volumetric perpetual harmonic oscillator

Upload: dmitry-tarasov

Post on 06-Jul-2018

242 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/17/2019 VOLUMETRIC PERPETUAL HARMONIC OSCILLATOR

    1/44

    G  C

    x( )2

    2:=

    Z  c

    2

    ec

    :=   rs  100

    98

    :=RS rs:=

    Pm  2( ) 7 RS⋅+[ ] PM⋅

    7 RS⋅   1  k 1−

    7

      

      

    2

    +

    ⋅   2( )+

    :=   Pn  2( ) 7 RS⋅+[ ] PM⋅

    7 RS⋅   1  k 1−

    7

      

      

    2

    +

    ⋅   2( )+

    1  k 1−

    7

      

      

    2

    +

    ⋅:=

    0

    n

    1−( )n

    2 n⋅   1+( )2∑

    =Me  C

    1 x−( )7

    7my⋅   1

      2

    5− 

       

    ⋅:=   Mep PM  k 1−

    7

    2 π⋅

    10⋅ 

       

    2

    ⋅:=

    Dp C1 x+ k ⋅( )7

    :=   tp   my C⋅7

    :=   Lp C tp⋅:=   Mps Lp3 Dp⋅:=

    DD  1

    C3

    1  2

    5− 

       

    :=   TT  G

    DD:=   RU C TT⋅:=   MU RU

    3DD⋅:=

    DATA SECTION : THE MATHEMATICAL SECTION IS BELOW THE FIRST HEADING (since

    mathcad uses the data derived here to povide solution automatically.)

    THE IMPORTANT ASPECT IS THAT NO MEASURED VALUES ARE USED EXCEPT THE

    PLANCK'S AND COULOMB'S CONSTANT AND VELOCITY OF LIGHT ONLY FOR

    COMPARSON.IT IS A HALLMARK OF SANKHYA THAT RECREATES NATURES DERIVATIONS THROUGH

    AN AXIOMATIC PROCESS. THE PI AND CATALAN'S CONSTANT ARE DERIVED

    THROUGH AXIOTIC PROCEDURES. I HAVE NOT EXPLAINED THE SYMBOLS HERE AS IT

    IS IN THE BOOK. FURTHER ALL VALUES ARE ONLY RATIOS AND HENCE

    DIMENSIONLESS.

    x  1 2

    2+   1−

    2:=

    k 2

    1

    3:=   C 10

    2

    x3

    :=   RS

    0

    100

    n

    2

    100

      

      

    n

    ∑=

    :=Kx

      101 x+

    2

    1

    3⋅   10

    22−( )⋅

    23

    1−( ) 23⋅   102⋅:=

    Px  10

    2 π⋅  3⋅ 

     

     

     

    3

    :=   PM  Kx

    Px C3⋅

    :=   my  Kx

    C6

    := Ne my C

    2

    ⋅  2 π⋅

    7     

    2

    ⋅:=   Lp my C

    2

    7⋅:=

    i 0 200..:=   A0

    x

    2:=

    Ai 1+

    1 1 Ai( )

    2−−

    2

    Ai( )

    2+

    2:=

    ec 1.60217733 10  19−

    ⋅:=   KV  1

    k 1−  

      

    3

    :=h 6.6260755 10

      34−⋅:=

    c 299792458:=

  • 8/17/2019 VOLUMETRIC PERPETUAL HARMONIC OSCILLATOR

    2/44

    The above values are derived constants for solving the formula below.

