vlsi in neural

Upload: kr-prajapat

Post on 06-Apr-2018

229 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/3/2019 Vlsi in Neural

    1/15

    Analog VLSI circuits

    for spiking neural networks

    Giacomo Indiveri

    Neuromorphic Cognitive Systems group

    Institute of Neuroinformatics

    University of Zurich and ETH Zurich

    September 17, 2009

    G.Indiveri (NCS @ INI) ICANN09 Tutorial 1 / 78

    Custom VLSI implementations of neural networks

    Early attempts

    The idea of making custom analog VLSI implementations of neural networks

    dates back to the late 80s - early 90s:

    [Holler et al. 1989, Satyanarayana et al. 1992, Hammerstrom 1993, Vittoz 1996]

    General purpose computing

    Full-custom analog

    implementation

    Neural network accelerator

    PC-boards

    Competing with Intel steamroller

    Communication - bandwidth

    limited

    Difficult to program

    Current research

    Technological progress

    Power-dissipation/computational

    power

    Application-specific focus

    Embedded system integration

    G.Indiveri (NCS @ INI) ICANN09 Tutorial 3 / 78

    Silicon neuron designs

    Many VLSI models of spiking neurons have been developed in the past, and

    many are still being actively investigated:

    Most designs can be traced back to one of two types of silicon neurons

    G.Indiveri (NCS @ INI) ICANN09 Tutorial 4 / 78

    Silicon neural network characteristics

    Above threshold (strong inversion)

    Mixed analog/digital

    Rate-based

    Real-time

    Conductance-based

    Large-scale, event-based

    networks

    Below threshold (weak inversion)

    Fully analog

    Spiking

    Accelerated-time

    Integrate-and-Fire

    Small-scale, hard-wired

    G.Indiveri (NCS @ INI) ICANN09 Tutorial 5 / 78

    http://ncs.ethz.ch/http://ncs.ethz.ch/http://ncs.ethz.ch/http://ncs.ethz.ch/http://ncs.ethz.ch/http://ncs.ethz.ch/http://ncs.ethz.ch/http://ncs.ethz.ch/
  • 8/3/2019 Vlsi in Neural

    2/15

    Most designs can be traced back to one of two types of silicon neurons

    Why subthreshold neuromorphic VLSI

    Exploit the physics of silicon to reproduce the

    bio-physics of neural systems.

    G.Indiveri (NCS @ INI) ICANN09 Tutorial 6 / 78

    MOSFETs in subthreshold

    Vg

    Vs

    Vd

    Ids n-FET subthreshold transfer function

    Ids = I0enVg/UT

    eVs/UTeVd/UT

    where

    I0 denotes the nFET current-scaling parameter

    n denotes the nFET subthreshold slope factor

    UT the thermal voltage

    Vg the gate voltage, Vs the source voltage, and Vd the drain voltage.

    The current is defined to be positive if it flows from the drain to the source

    G.Indiveri (NCS @ INI) ICANN09 Tutorial 9 / 78

    Diffusion and saturation

    If

    Vg

    Vg

    Vs

    Vs

    Vd

    Vd

    IfIr

    Ir

    VE Qs Qd

    Ids = I0enVg/UT

    eVs/UTeVd/UT

    is equivalent to:

    Ids = I0e

    VgUT Vs

    UT I0e

    VgUT

    VdUT

    Ids = If Ir

    If Vds > 4UT the Ir term becomes negligible,and the transistor is said to operate in the

    saturation regime:

    Ids = I0enVg/UTVs/UT

    G.Indiveri (NCS @ INI) ICANN09 Tutorial 10 / 78

    Exponential voltage dependence

    Subthreshold n-FET

    0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

    10-12

    10-11

    10-10

    10-9

    10-8

    10-7

    10-6

    10-5

    10-4

    10-3

    10-2

    Ids(A)

    Vgs (V)

    above threshold

    subthreshold

    G.Indiveri (NCS @ INI) ICANN09 Tutorial 11 / 78

    http://ncs.ethz.ch/http://ncs.ethz.ch/http://ncs.ethz.ch/http://ncs.ethz.ch/http://ncs.ethz.ch/http://ncs.ethz.ch/http://ncs.ethz.ch/http://ncs.ethz.ch/http://ncs.ethz.ch/http://ncs.ethz.ch/
  • 8/3/2019 Vlsi in Neural

    3/15

    n-FETs and p-FETs

    In Complementary Metal-Oxide Semiconductor (CMOS) technology, there are

    two types of MOSFETs: n-FETs and p-FETs

    Vg

    Vd

    Vs

    Vg

    Vs

    Vd

    Vb

    In traditional CMOS circuits, all n-FETs have the common bulk potential (Vb)

    connected to Ground (Gnd), and all p-FETs have a common bulk potential

    (typically) connected to the power supply rail (Vdd).

