volumes: slabs, washers, shells · josh engwer (ttu) volumes: slabs, washers, shells 27 january...

64
Volumes: Slabs, Washers, Shells Calculus II Josh Engwer TTU 27 January 2014 Josh Engwer (TTU) Volumes: Slabs, Washers, Shells 27 January 2014 1 / 64

Upload: others

Post on 24-May-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Volumes: Slabs, Washers, Shells · Josh Engwer (TTU) Volumes: Slabs, Washers, Shells 27 January 2014 39 / 64 Volume of Solid of Revolution (using Washers) EXAMPLE: Let region R be

Volumes: Slabs, Washers, ShellsCalculus II

Josh Engwer

TTU

27 January 2014

Josh Engwer (TTU) Volumes: Slabs, Washers, Shells 27 January 2014 1 / 64

Page 2: Volumes: Slabs, Washers, Shells · Josh Engwer (TTU) Volumes: Slabs, Washers, Shells 27 January 2014 39 / 64 Volume of Solid of Revolution (using Washers) EXAMPLE: Let region R be

Volumes (PART I)

VOLUMES PART I:

SOLIDS WITH KNOWN CROSS SECTIONS

Josh Engwer (TTU) Volumes: Slabs, Washers, Shells 27 January 2014 2 / 64

Page 3: Volumes: Slabs, Washers, Shells · Josh Engwer (TTU) Volumes: Slabs, Washers, Shells 27 January 2014 39 / 64 Volume of Solid of Revolution (using Washers) EXAMPLE: Let region R be

Solids with Known Cross Sections (Slabs)

(Thickness of kth H-Slab

)=(

Width of kth generating H-Rect)

= ∆yk(Thickness of kth V-Slab

)=(

Width of kth generating V-Rect)

= ∆xk

Josh Engwer (TTU) Volumes: Slabs, Washers, Shells 27 January 2014 3 / 64

Page 4: Volumes: Slabs, Washers, Shells · Josh Engwer (TTU) Volumes: Slabs, Washers, Shells 27 January 2014 39 / 64 Volume of Solid of Revolution (using Washers) EXAMPLE: Let region R be

Solids with Known Cross Sections (Demo)(DEMO) SOLIDS WITH KNOWN CROSS SECTION (Click below):

Josh Engwer (TTU) Volumes: Slabs, Washers, Shells 27 January 2014 4 / 64

Page 5: Volumes: Slabs, Washers, Shells · Josh Engwer (TTU) Volumes: Slabs, Washers, Shells 27 January 2014 39 / 64 Volume of Solid of Revolution (using Washers) EXAMPLE: Let region R be

Volumes of Slabs

Proposition

Volume of Slab =(

Area of Cross Section)×(

Thickness)

Josh Engwer (TTU) Volumes: Slabs, Washers, Shells 27 January 2014 5 / 64

Page 6: Volumes: Slabs, Washers, Shells · Josh Engwer (TTU) Volumes: Slabs, Washers, Shells 27 January 2014 39 / 64 Volume of Solid of Revolution (using Washers) EXAMPLE: Let region R be

Volume of Solid with Known Cross Section (CS)

EXAMPLE: Let region R be bounded by curves y = 2x, y = 4−x, x = 2.

Let solid S have base R and equilateral triangular cross sections ⊥ to x-axis.

Setup integral(s) to compute Volume(S).

⊥ ≡ ”perpendicular”

Josh Engwer (TTU) Volumes: Slabs, Washers, Shells 27 January 2014 6 / 64

Page 7: Volumes: Slabs, Washers, Shells · Josh Engwer (TTU) Volumes: Slabs, Washers, Shells 27 January 2014 39 / 64 Volume of Solid of Revolution (using Washers) EXAMPLE: Let region R be

Volume of Solid with Known Cross Section (CS)EXAMPLE: Let region R be bounded by curves y = 2x, y = 4−x, x = 2.

Sketch & characterize region R (label BP’s & BC’s in terms of x)Notice region R is V-simple.

Josh Engwer (TTU) Volumes: Slabs, Washers, Shells 27 January 2014 7 / 64

Page 8: Volumes: Slabs, Washers, Shells · Josh Engwer (TTU) Volumes: Slabs, Washers, Shells 27 January 2014 39 / 64 Volume of Solid of Revolution (using Washers) EXAMPLE: Let region R be

Volume of Solid with Known Cross Section (CS)EXAMPLE: Let region R be bounded by curves y = 2x, y = 4−x, x = 2.

Sketch & characterize region R. (remove unnecessary clutter)Notice region R is V-simple.

