virtual process integration (vpi) - ntu singapore · nm6604 ntu–tum x. zhou 3 © 2019 level...

17
NM6604 NTU–TUM X. ZHOU 1 © 2019 Dr Zhou Xing Virtual Process Integration (VPI) Virtual Process Integration (VPI) NM6604: Semiconductor Process and Device Simulation Web: http://www.ntu.edu.sg/home/exzhou/Teaching/TUM-NM6604/ Office: S1-B1c-95 Phone: 6790-4532 Email: [email protected]

Upload: others

Post on 05-Jun-2020

7 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Virtual Process Integration (VPI) - NTU Singapore · NM6604 NTU–TUM X. ZHOU 3 © 2019 Level Representation Function Graphical y x Functional y = f(x) Boolean xy 01 10 Transistor

NM6604 NTU–TUM

X. ZHOU 1 © 2019

Dr Zhou Xing

Virtual Process Integration (VPI)Virtual Process Integration (VPI)

NM6604: Semiconductor Process and Device Simulation

Web: http://www.ntu.edu.sg/home/exzhou/Teaching/TUM-NM6604/

Office: S1-B1c-95Phone: 6790-4532Email: [email protected]

Page 2: Virtual Process Integration (VPI) - NTU Singapore · NM6604 NTU–TUM X. ZHOU 3 © 2019 Level Representation Function Graphical y x Functional y = f(x) Boolean xy 01 10 Transistor

NM6604 NTU–TUM

X. ZHOU 2 © 2019

Design–Manufacturing–Characterization–Simulation–Verification

EDA

VWFManufacturingRWF

Simulation TCAD

Frontend

Design ECAD

Characterization

SpecificationSpecification

Logic Design

Logic synthesis

Circuit Design

Netlist extraction

Backend

System Design

MaskCharacterization

LPEDRC

I-VC-V

Parameterextraction

I-V, C-V

SPICESPICE

Verification

Virtualwafer

Recipe

+

Wafer

=

SIMS, SRPCalibration

SPICESPICE

Verification

Parameter extraction

StructureDoping profile

Device Simulation

Process Simulation

I-V, C-VVerification

Layout Design

Layout extraction

CM

CM

Overall Picture: Chip Design and Wafer Fabrication

Page 3: Virtual Process Integration (VPI) - NTU Singapore · NM6604 NTU–TUM X. ZHOU 3 © 2019 Level Representation Function Graphical y x Functional y = f(x) Boolean xy 01 10 Transistor

NM6604 NTU–TUM

X. ZHOU 3 © 2019

GraphicalFunctionRepresentationLevel

y

xFunctional y = f(x)

Booleanx y0 11 0

Transistor [I] = [Y][V]

System

Technology

Logic

Circuit

Device

Device

2 = – /

ddt + • J – U= G

J = qµ n + qD n

Analytical Ids = f(Vgs, Vds, Vbs, W, L, T) Id

Vd

Vg

Multi-Level Representation

Page 4: Virtual Process Integration (VPI) - NTU Singapore · NM6604 NTU–TUM X. ZHOU 3 © 2019 Level Representation Function Graphical y x Functional y = f(x) Boolean xy 01 10 Transistor

NM6604 NTU–TUM

X. ZHOU 4 © 2019

Layout + Process = Chip

Page 5: Virtual Process Integration (VPI) - NTU Singapore · NM6604 NTU–TUM X. ZHOU 3 © 2019 Level Representation Function Graphical y x Functional y = f(x) Boolean xy 01 10 Transistor

NM6604 NTU–TUM

X. ZHOU 5 © 2019

Target–Variable Relationship

Device

Process

Spice: Model parameters, ...

Geometrical: Channel length, width, ...

Electrical: Supply voltage, substrate bias, ...

Digital: Delay, rise/fall time, drivability,off-state current, noise margin, ...

Analog: Voltage gain, cutoff frequency,slew rate, gain-bandwidth, ...

Structural: Oxide thickness, junction depth,sheet resistance, ...

Doping: Peak/surface concentration, ...

Electrical: Supply voltage, substrate bias, ...

Electrical: Threshold, transconductance,subthreshold swing, saturationcurrent, punchthrough current,junction capacitance, lifetime, ...

Physical: Potential, field, charge, current,carriers, velocity, ...

Oxidation: Temperature, time, ambient, ...

Implantation: Dose, energy, tilt, damage, ...

Diffusion: Defect, stress, OED, TED, ...

Layer: Oxide thickness, junction depth,sheet resistance, ...

Profile: Peak/surface concentration,projected range/straggle, ...