    The corresponding (complementary) equation for the p-FET is

    Ids = I0ep(VddVg)/UT

    e(VddVs)/UTe(VddVd)/UT

    G.Indiveri (NCS @ INI) ICANN09 Tutorial 12 / 78

    One, two, and three transistor circuits

    Ideal current source

    I out

    Vin

    Vd

    Inverting amplifier

    Vin Vout

    Current-mirror

    M 2M1

    I outI in

    Differential pair

    Vbn

    V1 V2M3

    M 1

    M 2

    I 1 I 2

    Vs

    G.Indiveri (NCS @ INI) ICANN09 Tutorial 14 / 78

    The differential-pair

    I1 = I0eV1Vs

    UT

    I2 = I0eV2Vs

    UT

    Ib = I1 + I2 = I0eVbUT

    eVsUT = Ib

    I01

    eV1UT + e

    V2UT

    I1 = Ibe

    V1UT

    eV1UT + e

    V2UT

    I2 = Ibe

    V1UT

    eV1UT + e

    V2UT

    Vbn

    V1 V2M3

    M 1

    M 2

    I 1 I 2

    Vs

    0.3 0.2 0.1 0 0.1 0.2 0.30

    0.2

    0.4

    0.6

    0.8

    1x 10

    8

    V1V

    2(V)

    I1,

    I2(A)

    I1

    I2

    G.Indiveri (NCS @ INI) ICANN09 Tutorial 15 / 78

    The transconductance amplifier

    Vb

    V1 V2

    Ib

    I1 I2

    Vs

    Vdd Vdd

    VoutIout

    M1 M2

    M3

    M4 M5

    +

    Vb

    VoutIout

    V2

    V1

    Iout = Ibtanh

    2UT(V1V2)

    In the linear region (|V1V2|< 200mV):

    Iout gm(V1V2)

    where

    gm =Ib

    2UT

    is a tunable conductance.

    G.Indiveri (NCS @ INI) ICANN09 Tutorial 16 / 78

    http://ncs.ethz.ch/http://ncs.ethz.ch/http://ncs.ethz.ch/http://ncs.ethz.ch/http://ncs.ethz.ch/http://ncs.ethz.ch/http://ncs.ethz.ch/http://ncs.ethz.ch/http://ncs.ethz.ch/http://ncs.ethz.ch/http://ncs.ethz.ch/http://ncs.ethz.ch/http://ncs.ethz.ch/http://ncs.ethz.ch/http://ncs.ethz.ch/
  • 8/3/2019 Vlsi in Neural

    4/15

    What is a synapse?

    In 1897 Charles Sherrington

    introduced the term synapse to

    describe the specialized

    structure at the zone of contact

    between neurons as the point

    in which one neuroncommunicateswith another.

    2005 winner of the Science and Engineering

    Visualization Challenge.

    by G. Johnson, Medical Media, Boulder, CO.

    G.Indiveri (NCS @ INI) ICANN09 Tutorial 19 / 78

    Synapses in the nervous system

    GABA

    Glutammate

    Eex(Na+, ...)

    Einh(K+, Cl, ...)

    CmemGl

    Vmem

    Electrical | Chemical

    Excitatory | Inhibitory

    Depressing | Facilitating

    AMPA | NMDA

    . . .

    G.Indiveri (NCS @ INI) ICANN09 Tutorial 20 / 78

    Synaptic transmission

    In chemical synapses the presynaptic and

    postsynaptic membranes are spearated by

    extracellular space.

    The arrival of a presynaptic action potential

    triggers the release of neurotransmitter in theextracellular space.

    The neurotransmitters react with the

    postsynaptic receptors and depolarize the cell.

    Chemical synaptic transmission is

    characterized by specific temporal dynamics.

    G.Indiveri (NCS @ INI) ICANN09 Tutorial 21 / 78

    EPSC and EPSP

    , , ,

    .-

    .

    .

    . .0 - :

    .0 0 . .

    -. -

    -i ti t t i i -

    . .i i i ti ti i it ti t i t t ti t 0

    0 i t - t t - itit 0 t t t , t i t , t

    t i ti t tt i 0 0 t i t / t ti

    - .-

    - - -0 0 . -

    . .