Josh Engwer (TTU) Volumes: Slabs, Washers, Shells 27 January 2014 8 / 64

Page 9: Volumes: Slabs, Washers, Shells · Josh Engwer (TTU) Volumes: Slabs, Washers, Shells 27 January 2014 39 / 64 Volume of Solid of Revolution (using Washers) EXAMPLE: Let region R be

Volume of Solid with Known Cross Section (CS)

Key Element: V-Slab (CS = Equilateral Triangle) generated by V-Rect

Josh Engwer (TTU) Volumes: Slabs, Washers, Shells 27 January 2014 9 / 64

Page 10: Volumes: Slabs, Washers, Shells · Josh Engwer (TTU) Volumes: Slabs, Washers, Shells 27 January 2014 39 / 64 Volume of Solid of Revolution (using Washers) EXAMPLE: Let region R be

Volume of Solid with Known Cross Section (CS)

kth V-Slab on R:Thickness = (Width of generating V-Rect)Side Length = (Height of generating V-Rect)Volume =

√3

4 × (Side Length)2 × (Thickness)

Josh Engwer (TTU) Volumes: Slabs, Washers, Shells 27 January 2014 10 / 64

Page 11: Volumes: Slabs, Washers, Shells · Josh Engwer (TTU) Volumes: Slabs, Washers, Shells 27 January 2014 39 / 64 Volume of Solid of Revolution (using Washers) EXAMPLE: Let region R be

Volume of Solid with Known Cross Section (CS)

kth V-Slab on R:Thickness = ∆xk

Side Length = 2x∗k − 4−x∗k

Volume =√

34

[2x∗k − 4−x∗k

]2∆xk

Josh Engwer (TTU) Volumes: Slabs, Washers, Shells 27 January 2014 11 / 64

Page 12: Volumes: Slabs, Washers, Shells · Josh Engwer (TTU) Volumes: Slabs, Washers, Shells 27 January 2014 39 / 64 Volume of Solid of Revolution (using Washers) EXAMPLE: Let region R be

Volume of Solid with Known Cross Section (CS)

kth V-Slab on R:Thickness = ∆xk

Side Length = 2x∗k − 4−x∗k

Volume =√

34

[2x∗k − 4−x∗k

]2∆xk

Riemann Sum: Volume(S) ≈ V∗N =N∑

k=1

√3

4

[2x∗k − 4−x∗k

]2∆xk

Josh Engwer (TTU) Volumes: Slabs, Washers, Shells 27 January 2014 12 / 64

Page 13: Volumes: Slabs, Washers, Shells · Josh Engwer (TTU) Volumes: Slabs, Washers, Shells 27 January 2014 39 / 64 Volume of Solid of Revolution (using Washers) EXAMPLE: Let region R be

Volume of Solid with Known Cross Section (CS)

Riemann Sum: Volume(S) ≈ V∗N =

N∑k=1

√3

4

[2x∗k − 4−x∗k

]2∆xk

Integral: Volume(S) = limN→∞

V∗N =

∫ largest x-coord. in R

smallest x-coord. in R

√3

4(2x − 4−x)2

dx

Josh Engwer (TTU) Volumes: Slabs, Washers, Shells 27 January 2014 13 / 64

Page 14: Volumes: Slabs, Washers, Shells · Josh Engwer (TTU) Volumes: Slabs, Washers, Shells 27 January 2014 39 / 64 Volume of Solid of Revolution (using Washers) EXAMPLE: Let region R be

Volume of Solid with Known Cross Section (CS)

Riemann Sum: Volume(S) ≈ V∗N =

N∑k=1

√3

4

[2x∗k − 4−x∗k

]2∆xk

Integral: Volume(S) =

∫ 2

0

√3

4(2x − 4−x)2

dx ≈ 1.7954

Josh Engwer (TTU) Volumes: Slabs, Washers, Shells 27 January 2014 14 / 64

Page 15: Volumes: Slabs, Washers, Shells · Josh Engwer (TTU) Volumes: Slabs, Washers, Shells 27 January 2014 39 / 64 Volume of Solid of Revolution (using Washers) EXAMPLE: Let region R be

Volume of Solid with Known Cross Section (CS)

EXAMPLE: Let region R be bounded by curves y = 2x, y = 4−x, x = 2.

Let solid S have base R and equilateral triangular cross sections ⊥ to y-axis.

Setup integral(s) to compute Volume(S).

⊥ ≡ ”perpendicular”

Josh Engwer (TTU) Volumes: Slabs, Washers, Shells 27 January 2014 15 / 64

Page 16: Volumes: Slabs, Washers, Shells · Josh Engwer (TTU) Volumes: Slabs, Washers, Shells 27 January 2014 39 / 64 Volume of Solid of Revolution (using Washers) EXAMPLE: Let region R be

Volume of Solid with Known Cross Section (CS)EXAMPLE: Let region R be bounded by curves y = 2x, y = 4−x, x = 2.

Sketch & characterize region R (label BP’s & BC’s in terms of y)Notice region R is NOT H-simple, so subdivide into subregions R1,R2.