CircuitLevel Variables Targets

Page 6: Virtual Process Integration (VPI) - NTU Singapore · NM6604 NTU–TUM X. ZHOU 3 © 2019 Level Representation Function Graphical y x Functional y = f(x) Boolean xy 01 10 Transistor

NM6604 NTU–TUM

X. ZHOU 6 © 2019

MOSFET Operation: Due to Inversion Carrier Imref-Split

EFp = EF

Vcb

= qVdb

y = 0 y = L

Key to understanding MOSFET operation: Band diagram in the x direction along a cutline at (b) source-end (y = 0) and (c) drain-end (y = L).

• MOSFET at equilibrium (Vds = 0): no current flow even if channel is created at Vgs = Vt (s = 2F)

• When Vsb 0 (VSB > 0 in NMOS), electron imref will “split” from hole imref with qVsb = EFn – EFp, so s = 2F + Vsb.

• When Vds 0 (Vds > 0 in NMOS), holes are still at quasi-equilibrium (since no ‘source’ nor ‘drain’), so we can assume EFp = EF. However, electron imref will change from Vsb at source end to Vdb = Vsb + Vds at drain end relative to EF, and varying along the channel as Vcb(y) [‘c’ stands for ‘channel’].

• It is the gradient of Vcb(y) that drives electrons drifting/diffusing from source to drain along y.

Page 7: Virtual Process Integration (VPI) - NTU Singapore · NM6604 NTU–TUM X. ZHOU 3 © 2019 Level Representation Function Graphical y x Functional y = f(x) Boolean xy 01 10 Transistor

NM6604 NTU–TUM

X. ZHOU 7 © 2019

MOSFET Source-Referenced Threshold Voltage

MOSFET threshold voltage definition (source-referenced)We define the threshold voltage (Vt) to be the gate-to-source voltage (Vgs) at which source-end surface potential is equal to twice of the bulk Fermi potential (2F) with reference to source–bulk voltage Vsb.

2 2

2 2s F sb s F sb

t gs FB sb b s ox s FB sb b s F sb ox F sbV VV V V V Q C V V Q V C V

2

gs sb FB gb FB gf ox s g ox s sc ox s b ox s

A d ox s Si A s ox s

V V V V V V V Q C Q C Q C

qN X C q N C

where is the body factor.2 Si A oxq N C

Potential balance Gauss lawCharge balance

Charge-sheet approximation

Full-depletion approximation

22 2

s F sbt gs FB F sb FV

V V V V

0 02 2

sbt t FB F FV

V V V

0 2 2F sb Ft sb t VV V V

Body effect ― Threshold-voltage shift due to non-zero VsbFor NMOS, Vsb > 0 so that source/drain-to bulk diodes always reverse biased.

gs FB sb b ox sV V V Q C 2d Si s AX qN

Page 8: Virtual Process Integration (VPI) - NTU Singapore · NM6604 NTU–TUM X. ZHOU 3 © 2019 Level Representation Function Graphical y x Functional y = f(x) Boolean xy 01 10 Transistor

NM6604 NTU–TUM

X. ZHOU 8 © 2019

Regions of Operation: Transfer Characteristics

Vt

VtLinear

Quadratic

Exponential

Low gate–source bias (Vgs < Vt): No inversion layer; diffusion dominant. MOS behaves like a wide-base (long-channel) BJT with Ids exp[q(Vgs – Vt)/nkT], n = 1 + Cd/Cox.

High drain–source bias (Vds > Vdsat): Drain side “pinched-off”. MOS behaves like a current source.Low drain–source bias (Vds < Vdsat): Full channel. MOS behaves like a voltage-controlled resistor.

log

Page 9: Virtual Process Integration (VPI) - NTU Singapore · NM6604 NTU–TUM X. ZHOU 3 © 2019 Level Representation Function Graphical y x Functional y = f(x) Boolean xy 01 10 Transistor

NM6604 NTU–TUM

X. ZHOU 9 © 2019

Current–Voltage in Linear (Triode) Region

MOSFET analysis ― major assumptions (NMOS as example)

“GCA” – Gradual Channel Approximation: dEy/dy << dEx/dx

“Unipolar” – hole current can be neglected (EFp EF) in normal region (excluding breakdown)

Built-in voltages for the source/drain diodes can be ignored (long channel)

No recombination/generation and constant mobility

Current flows in the y direction only First-order equation derivation Charge-sheet approximation (CSA) “Pinned” surface potential at strong

inversion (2F) Constant bulk charge along channel Drift-current only in linear region