    -

    Superimposed excitatory

    post-synaptic currents (EPSCs)

    recorded in a neuron at different

    membrane potentials (from Sacchi et

    al., 1998).

    Excitatory post-synaptic potential

    (EPSP) in response to multiple

    pre-synaptic spikes (from Nicholls et al.

    1992).

    G.Indiveri (NCS @ INI) ICANN09 Tutorial 22 / 78

    http://www.sciencemag.org/sciext/vis2005/show/slide1.dtlhttp://www.sciencemag.org/sciext/vis2005/show/slide1.dtlhttp://ncs.ethz.ch/http://www.sciencemag.org/sciext/vis2005/show/slide1.dtlhttp://www.sciencemag.org/sciext/vis2005/show/slide1.dtlhttp://ncs.ethz.ch/http://ncs.ethz.ch/http://www.sciencemag.org/sciext/vis2005/show/slide1.dtlhttp://ncs.ethz.ch/http://ncs.ethz.ch/http://ncs.ethz.ch/http://ncs.ethz.ch/http://ncs.ethz.ch/http://www.sciencemag.org/sciext/vis2005/show/slide1.dtlhttp://www.sciencemag.org/sciext/vis2005/show/slide1.dtl
  • 8/3/2019 Vlsi in Neural

    5/15

    Neural network models

    In classical neural network theory

    signals are (tipically) continuous values that represent the neurons mean

    firing rate,

    neurons implement a saturating non-linearity transfer function (S) on the

    inputs weightedsum,

    the synapse implements a multiplication between the neurons input

    signal (Xi) and its corresponding synaptic weight (wi).

    G.Indiveri (NCS @ INI) ICANN09 Tutorial 24 / 78

    VLSI synapses in classical neural networks

    The role of the VLSI synapse in implementations of classical neural network

    models is that of a multiplier.

    Multiplying synaptic circuits have been implemented using a wide range of

    analog circuits, ranging from the single MOS-FETs to the Gilbert multiplier.

    Iin1 Iin2

    Ib

    I1 I2

    Figure: Schematic of half of a Gilbert multiplier. This circuit multiplies Iin1 and Iin2 by Ibif Iin1 + Iin2 = Ib.

    G.Indiveri (NCS @ INI) ICANN09 Tutorial 26 / 78

    VLSI synapses in pulse-based neural networks

    Vdd

    Vmem

    Cmem

    WiIWi Vi =

    IWi

    Cmemt

    In pulse-based neural networks the weightedcontribution of a synapse can be

    implemented using a single transistor.

    In this case p-FETs implement excitatory synapse, and n-FETs implement

    inhibitory synapses.

    The synaptic weight can be set by changing the Wi bias voltage or the tduration.

    G.Indiveri (NCS @ INI) ICANN09 Tutorial 27 / 78

    Linear pulse integrators

    A linearintegrator is a linear low-pass filter. Its impulse response should be a

    decaying exponential.

    With VLSI and subthreshold MOSFETS its fairly easy to implement

    exponential voltage to current conversion, and linear voltage increase or

    decrease over time.

    Vdd

    Vg

    C

    Vc

    Id

    Id = Cddt

    Vc

    Vg(t)

    Id(t)

    Vdd

    Id(t) = I0e

    UT(VddVg(t))

    G.Indiveri (NCS @ INI) ICANN09 Tutorial 28 / 78

    http://ncs.ethz.ch/http://ncs.ethz.ch/http://ncs.ethz.ch/http://ncs.ethz.ch/http://ncs.ethz.ch/http://ncs.ethz.ch/http://ncs.ethz.ch/http://ncs.ethz.ch/
  • 8/3/2019 Vlsi in Neural

    6/15

    Linear charge-and-discharge integrator

    Vw

    M

    Mw

    V

    Msyn

    Isyn

    Vsyn

    Csyn

    Mpre

    Iw

    I

    Iw = I0eVwUT , c

    CsynUT

    I

    I = I0e(VddV)

    UT , dCsynUT

    I

    Ic = Cd

    dt(VddVsyn)

    Isyn = I0e(V

    ddV

    syn)

    UT

    Isyn(t) =

    Isyne+(tti )

    c (charge phase)

    I+syne(tt+i )d (discharge phase)