    SIMULTANEOUSTHRESHOLD

    2 π⋅( )2

    k 1−

    1−

    1+   1.0065838771=

    7

    ec G⋅   C⋅   10⋅

      

      

    1−

    1.0065942766=

    7 k 1−( )2

    k 1−( ) 1⋅

      1.8194473493=

    PHOTOELECTRIC THRESHOLD

    101 x+ k ⋅

    C6

    my⋅   7⋅   8⋅

    1.0204081633=Mps

    my C5

    1

    7⋅   1.0204081633=

    Mep Me−

    Me Mee−

    k 2

    7⋅   1.0204081633=

    PM Pm−

    Pn PM−

    2

    7⋅   1.0204081633=

    KV

    7rs⋅ 

       

      8.3014035528=10

    1 x+k ⋅

    Kx 7⋅   8⋅  1.0204081633=

    Mps

    Kx

    C

    7⋅   1.0204081633=

    Me0 9.1093897 10  31−

    ⋅:=Pm0 1.67262171 10  27−

    ×:=Pn0 1.67492728 10  27−

    ×:=

    Measured

    Mps  Kx

    C7⋅   rs⋅:=Mee 9.1093838239 10

      31−×=Mee Me Mep Me−( )

      k 2

    7 RS⋅⋅−:=

  • 8/17/2019 VOLUMETRIC PERPETUAL HARMONIC OSCILLATOR

    3/44

    PR 3.5714285714:=10 10⋅

    7 7−( )−[ ] 7 7−( )−[ ]+  3.5714285714=

    SMC

    SQCPR =

    SQCSequential cycle =Simultaneous cycle = SMC

    The first axiomatic increase in value is 1+1=2 units.The ratio 1/2 is the fundamental standing wave

    ratio of a linear harmonic oscillator in a resonant state. The cube root of 2 = 1,259921 =k and k-1

    = .255921. Therefore a volume will increase by 2 if the radius increases by k-1 =.259921.

     Similarly a volume will increase by 7 if radius increases to two as 2 cubed = 8 volumes and 8

    minus 1= 7 incremental volumes. Product of two simultaneous cycles = 10 x 10 = 100 divided bytwice the algebraic sum of sequential displacements in both forward and reverse directions of 7

    (volumes) as 7 - (-7) =14. gives an oscillatory ratio PR. Perpetual interactive state or harmonic

    oscillatory state requires a ratio of PR to be maintained continuously. When a number of

    interactions occur within the same period as a single interactive cycle then it is considered to be a

    simultaneous interaction with a common centre of action and displays mass / density

    characteristics.

    PLEASE NOTE THAT ALL VALUES ARE DERIVED FROM AN AXIOMATIC VALUE OF TWO

     AND EVERY DERIVATION (SHOWN BELOW) EQUALS VALUES IN PHYSICS EXACTLY 

     _________________________________________________________________________________ 

     VOLUMETRIC PERPETUAL HARMONIC OSCILLATOR  

     _________________________________________________________________________________ 

     _________________________________________________________________________________ 

    Background

    In Physics , perpetual harmonic oscillation or motion is deemed to violate energy

    conservation principles and hence is considered impossible. But Sankya logic based on

    axioms and combinatorial mathematical procedures provides the proof for the existence

    of perpetual oscillatory states in the continuum of space.

     _________________________________________________________________________________  _________________________________________________________________________________ 

    THE MATHEMATICAL SECTION

     _________________________________________________________________________________ 

  • 8/17/2019 VOLUMETRIC PERPETUAL HARMONIC OSCILLATOR

    4/44

    Pm0 1.67262171 10  27−

    ×=PM not known=Pn0 1.67492728 10  27−

    ×=Measured

    in Physics

    Pm 1.672621512 10  27−

    ×=PM 1.6744231791 10  27−

    ×=Pn 1.6749276458 10  27−

    ×=Derived =

     As shown above the ratio of the mass decrease of Proton Pm from the coherent static mass

    PM and the simultaneous increase of the Neutron Pn mass from the PM state is exactly equal

    to RS. The Proton mass change is over 7 volumetric displacements while the Neutron is over

    two volumetric displacements within the same oscillatory period of two cycles or the equivalent

    of a half-wave / standing wave ratio. The values of PM , Pn and Pm are derived through axioms

    and are not arbitrary, yet the dimensionless ratios match the experimentally measured values

    of Pn0 & Pm0 precisely and within the tolerance values.