Josh Engwer (TTU) Volumes: Slabs, Washers, Shells 27 January 2014 16 / 64

Page 17: Volumes: Slabs, Washers, Shells · Josh Engwer (TTU) Volumes: Slabs, Washers, Shells 27 January 2014 39 / 64 Volume of Solid of Revolution (using Washers) EXAMPLE: Let region R be

Volume of Solid with Known Cross Section (CS)

Key Element: H-Slab (CS = Equilateral Triangle) generated by H-Rect

Josh Engwer (TTU) Volumes: Slabs, Washers, Shells 27 January 2014 17 / 64

Page 18: Volumes: Slabs, Washers, Shells · Josh Engwer (TTU) Volumes: Slabs, Washers, Shells 27 January 2014 39 / 64 Volume of Solid of Revolution (using Washers) EXAMPLE: Let region R be

Volume of Solid with Known Cross Section (CS)

kth H-Slab on R1:Thickness = (Width of generating H-Rect)Side Length = (Length of generating H-Rect)Volume =

√3

4 × (Side Length)2 × (Thickness)

Josh Engwer (TTU) Volumes: Slabs, Washers, Shells 27 January 2014 18 / 64

Page 19: Volumes: Slabs, Washers, Shells · Josh Engwer (TTU) Volumes: Slabs, Washers, Shells 27 January 2014 39 / 64 Volume of Solid of Revolution (using Washers) EXAMPLE: Let region R be

Volume of Solid with Known Cross Section (CS)

kth H-Slab on R1:Thickness = ∆yk

Side Length = 2− (− log4 y∗k )

Volume =√

34 (2 + log4 y∗k )

2∆yk

Josh Engwer (TTU) Volumes: Slabs, Washers, Shells 27 January 2014 19 / 64

Page 20: Volumes: Slabs, Washers, Shells · Josh Engwer (TTU) Volumes: Slabs, Washers, Shells 27 January 2014 39 / 64 Volume of Solid of Revolution (using Washers) EXAMPLE: Let region R be

Volume of Solid with Known Cross Section (CS)

kth H-Slab on R1:Thickness = ∆yk

Side Length = 2− (− log4 y∗k )

Volume =√

34 (2 + log4 y∗k )

2∆yk

Riemann Sum: Volume(S1) ≈ V∗N =

N∑k=1

√3

4(2 + log4 y∗k )

2∆yk

Josh Engwer (TTU) Volumes: Slabs, Washers, Shells 27 January 2014 20 / 64

Page 21: Volumes: Slabs, Washers, Shells · Josh Engwer (TTU) Volumes: Slabs, Washers, Shells 27 January 2014 39 / 64 Volume of Solid of Revolution (using Washers) EXAMPLE: Let region R be

Volume of Solid with Known Cross Section (CS)

Riemann Sum: Volume(S1) ≈ V∗N =

N∑k=1

√3

4(2 + log4 y∗k )

2∆yk

Integral: Volume(S1) = limN→∞

V∗N =

∫ largest y-coord. in R1

smallest y-coord. in R1

√3

4(2 + log4 y)

2 dy

Josh Engwer (TTU) Volumes: Slabs, Washers, Shells 27 January 2014 21 / 64

Page 22: Volumes: Slabs, Washers, Shells · Josh Engwer (TTU) Volumes: Slabs, Washers, Shells 27 January 2014 39 / 64 Volume of Solid of Revolution (using Washers) EXAMPLE: Let region R be

Volume of Solid with Known Cross Section (CS)

Riemann Sum: Volume(S1) ≈ V∗N =

N∑k=1

√3

4(2 + log4 y∗k )

2∆yk

Integral: Volume(S1) =

∫ 1

1/16

√3

4(2 + log4 y)

2 dy

Josh Engwer (TTU) Volumes: Slabs, Washers, Shells 27 January 2014 22 / 64

Page 23: Volumes: Slabs, Washers, Shells · Josh Engwer (TTU) Volumes: Slabs, Washers, Shells 27 January 2014 39 / 64 Volume of Solid of Revolution (using Washers) EXAMPLE: Let region R be

Volume of Solid with Known Cross Section (CS)

kth H-Slab on R2:Thickness = (Width of generating H-Rect)Side Length = (Length of generating H-Rect)Volume =

√3

4 × (Side Length)2 × (Thickness)

Josh Engwer (TTU) Volumes: Slabs, Washers, Shells 27 January 2014 23 / 64

Page 24: Volumes: Slabs, Washers, Shells · Josh Engwer (TTU) Volumes: Slabs, Washers, Shells 27 January 2014 39 / 64 Volume of Solid of Revolution (using Washers) EXAMPLE: Let region R be

Volume of Solid with Known Cross Section (CS)

kth H-Slab on R2:Thickness = ∆yk

Side Length = 2− log2 y∗kVolume =

√3

4 (2− log2 y∗k )2

∆yk

Josh Engwer (TTU) Volumes: Slabs, Washers, Shells 27 January 2014 24 / 64

Page 25: Volumes: Slabs, Washers, Shells · Josh Engwer (TTU) Volumes: Slabs, Washers, Shells 27 January 2014 39 / 64 Volume of Solid of Revolution (using Washers) EXAMPLE: Let region R be