    Isyn(t) = I0e cft(c+d)

    cdt, with f =

    nt

    , f=

    IgIin

    I

    t, =

    1

    t+ ISI

    G.Indiveri (NCS @ INI) ICANN09 Tutorial 32 / 78

    http://ncs.ethz.ch/http://ncs.ethz.ch/http://www.ini.unizh.ch/~giacomo/papers/pdf/Bartolozzi_Indiveri07.pdfhttp://ncs.ethz.ch/http://ncs.ethz.ch/http://ncs.ethz.ch/http://ncs.ethz.ch/http://www.ini.unizh.ch/~giacomo/papers/pdf/Bartolozzi_Indiveri07.pdfhttp://ncs.ethz.ch/http://ncs.ethz.ch/
  • 8/3/2019 Vlsi in Neural

    7/15

    DPI measured response

    0 0.05 0.1 0.150

    50

    100

    150

    200

    250

    300

    Time (s)

    EPS

    C(

    nA)

    Vw

    =420mV

    Vw

    =440mV

    Vw

    =460mV

    0 0.5 1 1.5 2 2.5 3 3.50

    50

    100

    150

    200

    250

    300

    350

    400

    450

    Time (s)

    EPS

    C(

    nA)

    Vw

    =300mV

    Vw

    =320mV

    Vw

    =340mV

    G.Indiveri (NCS @ INI) ICANN09 Tutorial 33 / 78

    DPI response to spike-trains

    50 100 150 2000

    20

    40

    60

    80

    100

    120

    Input Frequency (Hz)

    OutputFrequency(Hz)

    Vw

    =1.30V

    Vw

    =1.33V

    Vw

    =1.35V

    G.Indiveri (NCS @ INI) ICANN09 Tutorial 34 / 78

    Short-term depression

    Vw

    Cd

    Va

    Vd Ir

    (C. Rasche, R. Hahnloser, 2001)

    G.Indiveri (NCS @ INI) ICANN09 Tutorial 35 / 78

    Short-term depression

    Vd

    Vx

    Vpre

    C

    Va

    IrIsyn

    C2

    IdM1

    M3

    M2M4

    M5

    M6 M7

    Vgain

    Vpre

    0.04 0.06 0.08 0.1 0.12 0.14 0.16

    0.1

    0.15

    0.2

    0.25

    0.3

    0.35

    Time (s)

    Vx

    (V) Update

    Slow recovery

    Fast recoveryV

    d=0.26 V

    Vd=0.28 V

    Vd=0.3 V

    de

    f

    $g i

    dp

    S

    @

    Sr S t

    f

    $g i

    St

    (M. Boegerhausen, P. Suter, and S.-C. Liu 2003)

    G.Indiveri (NCS @ INI) ICANN09 Tutorial 36 / 78

    https://www.ini.uzh.ch/node/11958https://www.ini.uzh.ch/node/11958http://ncs.ethz.ch/http://ncs.ethz.ch/https://www.ini.uzh.ch/node/11958http://ncs.ethz.ch/https://www.ini.uzh.ch/node/11918http://ncs.ethz.ch/http://ncs.ethz.ch/https://www.ini.uzh.ch/node/11918http://ncs.ethz.ch/https://www.ini.uzh.ch/node/11958http://ncs.ethz.ch/http://ncs.ethz.ch/
  • 8/3/2019 Vlsi in Neural

    8/15

    STDP and beyond

    Alternative spike-driven learning algorithm

    Spike-driven weight change depends on the value of

    the post-synaptic neurons membrane potential, and on

    its recent spiking activity.

    Fusi et al. 2000; Brader et al. 2007

    Recipe for efficient VLSI implementation

    1 bistability: use two synaptic states;

    2 redundancy: implement many synapses that see

    the same pre- and post-synaptic activity

    3 stochasticity & inhomogeneity: induce LTP/LTD

    only in a subset of stimulated synapses.

    - Slow learning: only a fraction of the synapses memorize the pattern.

    + The theory is matched to the technology: use binary states, exploit

    mismatch and introduce fault tolerance by design.

    G.Indiveri (NCS @ INI) ICANN09 Tutorial 37 / 78

    Spike-driven learning in VLSI I

    J. Arthur and K. Boahen.

    Learning in silicon: Timing is everything.

    In Y. Weiss, B. Schlkopf, and J. Platt, editors, Advances in Neural Information Processing Systems 18. MIT Press, Cambridge, MA,

    2006.

    A. Bofill-i Petit and A. F. Murray.

    Synchrony detection and amplification by silicon neurons with STDP synapses.

    IEEE Transactions on Neural Networks, 15(5):12961304, September 2004.