    PROOFPM Pm−( )

    Pn PM−( )

    2

    23

    1−( )⋅   1.0204081633=PR 

     2

    7⋅   1.0204081633=

    102

    102

    2−

    1.0204081633=RS 1.0204081633=RS

    0

    100

    n

    2

    100

      

      

    n

    ∑=

    :=

    An oscillatory rate of two changes of volume per cycle and a similar oscillatory rate of two

    changes of radial distance per cycle should maintain a resonant harmonic cyclic period incomplete synchrony if both cyclic periods start at the same instant.. Since the radial distances

    of both types of volumetric increments start from the same central point or common centre ofinteraction, the ratio of both increments will always be the same in every cycle as 2/7. Thereforethe product of PR and the ratio 2/7 should give the resonant ratio RS as the rate of decay100/(100-2) interactions per cycle = 1.020408163264 etc. as the transcendental sum of powerseries of harmonic decay of oscillatory periods, to infinite numbers that progressively reduce theintervals to infinitely small periods. It is a perpetually dynamic state.Therefore the coherentnuclear state can not decay or its decay time is infinite or eternal.

    PR 3.5714285714=PM Pm−( )

    Pn PM−( )3.5714285714=

    The two particulate or fermion states of Proton ( Pm) and Neutron (Pn) oscillate around a central

    coherent state PM that is new to Physics. Coherent states cannot be detected as a particle butonly as a resonance. The change in mass as PM minus Pm during the axpanding phase

    compared to the change in mass as Pn minus PM during the compressive phase must equal PR

    to maintain perpetual harmonic oscillation.

     HADRONIC STATES

  • 8/17/2019 VOLUMETRIC PERPETUAL HARMONIC OSCILLATOR

    5/44

    The above derivation indicates that leptonic states are area dependant flux densities displaying

    charge characteristics that act as a simultaneous surface of interaction at the distance k, at the

    same rate of 2 interactions per cycle but at distance k. Therefore, the variable states of Pm and

    Mee must increase or decrease in the same ratio to maintain the standing wave ratio of 2 or half

    wavelength. The Pn or Mep states must decay to maintain the resonant state. The decay must

    take place at the maximum rate by converting the incremental potential to kinetic energy. Thereverse, compressive interactive state must convert the linear / angular momentum by

    synchronising the flux density to a simultaneously interactive mass density, which will show a

    reduction or apparent loss of flux density that equals the coupling constant. As all these factors

    change within one cycle which is in a resonant harmonic state of half a cycle, the reactive

    displacement never exceeds the interactive displacements and the resonant harmonic state

    exists perpetually.

    Me0 9.1093897 10  31−

    ×=Me not_predicted=Mep not_predicted= As Measured

    in experiments

    in Physics

    Mee 9.1093838239 10  3−

    ×=Me 9.110233722 10  31−

    ×=Mep 9.1140580241 10  31−

    ×=Derived

    PROOFMep Me−

    Me Mee−

    2

    7 k ⋅⋅   1.0204081633=

    Mep Me−

    Me Mee−

    k 2

    7⋅   1.0204081633=

    PR k ⋅   4.4997180353=Mep Me−

    Me Mee−  4.4997180353=

    7 rs⋅   k ⋅

    24.4997180353=

    The same interactive process of perpetual oscillatory state also prevails at a relative distance

    k from the centre, in the form of sequential interactive states displaying kinetic characteristics.

    These interactions have a common surface of interaction that displays charge characteristics

    or flux density. The three leptonic states, Mep is derived from the PM state, Me is derived

    from the Andhatamishra or Planck mass state and Mee is the resonant balancing state which

    equals the current measured value. The ratio of the mass decrease of Mep to Me and the

    simultaneous increase of the Mee to Me mass is exactly equal to RS. The Mep to Me change

    is over 7 area displacements while the Me to Mee change is over 2/k or k squared radial

    displacements within the same oscillatory period of two cycles or the equivalents of a half-wave

    / standing wave ratio.