Volume of Solid with Known Cross Section (CS)

kth H-Slab on R2:Thickness = ∆yk

Side Length = 2− log2 y∗kVolume =

√3

4 (2− log2 y∗k )2

∆yk

Riemann Sum: Volume(S2) ≈ V∗N =

N∑k=1

√3

4(2− log2 y∗k )

2∆yk

Josh Engwer (TTU) Volumes: Slabs, Washers, Shells 27 January 2014 25 / 64

Page 26: Volumes: Slabs, Washers, Shells · Josh Engwer (TTU) Volumes: Slabs, Washers, Shells 27 January 2014 39 / 64 Volume of Solid of Revolution (using Washers) EXAMPLE: Let region R be

Volume of Solid with Known Cross Section (CS)

Riemann Sum: Volume(S2) ≈ V∗N =

N∑k=1

√3

4(2− log2 y∗k )

2∆yk

Integral: Volume(S2) = limN→∞

V∗N =

∫ largest y-coord. in R2

smallest y-coord. in R2

√3

4(2− log2 y)

2 dy

Josh Engwer (TTU) Volumes: Slabs, Washers, Shells 27 January 2014 26 / 64

Page 27: Volumes: Slabs, Washers, Shells · Josh Engwer (TTU) Volumes: Slabs, Washers, Shells 27 January 2014 39 / 64 Volume of Solid of Revolution (using Washers) EXAMPLE: Let region R be

Volume of Solid with Known Cross Section (CS)

Riemann Sum: Volume(S2) ≈ V∗N =

N∑k=1

√3

4(2− log2 y∗k )

2∆yk

Integral: Volume(S2) =

∫ 4

1

√3

4(2− log2 y)

2 dy

Josh Engwer (TTU) Volumes: Slabs, Washers, Shells 27 January 2014 27 / 64

Page 28: Volumes: Slabs, Washers, Shells · Josh Engwer (TTU) Volumes: Slabs, Washers, Shells 27 January 2014 39 / 64 Volume of Solid of Revolution (using Washers) EXAMPLE: Let region R be

Volume of Solid with Known Cross Section (CS)

Region R = R1 ∪ R2 =⇒ Solid S = S1 ∪ S2

∴ Volume(S) = Volume(S1) + Volume(S2)

=∫ 1

1/16

√3

4(2 + log4 y)

2 dy +

∫ 4

1

√3

4(2− log2 y)

2 dy ≈ 2.0818

Josh Engwer (TTU) Volumes: Slabs, Washers, Shells 27 January 2014 28 / 64

Page 29: Volumes: Slabs, Washers, Shells · Josh Engwer (TTU) Volumes: Slabs, Washers, Shells 27 January 2014 39 / 64 Volume of Solid of Revolution (using Washers) EXAMPLE: Let region R be

Volumes (PART II)

VOLUMES PART II:

SOLIDS OF REVOLUTION

Josh Engwer (TTU) Volumes: Slabs, Washers, Shells 27 January 2014 29 / 64

Page 30: Volumes: Slabs, Washers, Shells · Josh Engwer (TTU) Volumes: Slabs, Washers, Shells 27 January 2014 39 / 64 Volume of Solid of Revolution (using Washers) EXAMPLE: Let region R be

Solids of Revolution

Axis of Revolution: x-axis

Josh Engwer (TTU) Volumes: Slabs, Washers, Shells 27 January 2014 30 / 64

Page 31: Volumes: Slabs, Washers, Shells · Josh Engwer (TTU) Volumes: Slabs, Washers, Shells 27 January 2014 39 / 64 Volume of Solid of Revolution (using Washers) EXAMPLE: Let region R be

Solids of Revolution

Axis of Revolution: y-axis

Josh Engwer (TTU) Volumes: Slabs, Washers, Shells 27 January 2014 31 / 64

Page 32: Volumes: Slabs, Washers, Shells · Josh Engwer (TTU) Volumes: Slabs, Washers, Shells 27 January 2014 39 / 64 Volume of Solid of Revolution (using Washers) EXAMPLE: Let region R be

Solids of Revolution (V-Washers)

Josh Engwer (TTU) Volumes: Slabs, Washers, Shells 27 January 2014 32 / 64

Page 33: Volumes: Slabs, Washers, Shells · Josh Engwer (TTU) Volumes: Slabs, Washers, Shells 27 January 2014 39 / 64 Volume of Solid of Revolution (using Washers) EXAMPLE: Let region R be

Solids of Revolution (H-Shells)

