement over time, thus reducing the movement 

associated with creep.   

Nanosilcia increased the water demand of the cement past.  When the mix is designed with the 

appropriate amount of water and super plasticizer, this increased hydration or pozzolanic 

reaction of the nanosilica extender is the mechanism that improves the compressive strength.  

Designing a mix using nanosilcia requires careful attention to water content.  Due to the specific 

surface area of the SiO2 nanoparticles the pozolanic reaction is more effective and efficient 

than with larger particles of the same material.  Higher nano SiO2 content must be 

accompanied by adjustments to the water content and super plasticizer (Jo 2007).  The higher 

hydration of the nanoparticles required additional water to avoid desiccation, however too 

much water reduced strength.  The right balance of water and superplasticizer is required when 

designing nanosilcia mixes.    

The mechanism by which carbon nanofibers operate to improve the flexural toughness and 

tensile characteristics of concrete (Chen 1992) are very much different from the chemical 

interaction behavior of nanosilicate particles.  The individual fibers act to hold the mortar 

matrix together longer by bridging microcracks.  Nanocarbon fibers bond to some extent to the 

cement, but improved chemical bonding can be achieved by treating the fibers with ozone gas.  

Page 24: Vipu Exam R1

April 1, 2010    Written Exam for Dr. Vipu    Norman S.  Hoffman, PE  3651 Foremast. Dr. Galveston, TX 77554 Phone:  (409)‐621‐6740, Email:  [email protected] 

  

Page 24 of 29  

This increases the surface oxygen concentration on the nanocarbon fibers and increases 

wetability and thus the degree of fiber dispersion (Chung, 2003).   

 

What are the important factors that have to be considered for the constitutive models for 

nanoconcrete materials? 

Factors to consider when developing constitutive models of nanoconcrete include the 

modification of the compressive stress strain curve.  Tests at U of H on carbon fiber 

nanoconcrete specimens (Gao, 2009), for example, indicate increased ductility in compression 

when compared to regular high strength concretes.  These tests were performed with carbon 

nanofiber contents ranging from 1% to 2.5% by volume.   

The smeared tensile stress strain curve also needs to be developed for nanoconcretes due to its 

increased toughness over normal concrete (Zhou, 2010). 

The modification to the existing set of constitutive equations for normal concrete (eg., the 

Softened Membrane Model framework) would likely be straightforward.   It would require 

materials test to determine the constitutive laws, but the general structure of each constitutive 

equation and solution method would generally be the same.     

 

How will you develop a constitutive model for these concrete materials? 

To develop constitutive models, uniaxial compression tests must be performed to determine 

the nanoconcrete’s stress strain curve (Gao, 2009).  Specifically, strength, peak and maximum 

strains, ductility and in particular the shape of the descending branch of the stress strain curve 

need to be determined.  This would be the un‐softened characteristic stress strain curve of the 

nanoconcrete.  To determine how tensile strain influences the peak compressive performance, 

the softening factors would need to be determined from tests in the Universal Element Testing 

Machine in the TC Hsu Structural Lab (Zhou, 2010).   

Since nanoparticles improve fatigue and flexural strength, additional testing needs to be done 

to develop the tensile properties of the material.  The post‐cracking smeared stress strain curve 

needs to be determined.  Since tensile ductility is enhanced, the shape and area under of the 

Page 25: Vipu Exam R1

April 1, 2010    Written Exam for Dr. Vipu    Norman S.  Hoffman, PE  3651 Foremast. Dr. Galveston, TX 77554 Phone:  (409)‐621‐6740, Email:  [email protected] 

  

Page 25 of 29  

smeared tensile strain curve will differ from that of regular concrete (larger area under the 

curve).  In order to determine this smeared curve, one will need to test specimens reinforced 

with rebar and loaded in uniaxial tension.  Tensile load would be applied to rebar embedded in 

and projecting from the ends of prismatic nanoconcrete specimens.  Foil strain gages should be 

applied at intervals along the length of the rebar to better determine the constitutive curve for 

the embedded rebar.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Page 26: Vipu Exam R1

April 1, 2010    Written Exam for Dr. Vipu    Norman S.  Hoffman, PE  3651 Foremast. Dr. Galveston, TX 77554 Phone:  (409)‐621‐6740, Email:  [email protected] 

  

Page 26 of 29  

Constitutive Model References: 

Belarbi, A. and Hsu, T. T. C. (1994), “Constitutive Laws of Concrete in Tension and Reinforcing Bars Stiffened by 

Concrete,” Structural Journal of the American Concrete Institute, Vol. 91, No. 4, pp. 465‐474. 