    LEPTONIC STATES

    PM

    Pm1.0010771517=

    Pn

    PM1.0003012779=

    Pn

    Pm1.0013787541=

    Pm0 Pm−

    Pm1+   1.0000001184=

    Pn Pn0−

    Pn1+   1.0000002184=

  • 8/17/2019 VOLUMETRIC PERPETUAL HARMONIC OSCILLATOR

    6/44

    When the perpetually oscillatory state is interrupted by an accelerative and out of phaseinteraction, interactive stresses created by the breakdown of the coherent state, transmigratein a wave form. When the rate of acceleration exceeds C, photons or stress quanta are

    radiated in a holographic form as a particle. The wave characteristics exist as two states. Thesimultaneous phase represented C x and the sequential phase as C1-x transmigrate as a

    wave and the product equals C. In a balanced state it is Cx / C1-x = Cx

    3

      equals the

    impedance in space as shown below

    IMPEDANCE IN100

    k 1−( ) rs⋅  377.0375659826=

    Cx

    C1 x−⋅

    C1=

    PM Px⋅

    C

    2 π⋅( )2

    k 1−( )−

    7

    ⋅   6.6261986282 10

      34−×=   h 6.6260755 10

      34−×=

    PROOF

    The magnetic state is created at a resonant oscillatory rate of two cycles per period in which themaximum coherence at maximum stress density is attained. The atomic mass number at which

    perpetual magnetic resonance will be maintained is given below which is equal to Fe atomic mass

    number and element number 26

    Rp3

    C1 x+( )

    3

    1−

    2 rs⋅( )

    1

    31−

    3

    1+

    55.8670172024=  55.8670172024

    2  1

    7+

    26.0712746945=

  • 8/17/2019 VOLUMETRIC PERPETUAL HARMONIC OSCILLATOR

    7/44

    Mps

    PM Px⋅

     Ne 7⋅

    my

    1.2665147955=

    2 π⋅

    1010

    18⋅   my⋅

     Ne 7⋅  1.2666197678=RATIO

    my C2

    ⋅  2 π⋅( )

    2k 1−( )−

    72

    ⋅   9.4659980402 10  35−

    ×= Ne 9.5287340542 10  35−

    ×=

    Kx k 1−( )⋅

    Px

    1−.939⋅   82.7086719379=

    Px

    k 1−( ) Kx⋅  .9396⋅

    1 22

    +( )2

    1−

    92.5301933599=

    MW

    MZ

    h 6.6260755 10  34−

    ×=Lp 2 π⋅( )( )2

    k 1−( )−⋅   6.6261986282 10  34−

    ×=

    PROOF10

    2

    2 π⋅( )2

    1

    k 3

    ⋅   1.2665147955=HiddenMass

    Hiddenenergy

    Mps

    PM Px⋅

    my

     Ne 7⋅⋅=   1.2665147955=

    h

    my4.9278416147 10

    17×=

     Ne 7⋅

    my4.9605931212 10

    17×=Hiddden dark energy

    2 π⋅

    1010

    18⋅ 

       

    1

    6

    925.4720588405=Mps

    PM Px⋅  6.2826645825 10

    17×=hidden dark mass

    The PM forms the neutral or balanced state between the limiting mass Mps (Planck) at the

    highest density and the rest energy state of the Neutrino, Plancks constants and the Planck

    length. The ratio between Mps and PM is angular converted to mass as potential in the form

    of hidden 'dark matter'. "my" is the fundamental mass value in Sankhya and its energy value isequal to Plank's constant. Shown below, the potential driving ESP and Astrological factors is

    shown to be only 0.266 of the measurable Planck value and is therefore hidden. But in terms of

    the frequency spectrum it covers 1.3 E+17 interactions per second, which is a very large mass

    interval driving the parapsychological phenomenon yet it cannot be detected by instrumentation

    because it acts simultaneously- that is it is a change in potential but not discrete enough to

    cause a change in frequency .

  • 8/17/2019 VOLUMETRIC PERPETUAL HARMONIC OSCILLATOR

    8/44

    The foregoing algorithm is scale invariant & self similar. It can be applied to any field of

    components that are in a coherent and confined state. The components that form space are in a

    coherent, dynamic and perpetual state of balanced activity. That is the reason the interactive

    formulation shown above work correctly.