Josh Engwer (TTU) Volumes: Slabs, Washers, Shells 27 January 2014 33 / 64

Page 34: Volumes: Slabs, Washers, Shells · Josh Engwer (TTU) Volumes: Slabs, Washers, Shells 27 January 2014 39 / 64 Volume of Solid of Revolution (using Washers) EXAMPLE: Let region R be

Solids of Revolution (V-Shells)

Josh Engwer (TTU) Volumes: Slabs, Washers, Shells 27 January 2014 34 / 64

Page 35: Volumes: Slabs, Washers, Shells · Josh Engwer (TTU) Volumes: Slabs, Washers, Shells 27 January 2014 39 / 64 Volume of Solid of Revolution (using Washers) EXAMPLE: Let region R be

Solids of Revolution (H-Washers)

Josh Engwer (TTU) Volumes: Slabs, Washers, Shells 27 January 2014 35 / 64

Page 36: Volumes: Slabs, Washers, Shells · Josh Engwer (TTU) Volumes: Slabs, Washers, Shells 27 January 2014 39 / 64 Volume of Solid of Revolution (using Washers) EXAMPLE: Let region R be

Volume of Washers

Proposition

Volume of Washer = π×[(

Outer Radius)2−(

Inner Radius)2]×(

Thickness)

Josh Engwer (TTU) Volumes: Slabs, Washers, Shells 27 January 2014 36 / 64

Page 37: Volumes: Slabs, Washers, Shells · Josh Engwer (TTU) Volumes: Slabs, Washers, Shells 27 January 2014 39 / 64 Volume of Solid of Revolution (using Washers) EXAMPLE: Let region R be

Volume of V-Shells

Proposition

Volume of kth V-Shell = 2π ×(

Radius)×(

Length)×(

Thickness)

Radius involves the tag y∗k Thickness = ∆yk

Josh Engwer (TTU) Volumes: Slabs, Washers, Shells 27 January 2014 37 / 64

Page 38: Volumes: Slabs, Washers, Shells · Josh Engwer (TTU) Volumes: Slabs, Washers, Shells 27 January 2014 39 / 64 Volume of Solid of Revolution (using Washers) EXAMPLE: Let region R be

Volume of H-Shells

Proposition

Volume of kth H-Shell = 2π ×(

Radius)×(

Height)×(

Thickness)

Radius involves the tag x∗k Thickness = ∆xk

Josh Engwer (TTU) Volumes: Slabs, Washers, Shells 27 January 2014 38 / 64

Page 39: Volumes: Slabs, Washers, Shells · Josh Engwer (TTU) Volumes: Slabs, Washers, Shells 27 January 2014 39 / 64 Volume of Solid of Revolution (using Washers) EXAMPLE: Let region R be

Volume of Solid of Revolution (using Washers)

EXAMPLE: Let region R be bounded by curves y = 2x, y = 4−x, x = 2.

Let S be the solid formed by revolving region R about x-axis using washers.

Setup integral(s) to compute Volume(S).

⊥ ≡ ”perpendicular”

Josh Engwer (TTU) Volumes: Slabs, Washers, Shells 27 January 2014 39 / 64

Page 40: Volumes: Slabs, Washers, Shells · Josh Engwer (TTU) Volumes: Slabs, Washers, Shells 27 January 2014 39 / 64 Volume of Solid of Revolution (using Washers) EXAMPLE: Let region R be

Volume of Solid of Revolution (using Washers)EXAMPLE: Let region R be bounded by curves y = 2x, y = 4−x, x = 2.

Sketch & characterize region R (label BP’s & BC’s in terms of x)Notice region R is V-simple.

Josh Engwer (TTU) Volumes: Slabs, Washers, Shells 27 January 2014 40 / 64

Page 41: Volumes: Slabs, Washers, Shells · Josh Engwer (TTU) Volumes: Slabs, Washers, Shells 27 January 2014 39 / 64 Volume of Solid of Revolution (using Washers) EXAMPLE: Let region R be

Volume of Solid of Revolution (using Washers)EXAMPLE: Let region R be bounded by curves y = 2x, y = 4−x, x = 2.

Sketch & characterize region R. (remove unnecessary clutter)Sketch & label the axis of revolution (dashed line).

Josh Engwer (TTU) Volumes: Slabs, Washers, Shells 27 January 2014 41 / 64

Page 42: Volumes: Slabs, Washers, Shells · Josh Engwer (TTU) Volumes: Slabs, Washers, Shells 27 January 2014 39 / 64 Volume of Solid of Revolution (using Washers) EXAMPLE: Let region R be

Volume of Solid of Revolution (using Washers)

Key Element: V-Washer (generated by V-Rect)

Josh Engwer (TTU) Volumes: Slabs, Washers, Shells 27 January 2014 42 / 64

Page 43: Volumes: Slabs, Washers, Shells · Josh Engwer (TTU) Volumes: Slabs, Washers, Shells 27 January 2014 39 / 64 Volume of Solid of Revolution (using Washers) EXAMPLE: Let region R be

