vivien silicon photonics source

15
http://silicon-photonics.ief.u-psud.fr/ Laurent Vivien Laser on silicon 1 courtesy: Blas Garrido

Upload: shriraam-sundaram

Post on 05-Dec-2015

253 views

Category:

Documents


4 download

DESCRIPTION

PPT of the few chapters of the author

TRANSCRIPT

Page 1: Vivien Silicon Photonics Source

http://silicon-photonics.ief.u-psud.fr/ Laurent Vivien

Laser on silicon

1

courtesy: Blas Garrido

Page 2: Vivien Silicon Photonics Source

http://silicon-photonics.ief.u-psud.fr/ Laurent Vivien

Laser on silicon

Group IV materials …. Indirect bandgap materials….

What are the potentialities of such materials?

Erbium doped silicon nanocrystalsStrained germanium to go towards a pseudo direct gap

materialGe/SiGe heterostructures…

III-V SC on silicon Is it a CMOS compatible technology?

2

Page 3: Vivien Silicon Photonics Source

http://silicon-photonics.ief.u-psud.fr/ Laurent Vivien

Germanium laser

Demonstration of optical gain in strained Ge

Demonstration of electro-luminescence

Demonstration of the first Ge laser

3

“The first Ge laser”; J. Liu, X. Sun, L.C. Kimerling, J. Michel : Presentation at Group IV photonics – San Francisco (September 2009).

Page 4: Vivien Silicon Photonics Source

http://silicon-photonics.ief.u-psud.fr/ Laurent Vivien

Gemanium laser

4

Page 5: Vivien Silicon Photonics Source

http://silicon-photonics.ief.u-psud.fr/ Laurent Vivien

III-V on silicon

Numerous works did and to do…

5

J. Van Campenhout et al., Optics Express,15(11),p.6744-6749(2007)

Page 6: Vivien Silicon Photonics Source

http://silicon-photonics.ief.u-psud.fr/ Laurent Vivien

Option beta -

6

Use wire-bonding to connect chips

Not a waferscale approach

Not compatible with micro-electronics packaging

Page 7: Vivien Silicon Photonics Source

http://silicon-photonics.ief.u-psud.fr/ Laurent Vivien

PhotonicsTransistors

Photonics-electronics integration

Front-end fabrication

Very low parasitics Custom SOI, specific libraries process co-integration

7

Page 8: Vivien Silicon Photonics Source

http://silicon-photonics.ief.u-psud.fr/ Laurent Vivien

Front-end approach

8

Page 9: Vivien Silicon Photonics Source

http://silicon-photonics.ief.u-psud.fr/ Laurent Vivien

CMOS front-end monolithic nanophotonicsintegration – IBM approach

9

Advantages:

Deeply scaled NanophotonicsMost dense integration with CMOSUltra-low power optical interconnectsSame mask set, standard processingSame design environment (e.g. Cadence) Same EDA tools and design flowPossible in-line system-level testing

Nanophotonics sharing Si layer with FET body

Page 10: Vivien Silicon Photonics Source

http://silicon-photonics.ief.u-psud.fr/ Laurent Vivien

Photonics

TransistorsPhotonicsTransistors

Photonics-electronics integration

Front-end fabrication

Very low parasitics Custom SOI, specific libraries process co-integration

Back-end fabrication

On top of CMOS or in metal layers Serial process Compound yield Thermal budget < 400C

10

Page 11: Vivien Silicon Photonics Source

http://silicon-photonics.ief.u-psud.fr/ Laurent Vivien11

Page 12: Vivien Silicon Photonics Source

http://silicon-photonics.ief.u-psud.fr/ Laurent Vivien

Photonics-electronics integration

12

Photonics

TransistorsPhotonicsTransistors

Front-end fabrication

Very low parasitics Custom SOI, specific libraries process co-integration

Back-end fabrication

On top of CMOS or in metal layers Serial process Compound yield Thermal budget < 400C

3D integration Separate processes No change in CMOS Front-End No thermal budget!  Other layers: MEMS, antennas Higher (but reasonable) parasitics

Transistors

Photonics

Page 13: Vivien Silicon Photonics Source

http://silicon-photonics.ief.u-psud.fr/ Laurent Vivien

3D integration

13

CMOSwafer

transistorsmetal interconnects

FC

Modulator

AWG

Ge PD

InP source

Pad

3D integration Not depending on the

specific node used to produce the electronic wafer

Germanium Germanium

Si rib waveguide Germanium PD Flip grating coupler AWG on CMOS

Page 14: Vivien Silicon Photonics Source

http://silicon-photonics.ief.u-psud.fr/ Laurent Vivien

Conclusion

Photonic links may replace copper links, even for very short distances

Integration on silicon is key To reach competitive cost To reduce size and power consumption while scaling up

bandwidth A full design, fabrication and integration chain is under

construction High performance building blocks demonstrated Versatile photonics-electronics integration process

Complex circuits are under development

14

Page 15: Vivien Silicon Photonics Source

http://silicon-photonics.ief.u-psud.fr/ Laurent Vivien

Main challenges

Silicon photonics is still in its infancy and is facing several challenges: Automated design flow Laser: yield, reliability, temperature

Integrated, hybrid assembly or external ? Modulator: footprint, driving voltage, power consumption Process integration Integration of complex circuits: thermal, electrical, photonic

crosstalk/feedback Photonic-electronic integration scheme

Front end, 3D wafer-wafer integration, 3D chip to wafer Packaging: RF, optical, thermal management

Keys for development:

Reliability at wafer scale Driving voltage of modulator Power consumption Integration cost Packaging

15