    E. Chicca, D. Badoni, V. Dante, M. DAndreagiovanni, G. Salina, S. Fusi, and P. Del Giudice.

    A VLSI recurrent network of integrateandfire neurons connected by plastic synapses with long term memory.

    IEEE Transactions on Neural Networks, 14(5):12971307, September 2003.

    P. Hfliger, M. Mahowald, and L. Watts.

    A spike based learning neuron in analog VLSI.

    In M. C. Mozer, M. I. Jordan, and T. Petsche, editors, Advances in neuralinformation processing systems, volume 9, pages 692698.

    MIT Press, 1997.

    G. Indiveri, E. Chicca, and R. Douglas.

    A VLSI array of low-power spiking neurons and bistable synapses with spiketiming dependent plasticity.

    IEEE Transactions on Neural Networks, 17(1):211221, Jan 2006.

    S. Mitra, G. Indiveri, and S. Fusi.

    Learning to classify complex patterns using a VLSI network of spiking neurons.

    In J.C. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Advances in Neural Information Processing Systems 20, pages 10091016,

    Cambridge (MA), 2008. MIT Press.

    G.Indiveri (NCS @ INI) ICANN09 Tutorial 38 / 78

    Neurons . . . in a nutshellA quick tutorial

    Complexity

    Real Neurons

    Conductance based models

    Integrate and fire models

    Rate based models

    Sigmoidal units Linear threshold units

    G.Indiveri (NCS @ INI) ICANN09 Tutorial 40 / 78

    Neurons of the world

    (adapted from B. Mel, 1994)

    G.Indiveri (NCS @ INI) ICANN09 Tutorial 42 / 78

    http://www.mitpressjournals.org/doi/abs/10.1162/neco.1994.6.6.1031http://ncs.ethz.ch/http://ncs.ethz.ch/http://ncs.ethz.ch/http://www.mitpressjournals.org/doi/abs/10.1162/neco.1994.6.6.1031http://ncs.ethz.ch/http://ncs.ethz.ch/http://www.mitpressjournals.org/doi/abs/10.1162/neco.1994.6.6.1031http://ncs.ethz.ch/http://ncs.ethz.ch/http://ncs.ethz.ch/
  • 8/3/2019 Vlsi in Neural

    9/15

    Equivalent Circuit

    GABA

    Glutammate

    Eex(Na+, ...)

    Einh(K+, Cl, ...)

    CmemGl

    Vmem

    If excitatory input currents are relatively small, the neuron behaves exactly like

    a first order low-pass filter.

    G.Indiveri (NCS @ INI) ICANN09 Tutorial 43 / 78

    Spike generating mechanism

    ENa

    CmemGl

    Vmem

    gNa

    EK

    gK

    If the membrane voltage increases above a certain threshold, a

    spike-generating mechanism is activated and an action potential is initiated.

    G.Indiveri (NCS @ INI) ICANN09 Tutorial 44 / 78

    Spike properties

    Refractory Period

    Pulse Width

    Iin=I1

    Iin=I2 > I1

    G.Indiveri (NCS @ INI) ICANN09 Tutorial 45 / 78

    The F-I curve

    Input Current (I)

    Spike

    Freq

    uency(F) Refractory

    Period

    G.Indiveri (NCS @ INI) ICANN09 Tutorial 46 / 78

    http://ncs.ethz.ch/http://ncs.ethz.ch/http://ncs.ethz.ch/http://ncs.ethz.ch/http://ncs.ethz.ch/http://ncs.ethz.ch/http://ncs.ethz.ch/http://ncs.ethz.ch/
  • 8/3/2019 Vlsi in Neural

    10/15

    Hardware implementations of spiking neurons

    The first artificial neuron model was proposed in the 1943 by McCulloch and

    Pitts. Hardware implementations of this model date almost back to the same

    period.

    Hardware implementations of spikingneurons are relatively new.

    One of the most influential circuits that implements an

    integrate and fire(I&F) model of a neuron was the

    Axon-Hillock Circuit, proposed by Carver Mead in the late

    1980s.

    G.Indiveri (NCS @ INI) ICANN09 Tutorial 47 / 78

    Conductance-based models of spiking neurons

    In 1991 Misha Mahowald and Rodney Douglas proposed a

    conductance-based silicon neuron and showed that it had properties

    remarkably similar to those of real cortical neurons.