Volume of Solid of Revolution (using Washers)

kth V-Washer on R:Thickness = (Width of generating V-Rect)Outer Radius = (Distance from farther BC to Axis of Revolution)Inner Radius = (Distance from closer BC to Axis of Revolution)

Volume = π ×[(Outer Radius)

2 − (Inner Radius)2]× (Thickness)

Josh Engwer (TTU) Volumes: Slabs, Washers, Shells 27 January 2014 43 / 64

Page 44: Volumes: Slabs, Washers, Shells · Josh Engwer (TTU) Volumes: Slabs, Washers, Shells 27 January 2014 39 / 64 Volume of Solid of Revolution (using Washers) EXAMPLE: Let region R be

Volume of Solid of Revolution (using Washers)

kth V-Washer on R:

Thickness = ∆xk

Outer Radius = 2x∗k − 0Inner Radius = 4−x∗k − 0

Volume = π[(

2x∗k)2 −

(4−x∗k

)2]

∆xk

Josh Engwer (TTU) Volumes: Slabs, Washers, Shells 27 January 2014 44 / 64

Page 45: Volumes: Slabs, Washers, Shells · Josh Engwer (TTU) Volumes: Slabs, Washers, Shells 27 January 2014 39 / 64 Volume of Solid of Revolution (using Washers) EXAMPLE: Let region R be

Volume of Solid of Revolution (using Washers)

kth V-Washer on R:

Thickness = ∆xk

Outer Radius = 2x∗k − 0Inner Radius = 4−x∗k − 0Volume = π

[22x∗k − 4−2x∗k

]∆xk

Josh Engwer (TTU) Volumes: Slabs, Washers, Shells 27 January 2014 45 / 64

Page 46: Volumes: Slabs, Washers, Shells · Josh Engwer (TTU) Volumes: Slabs, Washers, Shells 27 January 2014 39 / 64 Volume of Solid of Revolution (using Washers) EXAMPLE: Let region R be

Volume of Solid of Revolution (using Washers)

kth V-Washer on R:

Thickness = ∆xk

Outer Radius = 2x∗k − 0Inner Radius = 4−x∗k − 0Volume = π

[4x∗k − 16−x∗k

]∆xk

Josh Engwer (TTU) Volumes: Slabs, Washers, Shells 27 January 2014 46 / 64

Page 47: Volumes: Slabs, Washers, Shells · Josh Engwer (TTU) Volumes: Slabs, Washers, Shells 27 January 2014 39 / 64 Volume of Solid of Revolution (using Washers) EXAMPLE: Let region R be

Volume of Solid of Revolution (using Washers)

kth V-Washer on R:

Thickness = ∆xk

Outer Radius = 2x∗k − 0Inner Radius = 4−x∗k − 0Volume = π

[4x∗k − 16−x∗k

]∆xk

Riemann Sum: Volume(S) ≈ V∗N =

N∑k=1

π[4x∗k − 16−x∗k

]∆xk

Josh Engwer (TTU) Volumes: Slabs, Washers, Shells 27 January 2014 47 / 64

Page 48: Volumes: Slabs, Washers, Shells · Josh Engwer (TTU) Volumes: Slabs, Washers, Shells 27 January 2014 39 / 64 Volume of Solid of Revolution (using Washers) EXAMPLE: Let region R be

Volume of Solid of Revolution (using Washers)

Riemann Sum: Volume(S) ≈ V∗N =

N∑k=1

π[4x∗k − 16−x∗k

]∆xk

Integral: Volume(S) = limN→∞

V∗N =

∫ largest x-coord. in R

smallest x-coord. in Rπ(4x − 16−x) dx

Josh Engwer (TTU) Volumes: Slabs, Washers, Shells 27 January 2014 48 / 64

Page 49: Volumes: Slabs, Washers, Shells · Josh Engwer (TTU) Volumes: Slabs, Washers, Shells 27 January 2014 39 / 64 Volume of Solid of Revolution (using Washers) EXAMPLE: Let region R be

Volume of Solid of Revolution (using Washers)

Riemann Sum: Volume(S) ≈ V∗N =

N∑k=1

π[4x∗k − 16−x∗k

]∆xk

Integral: Volume(S) =

∫ 2

0π(4x − 16−x) dx ≈ 32.864

Josh Engwer (TTU) Volumes: Slabs, Washers, Shells 27 January 2014 49 / 64

Page 50: Volumes: Slabs, Washers, Shells · Josh Engwer (TTU) Volumes: Slabs, Washers, Shells 27 January 2014 39 / 64 Volume of Solid of Revolution (using Washers) EXAMPLE: Let region R be

Volume of Solid of Revolution (using Shells)

EXAMPLE: Let region R be bounded by curves y = 2x, y = 4−x, x = 2.

Let S be the solid formed by revolving region R about line y = 5 using shells.