    Photons travel as a wave with a forward and bacward oscillatory motion and therefore the

    loss in distance is one cycle (or 1 metre) in 36.6 years of travel time.( Pioneer Anomaly)

    k 1−

    c

    yr 

    s⋅   36.5497624716⋅ 

       

      1=

    The proof of the above is in an enigmatic behaviour of the nuclera spectrum where a the

    perpetual oscillation is called the self energy of the Vacuum and its value is indicated by the

    frequency of oscillation called the Lambshift, measured as 1057.862 Megacycles/sec.

    The theoretical value is shown and the measured value is different for reasons.The existance

    or the mass value of PM is not known in Physics because any measurent needs 7 plancks

    constant of energy to register a frequency count and the PM is hidden within this value.

    My = photon rest mass in Sankhya and the equivalence is shown below.

    C

    Pn PM( )−[ ]

    PM( ) Pm−[ ]

    1.0591998819 109

    ×=

    Theoretical

    1.0591998819 109

    ×

    1  k 1−

    7

      

      

    2

    +

    1.0577415164 109

    ×= Experimental

     _________________________________________________________________________________ 

    REDSHIFT k 1−

    7 10

    6

    ⋅   3.7131578556 104

    ×=

    Derivation from axioms

    x  1 2

    2+   1−

    2:=   x 0.6180339887=

  • 8/17/2019 VOLUMETRIC PERPETUAL HARMONIC OSCILLATOR

    9/44

    Mee 9.1093838239 10  31−

    ×=Mee Me  Mep Me−( ) k 

    2⋅

    7 rs⋅−:=

    Me C1 x−( )

    7my

    7⋅   1

      2

    5− 

       

    ⋅:=

    Mep 9.1140580241 10  31−

    ×=Mep  PM

    7

    k 1−

    10

    2 π⋅⋅ 

       

    2:=

    Pn 1.6749276458 10  27−

    ×=Pn

      2( ) 7 rs⋅+[ ] PM⋅

    7 rs⋅   1  k 1−

    7

      

      

    2

    +

    ⋅   2( )+

    1  k 1−

    7

      

      

    2

    +

    ⋅:=

    Pm 1.672621512 10  27−

    ×=Pm  2( ) 7 rs⋅+[ ] PM⋅

    7 rs⋅   1  k 1−

    7

      

      

    2

    +

    ⋅   2( )+

    :=

    PM 1.6744231791 10  27−

    ×=PM  Kx

    Px C3

    :=

    Px 20.9479860976=Px  10

    2 π⋅  3⋅ 

       

    3

    :=

    Kx 0.9149879388=Kx  10

    1 x+2

    1

    3⋅   10

    22−( )⋅

    23

    1−( ) 23⋅   102⋅:=

    C 2.9657596692 108

    ×=C 10

    2

    x3

    :=

    π

    A100

     2100

    10=

    Ai 1+

    1 1 Ai( )

    2−−

    2

    Ai( )

    2+

    2:=

    A0

    x

    2:=i 0 100..:=

  • 8/17/2019 VOLUMETRIC PERPETUAL HARMONIC OSCILLATOR

    10/44

     ___________________________________________________________________________________ 

     ___________________________________________________________________________________ 

    Pn 1.6749276458 10  27−

    ×=   Pm 1.672621512 10  27−

    ×=   PM 1.6744231791 10  27−

    ×=

    Me 9.110233722 10  31−

    ×=   Mee 9.1093838239 10  31−

    ×=

    Pn0

    Mee

    Pn

    Me−   0.1711300947=

      Pm0

    Mee

    Pm

    Me−   0.1715128546=

      PM

    Mee

    PM

    Me−   0.1714800482=

    n 1 8..:=

    Lxn

    2( ) n rs⋅+[ ]

    n rs⋅   1  k 1−

    n

     

     

     

     