    G.Indiveri (NCS @ INI) ICANN09 Tutorial 49 / 78

    Conductance based Si-Neurons

    -

    +

    -

    +

    -

    +

    -

    +

    -

    +

    Vdd Vdd

    -

    +

    Vdd Vdd

    -

    +

    -

    +

    -

    +

    Vdd Vdd

    -

    +

    -

    +

    Vdd Vdd

    -

    +

    Sodium

    Potassium

    Passive

    Vmem

    Vmem

    Gleak

    Eleak

    Cmem

    EK

    EK

    VNa

    VK

    Vthr

    Vthr

    Vthr

    ENa

    INa

    INaoff

    GNaon

    GK

    IK I

    K

    GNaoff

    INaon

    Passive Leak

    Sodium Current

    Potassium Current

    G.Indiveri (NCS @ INI) ICANN09 Tutorial 50 / 78

    Conductance based Si-NeuronsSilicon neurons measurements

    1V

    Vm

    [Ca]

    Vm

    [Ca]

    Vm

    [Ca]

    50 ms

    I

    G.Indiveri (NCS @ INI) ICANN09 Tutorial 51 / 78

    http://ncs.ethz.ch/http://ncs.ethz.ch/http://ncs.ethz.ch/http://ncs.ethz.ch/http://ncs.ethz.ch/http://ncs.ethz.ch/http://ncs.ethz.ch/http://ncs.ethz.ch/http://ncs.ethz.ch/
  • 8/3/2019 Vlsi in Neural

    11/15

    The Axon-Hillock Circuit

    A

    Vpw

    Vmem Vout

    Input current

    Membrane voltage

    Output voltage

    Positive Feedback

    Reset

    G.Indiveri (NCS @ INI) ICANN09 Tutorial 53 / 78

    The Axon-Hillock Circuit

    A

    Vpw

    Vmem Vout

    Vout

    Vmem

    time

    voltage

    Vmem

    Vout

    Slope = A

    G.Indiveri (NCS @ INI) ICANN09 Tutorial 54 / 78

    Capacitive Divider

    Given the change V2, what is V1?

    Q= C1V1 + C2(V1V2) = constant

    C1V1 + C2(V1V2) = 0

    V1 =C2

    C1 + C2V2

    A V2V1 C1

    C2

    Q

    G.Indiveri (NCS @ INI) ICANN09 Tutorial 55 / 78

    Positive Feedback

    A

    Vpw

    Vmem Vout

    Vout

    Vmem

    time

    voltage

    Positive Feedback

    Vmem =

    Cm

    Cfb

    CfbCm + Cfb

    Vdd

    G.Indiveri (NCS @ INI) ICANN09 Tutorial 56 / 78

    http://ncs.ethz.ch/http://ncs.ethz.ch/http://ncs.ethz.ch/http://ncs.ethz.ch/http://ncs.ethz.ch/http://ncs.ethz.ch/http://ncs.ethz.ch/http://ncs.ethz.ch/
  • 8/3/2019 Vlsi in Neural

    12/15

    Axon-Hillock Circuit Dynamics

    A

    Vpw

    Vmem Vout

    Vout

    Vmem

    time

    voltage

    Cm

    Cfb

    Iin

    tH tL

    Ir

    tL =Cfb+ Cm

    IinVmem =

    Cfb

    IinVdd

    Frequency Iin

    tH =Cfb+ Cm

    Ir IinVmem =

    Cfb

    Ir IinVdd

    Pulse width 1/Ir for Ir Iin

    G.Indiveri (NCS @ INI) ICANN09 Tutorial 57 / 78

    Gain

    How to make voltage gain

    A

    Whats bad about this?

    G.Indiveri (NCS @ INI) ICANN09 Tutorial 58 / 78

    Power Dissipation

    The Axon-Hillock circuit is very compact and allows for

    implementations of dense arrays of silicon neurons

    BUTit has a major drawback: power consumption

    During the time when an inverter switches, a large amount

    of current flows from Vdd to Gnd.

    G.Indiveri (NCS @ INI) ICANN09 Tutorial 59 / 78

    Conductance-based modelsIntegrate and Fire vs Hodgkin-Huxley

    Traditionally there have been two main classes of neuron models:

    Integrate and fi re (I -C) Conduc tanc e-bas ed ( R-C)

    G.Indiveri (NCS @ INI) ICANN09 Tutorial 61 / 78

    http://ncs.ethz.ch/http://ncs.ethz.ch/http://ncs.ethz.ch/http://ncs.ethz.ch/http://ncs.ethz.ch/http://ncs.ethz.ch/http://ncs.ethz.ch/http://ncs.ethz.ch/
  • 8/3/2019 Vlsi in Neural

    13/15

    Conductance-based modelsIntegrate and Fire vs Hodgkin-Huxley

    But recently proposed models bridge the gap between the two:

    Generalized Integrate and Fire models can account for a very large set of

    behaviors captured by far more complicated Hodgkin-Huxley models.

    d

    dtumem =

    iin

    Cmem+ F(umem)

    where F(umem) is a non-linear function of umem(t).