Setup integral(s) to compute Volume(S).

⊥ ≡ ”perpendicular”

Josh Engwer (TTU) Volumes: Slabs, Washers, Shells 27 January 2014 50 / 64

Page 51: Volumes: Slabs, Washers, Shells · Josh Engwer (TTU) Volumes: Slabs, Washers, Shells 27 January 2014 39 / 64 Volume of Solid of Revolution (using Washers) EXAMPLE: Let region R be

Volume of Solid of Revolution (using Shells)EXAMPLE: Let region R be bounded by curves y = 2x, y = 4−x, x = 2.

Sketch & characterize region R (label BP’s & BC’s in terms of y)Notice region R is NOT H-simple, so subdivide into subregions R1,R2.

Josh Engwer (TTU) Volumes: Slabs, Washers, Shells 27 January 2014 51 / 64

Page 52: Volumes: Slabs, Washers, Shells · Josh Engwer (TTU) Volumes: Slabs, Washers, Shells 27 January 2014 39 / 64 Volume of Solid of Revolution (using Washers) EXAMPLE: Let region R be

Volume of Solid of Revolution (using Shells)EXAMPLE: Let region R be bounded by curves y = 2x, y = 4−x, x = 2.

Key Element: V-Shell (generated by H-Rect)Sketch & label the axis of revolution y = 5.

Josh Engwer (TTU) Volumes: Slabs, Washers, Shells 27 January 2014 52 / 64

Page 53: Volumes: Slabs, Washers, Shells · Josh Engwer (TTU) Volumes: Slabs, Washers, Shells 27 January 2014 39 / 64 Volume of Solid of Revolution (using Washers) EXAMPLE: Let region R be

Volume of Solid of Revolution (using Shells)

kth V-Shell on R1:Thickness = (Width of generating H-Rect)Radius = (Positive Distance from H-Rect to Axis of Revolution)Length = (Length of generating H-Rect)Volume = 2π × (Radius)× (Length)× (Thickness)

Josh Engwer (TTU) Volumes: Slabs, Washers, Shells 27 January 2014 53 / 64

Page 54: Volumes: Slabs, Washers, Shells · Josh Engwer (TTU) Volumes: Slabs, Washers, Shells 27 January 2014 39 / 64 Volume of Solid of Revolution (using Washers) EXAMPLE: Let region R be

Volume of Solid of Revolution (using Shells)

kth V-Shell on R1:

Thickness = ∆yk

Radius = 5− y∗kLength = 2− (− log4 y∗k )Volume = 2π (5− y∗k ) (2 + log4 y∗k ) ∆yk

Josh Engwer (TTU) Volumes: Slabs, Washers, Shells 27 January 2014 54 / 64

Page 55: Volumes: Slabs, Washers, Shells · Josh Engwer (TTU) Volumes: Slabs, Washers, Shells 27 January 2014 39 / 64 Volume of Solid of Revolution (using Washers) EXAMPLE: Let region R be

Volume of Solid of Revolution (using Shells)

kth V-Shell on R1:

Thickness = ∆yk

Radius = 5− y∗kLength = 2− (− log4 y∗k )Volume = 2π (5− y∗k ) (2 + log4 y∗k ) ∆yk

Riemann Sum: Volume(S1) ≈ V∗N =

N∑k=1

2π (5− y∗k ) (2 + log4 y∗k ) ∆yk

Josh Engwer (TTU) Volumes: Slabs, Washers, Shells 27 January 2014 55 / 64

Page 56: Volumes: Slabs, Washers, Shells · Josh Engwer (TTU) Volumes: Slabs, Washers, Shells 27 January 2014 39 / 64 Volume of Solid of Revolution (using Washers) EXAMPLE: Let region R be

Volume of Solid of Revolution (using Shells)

kth V-Shell on R1:

Thickness = ∆yk

Radius = 5− y∗kLength = 2− (− log4 y∗k )Volume = 2π (5− y∗k ) (2 + log4 y∗k ) ∆yk

Riemann Sum: Volume(S1) ≈ V∗N =

N∑k=1

2π (5− y∗k ) (2 + log4 y∗k ) ∆yk

Integral: Volume(S1) = limN→∞

V∗N =

∫ largest y-coord. in R1

smallest y-coord. in R1

2π (5− y) (2 + log4 y) dy

Josh Engwer (TTU) Volumes: Slabs, Washers, Shells 27 January 2014 56 / 64

Page 57: Volumes: Slabs, Washers, Shells · Josh Engwer (TTU) Volumes: Slabs, Washers, Shells 27 January 2014 39 / 64 Volume of Solid of Revolution (using Washers) EXAMPLE: Let region R be

Volume of Solid of Revolution (using Shells)