Belarbi,  A.  and  Hsu,  T.  T.  C.  (1995),  “Constitutive  Laws  of  Softened  Concrete  in  Biaxial  Tension‐Compression,” 

Structural Journal of the American Concrete Institute, Vol. 92, No. 5, pp. 562‐573. 

Chen, W.F. Constitutive Equations for Engineering Materials, Vol. 1: Elasticity and Modelling, Elsevier Publications, 1994. 

 Collins, M. P., Vecchio, F. J., and Mehlhorn, G. (1985), “An International Competition to Predict the Response of 

Reinforced Concrete Panels,” Canadian Journal of Civil Engineering, Ottawa, Vol. 12, No. 3, pp. 626‐644. 

Desayi, P. and Krishnan, S., Equation for the stress‐strain curve of concrete, ACI J., Vol. 61(1964)345‐350.  Dhonde, H.B., Mo, Y.L., and Hsu, T.C.  (2006), “Fiber Reinforcement in Prestressed Concrete Beams”, Texas 

Department of Transportation Report 0‐4819, March 2006.  

Gerstle, K.H. Simple formulation of biaxial concrete behaviour, ACI Journal, 78(1981)62‐68. 

Gopalaratnam, Shah, Softening Response of Plain Concrete in Direct Tension, ACI Journal, May‐June 1985.   

Hoffman (2009), Constitutive Properties of Steel Fiber Concrete, Proceedings of the October 2009 ASCE Texas 

Section Fall Meeting, Houston, TX. 

Hognestad,  Fundamental Concepts in Ultimate Load Design, Journal of the American concrete Institute, V 23, June 

1952. 

Hsu, T. T. C. (1993), Unified Theory of Reinforced Concrete, CRC Press, Inc., Boca Raton, FL, 336 pp. 

Hsu, T.T.C.  (2009), Unified Theory of Reinforced Concrete, 2nd. edition, CRC Press, Inc. Boca Raton, FL.   

Page 27: Vipu Exam R1

April 1, 2010    Written Exam for Dr. Vipu    Norman S.  Hoffman, PE  3651 Foremast. Dr. Galveston, TX 77554 Phone:  (409)‐621‐6740, Email:  [email protected] 

  

Page 27 of 29  

Hsu, T. T. C. and Zhang, L. X. (1996), “Tension Stiffening in Reinforced Concrete Membrane Elements,” Structural 

Journal of the American Concrete Institute, Vol. 93, No. 1, pp. 108‐115. 

Hsu, T. T. C. and Zhu, R. R. H. (2002), “Softened Membrane Model for Reinforced Concrete Elements in Shear,” 

Structural Journal of the American Concrete Institute, Vol. 99, No. 4, pp. 460‐469. 

Hu, Day, Dux, Biaxial Failure Model for Fiber Reinforced Concrete, Journal of Materials in Civil Engineering, 

November/December 2003.   

Kupfer,  Behavior of Concrete Under Biaxial Stress, ACI  Journal, August 1969. 

Limsuwan, K. (2006). “Shear of Steel Fiber Membrane Elements” Master’s Thesis,  

Department of Civil Engineering, University of Houston (supervised by Thomas T.C. Hsu). 

Mansour, M., Thomas T.C. Hsu, and Y.L. Mo.  2005.  “Constitutive Relationships of Reinforced Concrete with Steel 

Fibers.”  Research Report, Department of Civil and Environmental Engineering, University of Houston, 

Houston, TX. 

Pang, X. B. and Hsu, T. T. C.  (1995),  “Behavior of Reinforced Concrete Membrane Elements  in Shear,” Structural 

Journal of the American Concrete Institute, Vol. 92, No. 6, pp. 665‐679. 

Rao (2009), Shear Properties of Steel Fiber Concrete Girders, Proceedings of the October 2009 ASCE Texas Section 

Fall Meeting, Houston, TX.  

Stussi, F., It Ueber die Sicherheit des einfach bewehrten Eisenbeton‐Rechteck‐balkens, Publications, International Association for Bridge and Structural Engineering, Vol. 1, Zurich, April,1932, pp. 487‐495. 