    G.Indiveri (NCS @ INI) ICANN09 Tutorial 62 / 78

    An ultra low-power generalized I&F circuit

    Cahp

    Cmem

    Vtau_ahp

    Vahp

    Vspk

    Vtau

    Vmem

    Vrf

    Positive Feedback

    Refractory Period

    Iin

    Leak

    Adaptation

    Vthr

    M1

    M3M2

    VrestVthr_ahp

    M8M7

    M4

    M5

    M9

    M6

    M10

    M11

    M12

    M13

    M14

    M15

    M17

    M16

    M19

    M21

    M20

    M18

    M22

    Imem

    DPI

    DPI

    Iahp

    Ifb

    (G. Indiveri, P. Livi, ISCAS 2009)

    G.Indiveri (NCS @ INI) ICANN09 Tutorial 63 / 78

    DPI neuron sub-threshold equations

    Cahp

    Cmem

    Vtau_ahp

    Vahp

    Vspk

    Vtau

    Vmem

    Vrf

    Positive Feedback

    Refractory Period

    Iin

    Leak

    Adaptation

    Vthr

    M1

    M3M2

    VrestVthr_ahp

    M8M7

    M4

    M5

    M9

    M6

    M10

    M11

    M12

    M13

    M14

    M15

    M17

    M16

    M19

    M21

    M20

    M18

    M22

    Imem

    DPI

    DPI

    Iahp

    Ifb

    d

    dtImem+ Imem

    IgIin

    I+(Imem)

    1

    II

    1+1

    0 , 2+ 1

    + 1

    G.Indiveri (NCS @ INI) ICANN09 Tutorial 64 / 78

    SPICE simulations

    2 4 6 8 105

    0

    5

    10

    15

    20

    Time (ms)

    Imem(

    A)

    Vthr=0.325 V

    Vthr=0.350 V

    Vthr=0.375 V

    0 20 40 60 80 100

    2

    0

    2

    4

    6

    8

    10

    12

    14

    Time (ms)

    Ime

    m(

    A)

    G.Indiveri (NCS @ INI) ICANN09 Tutorial 66 / 78

    http://ncs.ethz.ch/http://www.ini.uzh.ch/~giacomo/papers/pdf/iscas09.pdfhttp://ncs.ethz.ch/http://ncs.ethz.ch/http://ncs.ethz.ch/http://ncs.ethz.ch/http://ncs.ethz.ch/http://ncs.ethz.ch/http://www.ini.uzh.ch/~giacomo/papers/pdf/iscas09.pdfhttp://ncs.ethz.ch/
  • 8/3/2019 Vlsi in Neural

    14/15

    Experimental resultsSingle spike

    0.01 0.02 0.03 0.04 0.051.9

    2

    2.1

    2.2

    2.3

    2.4

    2.5

    2.6

    2.7

    2.8

    Voltage

    (V)

    Time (s)

    Vthr

    = 0.0V

    Vthr

    = 0.3V

    Vthr

    = 0.6V

    Vthr

    = 0.9V

    G.Indiveri (NCS @ INI) ICANN09 Tutorial 67 / 78

    Experimental resultsPopulation activity

    0 0.5 1 1.5 20

    5

    10

    15

    20

    25

    30

    Neurons

    0 0.5 1 1.5 20

    5

    10

    15

    20

    25

    30

    0 0.5 1 1.5 20

    5

    10

    15

    20

    25

    30

    Neurons

    Time (s)0 0.5 1 1.5 2

    0

    5

    10

    15

    20

    25

    30

    Time (s)

    G.Indiveri (NCS @ INI) ICANN09 Tutorial 70 / 78

    Spiking multi-neuron architectures

    Networks of I&F neurons with adaptation,

    refractory period, etc.