0 2s s cb F sby V y V V y 0 dsV V

,0 0

0

,

,

ds n drift n s

n i i

I y W J y dx W qn x y d dy dx

Q yW Q y dV dy qn x y dx

22

b

F s

si ox gb FB

ox gb FB

ox gs

F s

t

b bV

Q C V V

V y

V

C V V

Q

C V V

V

y

gb FB ox s g ox s b i ox sV V V Q C Q Q C

12ds n ox gs t ds ds

WI C V V V VL

0

dsV

ds n iWI Q y dVL

2 2FB F sb FtV V V

0 0 0~ s db ds

s sb

L L V V

s cbVdy d dV dV

,gs t gd tV V V V

Linear law (Ids is a linear function of Vgs) [“Sah equation”]:

2b ox F sbQ C V

Page 10: Virtual Process Integration (VPI) - NTU Singapore · NM6604 NTU–TUM X. ZHOU 3 © 2019 Level Representation Function Graphical y x Functional y = f(x) Boolean xy 01 10 Transistor

NM6604 NTU–TUM

X. ZHOU 10 © 2019

For , GCA is not valid. Also, , channel is said to be “pinched-off.” Vdsat is called saturation or pinch-off voltage, and the corresponding current is the saturation current:

Current–Voltage in Saturation (Pinch-off) Region

The peak of the linear current is reached when

Vt=1VCut-off

Saturation

Linear(Triode)

0ds ds n ox gs t dsdI dV C W L V V V

ds gs t dsatV V V V 0i dsatQ V V

212ds n ox gs t dsat

WI C V V IL

,gs t

gd t

V V

V V

Square law (Ids is a quadratic function of Vgs):

The “pinch-off” picture (Qi = 0 assumption) is not physically correct since it requires the field to be infinite at pinch-off and carriers travel with infinite drift velocity. A more correct picture is that Qi at pinch-off is very small but finite, with carriers drift under the large field in the pinch-off region at a saturated velocity.

y ds n iE y J y Q y

MOSFET first-order piece-wise linear/square-law model.

Page 11: Virtual Process Integration (VPI) - NTU Singapore · NM6604 NTU–TUM X. ZHOU 3 © 2019 Level Representation Function Graphical y x Functional y = f(x) Boolean xy 01 10 Transistor

NM6604 NTU–TUM

X. ZHOU 11 © 2019

Velocity Saturation and Saturation Current

Velocity–field relation ― piecewise model

Saturation field

Lateral-field mobility

v

EEsat

vsat

n

Bulk-Siproperty

~107 cm/s

1n

satsat

sat sat

E E EE Ev

v E E

21

n sat satsat sat

sat sat n

E vv EE E

Saturation current

12ds eff ox gs t b ds ds

WI C V V A V VL

1n

effds sat effV E L

dsat sat sat sat ox gs t b dsatI Wv Q Wv C V V A V

(1)

(2)

(1)(Vdsat) = (2): sat eff gs t

dsatgs t b sat eff

E L V VV

V V A E L

2

gs tdsat sat ox

gs t b sat eff

V VI Wv C

V V A E L

gs tV V 0L

Linear!

112 2b

F sb

AV

1

nds i

sat

EI y WQ yE E

2b ox F sbQ C V V

11ds i nsat

dV dVI y WQ yE dy dy

2i ox gb FB F sb bQ C V V V V Q

(Amplitude)

Page 12: Virtual Process Integration (VPI) - NTU Singapore · NM6604 NTU–TUM X. ZHOU 3 © 2019 Level Representation Function Graphical y x Functional y = f(x) Boolean xy 01 10 Transistor

NM6604 NTU–TUM

X. ZHOU 12 © 2019

Gate Length, L

Thre

shol

d Vo

ltage

, Vt

short

longSCE

SCE

LL1 L2

L1 “>” L2

0.25 m

0.13 m

0.15 0.2

Short-channel effect (SCE) technology dependent (depends on where the device “sits” on the Vt – L curve, not the actual dimension)

Technology scaling optimization for each technology node

Long-Channel or Short-Channel?