 Tan, Murugappan, Paramasivam, Constitutive Relation for Steel Fibre Concrete Under Biaxial Compression, Cement 

and Composites, Vol. 16, 1994 

Page 28: Vipu Exam R1

April 1, 2010    Written Exam for Dr. Vipu    Norman S.  Hoffman, PE  3651 Foremast. Dr. Galveston, TX 77554 Phone:  (409)‐621‐6740, Email:  [email protected] 

  

Page 28 of 29  

Thomas, Ramaswamy, Mechanical Properties of Steel Fibre Reinforced Concrete, ASCE Journal of Materials in Civil 

Engineering, May 2007. 

Triana, Mansour, Biaxial Strength and Deformational Behavior of Plain and Steel Fiber Concrete, ACI Material 

Journal July August 1991.   

Vecchio, F. J. (2000), “Disturbed Stress Field Model for Reinforced Concrete: Formulation,” Journal of Structural 

Engineering, ASCE, Vol. 126, No. 9, Sept. 2000, pp. 1070‐1077. 

Vecchio, F. J. (2001), “Disturbed Stress Field Model for Reinforced Concrete: Implementation,” Journal of Structural 

Engineering, ASCE, Vol. 127, No. 1, Jan. 2001, pp. 12‐20. 

Wang,  J.,  Laskar, A., Mo, Y.L., Hsu, TC  (2006),  “Rational Shear Provisions  for AASHTO  LRFD Specifications”, Texas 

Department of Transportation Report 0‐4759,  2006 

Wang, P.T. Shah, S.P. and Naaman, A.E. Stress‐strain curves of normal and lightweight concrete in compression, ACI 

J., 75(1978)603‐611. 

K.J. William, and E.D. Warnke, Constitutive model for triaxial behaviour of concrete, Proceedings of the 

International Association for Bridge and Structural Engineering, ISMES,Bergamo, Italy, 1975, pp.19/1‐30. 

Yin, Hsu, Biaxial Tests of Plain and Fiber Concrete, ACI Materials Journal, Vol 83, 1989  

Zhu, R. H., Hsu, T. T. C., and Lee, J. Y. (2001), “Rational Shear Modulus for Smeared Crack Analysis of Reinforced 

Concrete,” Structural Journal of the American Concrete Institute, Vol. 98, No. 4, pp. 443‐450. 

Zhu, R. R. H., and Hsu, T. T. C. (2002), “Poisson Effect of Reinforced Concrete Membrane Elements,” Structural 

Journal of the American Concrete Institute, Vol. 99, No. 5, pp. 631‐640. 

Page 29: Vipu Exam R1

April 1, 2010    Written Exam for Dr. Vipu    Norman S.  Hoffman, PE  3651 Foremast. Dr. Galveston, TX 77554 Phone:  (409)‐621‐6740, Email:  [email protected] 

  

Page 29 of 29  

 

Nanoparticle References 

 Chung, D.D.L., Cement‐Matrix Structural Nanocomposites, Metals and Materials International, Vol. 10, No. 1, 2004   Gao, Di, Electrical Resistance of Carbon‐nanofiber concrete, Smart Structures and Materials, Vol 18, 2009  Hui‐gang, Xiao , Mechanical and sensing properties of structural materials with nanophase materials, Pacific 

Science Review, vol. 5, 2003  Jo, Byung‐Wan, Characteristics of cement mortar with nano‐SiO2 particles, Construction and Building Materials 21, 

2007  Li, Gengying, Properties of high‐volume fly ash concrete incorporating nano‐SiO2, Cement and Concrete Research 

34, 2004  Li, Hui, Abrasion resistance of concrete containing nano‐particles for pavement, Wear 260, 2006  Li, Hui, Flexural fatigue performance of concrete containing nano‐particles for pavement, International Journal of 

Fatigue 29, 2007  Shebl, S.S., Mechanical behavior of activated nano silicate filled cement binders, Journal of Material Science, Vol. 

44, 2009  

Ulm, Franz‐Josef, Proceedings of the National Academy of Sciences, June 15, 2009

Zhou, Junming,  Seismic Performance of framed Shear Walls with Carbon Nano fiber Concrete, Preceedings of the American Society of Civil Engineers Earth and Space Conference, Honolulu, HA, 2010