    Synpases with realistic temporal dynamics

    Winner-Take-All architectures

    Spike-based plasticity mechanisms

    G.Indiveri (NCS @ INI) ICANN09 Tutorial 72 / 78

    Spikes and Address-Event Systems

    1 2 3 2 3 12

    Inputs

    Encode Decode

    Address Event Bus

    SourceChip

    Outputs

    DestinationChip

    Action Potential

    Address-Eventrepresentation ofaction potential

    2

    1

    32

    1

    3

    0 0.05 0.1 0.15 0.20

    0.2

    0.4

    0.6

    0.8

    1

    Time (s)

    Vmem(

    V)

    G.Indiveri (NCS @ INI) ICANN09 Tutorial 73 / 78

    , ,

    http://ncs.ethz.ch/http://ncs.ethz.ch/http://ncs.ethz.ch/http://ncs.ethz.ch/http://ncs.ethz.ch/http://ncs.ethz.ch/http://ncs.ethz.ch/http://ncs.ethz.ch/
  • 8/3/2019 Vlsi in Neural

    15/15

    A spike-based learning chip

    A minimum-sizechip implementing a

    reconfigurable AER neural network.

    Neurons and synapses have realistic

    temporal dynamics. Local circuits at

    each synapse implement the bi-stable

    spike-based plasticity mechanism.

    Indiveri, Fusi, 2007

    Technology: AMS 0.35mSize: 3.9mm2.5mmNeurons: 128

    AER plastic synapses: 28128AER non-plastic synapses 4128Dendritic tree multiplexer: 32128 | . .. | 1 4096

    G.Indiveri (NCS @ INI) ICANN09 Tutorial 74 / 78

    Distributed multi-layer networksAnalog processing, asynchronous digital communication

    , ,- ,

    , -

    ,x x x

    , - x

    xx, -

    x x, -x

    x ,,

    2

    ,

    x x

    x, , xx

    ,,

    x, x,

    x

    xx 1 ,

    1 ,1 ,2 2 2

    x , l1 -

    'x,

    -- ,

    2

    , ,x ,

    x, -

    2 , 2 , 2 x

    - -

    x -

    i i i r r l c r x. k r i r c i

    r - i i l rcli r l l i i ic r . r

    i l i l r r c r c ri i c i ri i

    r ik r r r i l r r i ri r i r r l

    c r x r i - r ci ic rcli . i c rr i

    r i c r k i c i irr r i .

    c i i c i - r Fi . c r i i -i ri , c

    ci ic i i ll r c i r c r r . r

    L i .1

    .

    ik

    i i

    l i l l r i . l ri i i i r

    r l i l r c i i i r l r

    i c r x. c rr c l r i l i l r i

    r i li ic i . ircl r r r rr r r c c i

    ; i i r r . r

    i l l- i i l ck rr i , r i x l -

    l r i r li i , r i rl i r r x -lik

    r i r rr , ic r i i ri c i ic l . x ri l x l i l r c ll i

    l r l ll i r r l i l i i Fi . . l cc

    ll r i i r i i - i r r l c r x c ll 1

    . l , r l c ic i r r x r i . r i i

    i - lik i r i r li i r - i i l r i

    r i - x i ri c c l i i . I ,

    i r r l c r x, I , ri r I ; I , ri r I ; F , r r l c r x.

    r . i r, r l c ic i .

    V1

    V4

    V1

    PFC

    AIT

    IT

    Categ. Ident.

    V4/PIT

    | | | . r . r

    AERINPUTY

    AER

    INPUTX

    AEROUTPUT

    G.Indiveri (NCS @ INI) ICANN09 Tutorial 75 / 78

    Summary

    If

    Vg

    Vg

    Vs

    Vs

    Vd

    Vd

    IfIr

    Ir

    VE Qs Qd

    Cahp

    Cmem

    Vtau_ahp

    Vahp

    Vspk

    Vtau

    Vmem

    Vrf

    Positive Feedback

    Refractory Period

    Iin

    Leak

    Adaptation

    Vthr

    M1

    M3M2

    VrestVthr_ahp

    M8M7

    M4

    M5

    M9

    M6

    M10

    M11

    M12

    M13

    M14

    M15

    M17

    M16

    M19

    M21

    M20

    M18

    M22

    Imem

    DPI

    DPI

    Iahp

    Ifb

    G.Indiveri (NCS @ INI) ICANN09 Tutorial 77 / 78

    Thank you for your attentionAdditional information available at:

    http://ncs.ethz.ch/

    G.Indiveri (NCS @ INI) ICANN09 Tutorial 78 / 78

    http://ncs.ethz.ch/http://ncs.ethz.ch/http://ncs.ethz.ch/http://ncs.ethz.ch/http://ncs.ethz.ch/http://ncs.ethz.ch/http://ncs.ethz.ch/