Page 13: Virtual Process Integration (VPI) - NTU Singapore · NM6604 NTU–TUM X. ZHOU 3 © 2019 Level Representation Function Graphical y x Functional y = f(x) Boolean xy 01 10 Transistor

NM6604 NTU–TUM

X. ZHOU 13 © 2019

Charge-Sharing Model: Vt “Roll-Off”

o

n+

LeffTox

Xd

Vb

VdVs

Vg

Qb

o o

o

n+ NsdXj

0

W

Q'b

Simple “Triangle” Model

Charge shared by the gate/drain

' 2

' '

1

B A eff d d

B A eff d

b dB

b B eff

Q qN W L X X

Q qN W L X

Q XQQ Q L

Charge-sharing model Without charge-sharing

With charge-charing2t FB bm ox FV V Q C

' ' 2bmt FB ox FV V Q C

'' 1

42

bm bm bm

bm

dmt t t

ox ox eff

A dm dm Si F ox

ox ox e g jff ox

Q Q Q XV V VC Q C L

qN X X TT L L X

2eff g jL L X Lg

2 2dm Si F sb AX V qN

ox ox oxC T bm A dmQ qN X

Lg

Vt

Short-channel effect (SCE):Vt “roll-off”

Vt

~ 0.7

Total bulkcharge:

Bulk chargeper unit area:

(Leff)

Page 14: Virtual Process Integration (VPI) - NTU Singapore · NM6604 NTU–TUM X. ZHOU 3 © 2019 Level Representation Function Graphical y x Functional y = f(x) Boolean xy 01 10 Transistor

NM6604 NTU–TUM

X. ZHOU 14 © 2019

DIBL and Reverse SCE: Vt “Roll-Up”

o

n+

LeffTox

Xd

Vb

VdVs

Vg

Qb

o o

o

n+ NsdXj

0

W

Q'b

Charge shared by the drain

Lg

Lg

Vt

Drain-induced barrier lowering:DIBL

VDIBLVt0

Vts

Vt0

Lg

Vt

Vt0

Reverse SCE: “Halo”

y

NA

“Halo”

y

Page 15: Virtual Process Integration (VPI) - NTU Singapore · NM6604 NTU–TUM X. ZHOU 3 © 2019 Level Representation Function Graphical y x Functional y = f(x) Boolean xy 01 10 Transistor

NM6604 NTU–TUM

X. ZHOU 15 © 2019

Summary of Important Equations

Threshold voltage Long-channel (1D theoretical model)

Short-channel (triangle charge-sharing model)

Drain current Linear

Saturation

12ds n ox gs t b ds ds

WI C V V A V VL

2

gs tdsat sat ox

gs t b sat eff

V VI Wv C

V V A E L

22 2

s F sbt gs FB F sb FV

V V V V

0 0 _ 0 0 _4

2Si F ox

t g t long t t longox g j

TV L V V VL X

2 Si A oxq N C ln AF

i

NkTq n

2FB MS ox ox M g F ox oxV Q C E Q C

ox ox oxC T

2 1gs t th ds thV V nv V v

ds n d thWI C v e eL

Subthreshold

Short-channel DIBL

0DIBL g t g ts gV L V L V L

2; long-channel: quadratic

0; short-channel: linear

gs t eff

gs t eff

V V L

V V L

1 d oxn C C

2 2

d Si dm

ox

F sb

C XC

V

Page 16: Virtual Process Integration (VPI) - NTU Singapore · NM6604 NTU–TUM X. ZHOU 3 © 2019 Level Representation Function Graphical y x Functional y = f(x) Boolean xy 01 10 Transistor

NM6604 NTU–TUM

X. ZHOU 16 © 2019

Gate-Controlled Drift (“ON”) and Diffusion (“OFF”)

0 20 40 60 80 100

E i =

qV

c(y)

(eV)

-1.5

-1.0

-0.5

0.0

S D

Vgs = 0.4 V

2 V

0 V

1 V

Diffusion

Drift

VdVd'Vs'

Vg

Vd'

n+ n+

"Pin

ch-o

ff"

(Vgs = 0.2 V)

Vs'Vs

x = Lx = 0

Page 17: Virtual Process Integration (VPI) - NTU Singapore · NM6604 NTU–TUM X. ZHOU 3 © 2019 Level Representation Function Graphical y x Functional y = f(x) Boolean xy 01 10 Transistor

NM6604 NTU–TUM

X. ZHOU 17 © 2019

Solid: Vds = 0.1 V (Vbs = 0)Dotted: Vds = 2.5 V (Vbs = 0)Dashed: Vds = 0.1 V (Vbs = 2.7 V)

Gate Voltage, Vgs (V)0.0 0.5 1.0 1.5 2.0 2.5

Dra

in C

urre

nt, I

ds (A

)

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

Dra

in C

urre

nt, I

ds (m

A)

Tran

scon

duct

ance

, gm

(mS)

0.0

0.5

1.0

1.5

Vt0

Icrit

Vts

gm

Ids

Vt0(Vbb)

L = 0.2 mW = 20 m

Ids

IcritIoffs

Ion

Sts

gms

Ioff0

St0

Threshold Voltage Definition (Icrit@Vt0)