Riemann Sum: Volume(S1) ≈ V∗N =

N∑k=1

2π (5− y∗k ) (2 + log4 y∗k ) ∆yk

Integral: Volume(S1) =

∫ 1

1/162π (5− y) (2 + log4 y) dy

Josh Engwer (TTU) Volumes: Slabs, Washers, Shells 27 January 2014 57 / 64

Page 58: Volumes: Slabs, Washers, Shells · Josh Engwer (TTU) Volumes: Slabs, Washers, Shells 27 January 2014 39 / 64 Volume of Solid of Revolution (using Washers) EXAMPLE: Let region R be

Volume of Solid of Revolution (using Shells)

kth V-Shell on R2:Thickness = (Width of generating H-Rect)Radius = (Positive Distance from H-Rect to Axis of Revolution)Length = (Length of generating H-Rect)Volume = 2π × (Radius)× (Length)× (Thickness)

Josh Engwer (TTU) Volumes: Slabs, Washers, Shells 27 January 2014 58 / 64

Page 59: Volumes: Slabs, Washers, Shells · Josh Engwer (TTU) Volumes: Slabs, Washers, Shells 27 January 2014 39 / 64 Volume of Solid of Revolution (using Washers) EXAMPLE: Let region R be

Volume of Solid of Revolution (using Shells)

kth V-Shell on R2:

Thickness = ∆yk

Radius = 5− y∗kLength = 2− log2 y∗kVolume = 2π (5− y∗k ) (2− log2 y∗k ) ∆yk

Josh Engwer (TTU) Volumes: Slabs, Washers, Shells 27 January 2014 59 / 64

Page 60: Volumes: Slabs, Washers, Shells · Josh Engwer (TTU) Volumes: Slabs, Washers, Shells 27 January 2014 39 / 64 Volume of Solid of Revolution (using Washers) EXAMPLE: Let region R be

Volume of Solid of Revolution (using Shells)

kth V-Shell on R2:

Thickness = ∆yk

Radius = 5− y∗kLength = 2− log2 y∗kVolume = 2π (5− y∗k ) (2− log2 y∗k ) ∆yk

Riemann Sum: Volume(S2) ≈ V∗N =

N∑k=1

2π (5− y∗k ) (2− log2 y∗k ) ∆yk

Josh Engwer (TTU) Volumes: Slabs, Washers, Shells 27 January 2014 60 / 64

Page 61: Volumes: Slabs, Washers, Shells · Josh Engwer (TTU) Volumes: Slabs, Washers, Shells 27 January 2014 39 / 64 Volume of Solid of Revolution (using Washers) EXAMPLE: Let region R be

Volume of Solid of Revolution (using Shells)

kth V-Shell on R2:

Thickness = ∆yk

Radius = 5− y∗kLength = 2− log2 y∗kVolume = 2π (5− y∗k ) (2− log2 y∗k ) ∆yk

Riemann Sum: Volume(S2) ≈ V∗N =

N∑k=1

2π (5− y∗k ) (2− log2 y∗k ) ∆yk

Integral: Volume(S2) = limN→∞

V∗N =

∫ largest y-coord. in R2

smallest y-coord. in R2

2π (5− y) (2− log2 y) dy

Josh Engwer (TTU) Volumes: Slabs, Washers, Shells 27 January 2014 61 / 64

Page 62: Volumes: Slabs, Washers, Shells · Josh Engwer (TTU) Volumes: Slabs, Washers, Shells 27 January 2014 39 / 64 Volume of Solid of Revolution (using Washers) EXAMPLE: Let region R be

Volume of Solid of Revolution (using Shells)

Riemann Sum: Volume(S2) ≈ V∗N =

N∑k=1

2π (5− y∗k ) (2− log2 y∗k ) ∆yk

Integral: Volume(S2) =

∫ 4

12π (5− y) (2− log2 y) dy

Josh Engwer (TTU) Volumes: Slabs, Washers, Shells 27 January 2014 62 / 64

Page 63: Volumes: Slabs, Washers, Shells · Josh Engwer (TTU) Volumes: Slabs, Washers, Shells 27 January 2014 39 / 64 Volume of Solid of Revolution (using Washers) EXAMPLE: Let region R be

Volume of Solid of Revolution (using Shells)

Region R = R1 ∪ R2 =⇒ Solid S = S1 ∪ S2

∴ Volume(S) = Volume(S1) + Volume(S2)

=∫ 1

1/162π (5− y) (2 + log4 y) dy +

∫ 4

12π (5− y) (2− log2 y) dy ≈ 81.8613

Josh Engwer (TTU) Volumes: Slabs, Washers, Shells 27 January 2014 63 / 64

Page 64: Volumes: Slabs, Washers, Shells · Josh Engwer (TTU) Volumes: Slabs, Washers, Shells 27 January 2014 39 / 64 Volume of Solid of Revolution (using Washers) EXAMPLE: Let region R be

Fin

Fin.

Josh Engwer (TTU) Volumes: Slabs, Washers, Shells 27 January 2014 64 / 64