    2

    +

    ⋅   2( )+

    1  k 1−

    n

      

      

    2

    +

    ⋅   PM⋅:= = Pn

    Ldn

    2( ) n rs⋅+[ ]

    n rs⋅   1  k 1−

    n

      

      

    2

    +

    ⋅   2( )+

    PM⋅:= = Pm

    1 2 3 4 5 6 7 81.62 .10

      27

    1.64 .10  27

    1.66 .10  27

    1.68 .10  27

    1.7 .10  27

    1.72 .10  27

    Lxn

    Ldn

    PM

  • 8/17/2019 VOLUMETRIC PERPETUAL HARMONIC OSCILLATOR

    11/44

    n

     ___________________________________________________________________________________ 

    n 1 10..:=

    0 2 4 6 8 100

    1 .10  30

    2 .10  30

    3 .10  30

    Pn PM−( ) n⋅   rs⋅[ ] PM Pm−( ) 2⋅−

    n

     Ne Z⋅   k 1−( )⋅

    rs13.6154988477=

      1

    x x+

     Ne Z⋅   k 1−( )⋅

    rs⋅   11.0151699546=

     Ne Z⋅   k 1−( )⋅

    rs

    1

    x x+

     Ne Z⋅   k 1−( )⋅

    rs⋅−   2.600328893=

    13.6 1.8146371585−

    13.60.8665707972=

    13.602( ) 1 .25−   13.602⋅( )−   1.822=

  • 8/17/2019 VOLUMETRIC PERPETUAL HARMONIC OSCILLATOR

    12/44

    PM Pm−( ) 2⋅

    Pn 2⋅   PM−( ) 7⋅   rs⋅   3.0109651557 10

      4−×=

    Mep Me−

    Me Mee−

    2

    7 k ⋅⋅   1.0204081633=

    Mep Me−

    Me Mee−

    PM Pm−( )

    Pn 2⋅   PM−( )

    4.1844424786 103

    ×=

    Me  Mep Me−( ) 2⋅

    7 k ⋅   rs⋅−   9.1093838239 10

      31−×=   Mee 9.1093838239 10

      3−×=

    volume area and length sync

    mass and flux density

    2 and 7 with 1.020408Phn

    Me

    Mep Me−( )  2

    7 k ⋅   rs⋅⋅

    PM Pm−( ) 2⋅

    Pn n⋅   PM−( ) 7⋅   rs⋅

    Me n( )⋅:=

    Ph

    Phn( )

    0.9999067095

    0.3450820841

    0.126807209

    0.0176697715

    0.04781269110.0914676661

    0.1226497911

    0.1460363849

    =

    k 1−( )  3−

    56.947628372=

    PM1  Mps

    2 π⋅   1017

    ⋅   Px⋅

    :=

    PM1

    n

    Mps

    Px 2⋅   1017⋅   2n⋅   An⋅   10⋅

     

     

     

     

    :=

    Mep1n

    PM1n

    7

    k 1−

    10

    2 π⋅⋅ 

       

    2:=

  • 8/17/2019 VOLUMETRIC PERPETUAL HARMONIC OSCILLATOR

    13/44

    volume area and length syn

    mass and flux density

    2 and 7 with 1.020408Ph

    n  Me

    Mep1n

      Me−( )  2

    7 k ⋅   rs⋅⋅

    PM1n   Pm−( )  2⋅

    Pn PM1n−( )  7⋅   rs⋅

    −:=

    0 2 4 6 89.1 .10

      31

    9.11 .10  31

    9.12 .10  31

    9.13 .10  31

    Phn

    n

    h

    ec4.1361270287 10

      15−×=   my

     C2

    2 π⋅( )2

    k 1−( )−⋅

    7⋅   6.626198=

    2 π⋅   1018

    ⋅   h⋅

    22.0816430113 10

      15−×=

    h

    ec

    1

    2⋅   2.0=

    ec

    1.38 10  23−⋅   2⋅

    5.8043478261 103

    ×=7

    k 1−1

    2⋅   13.465627356=

    PM C2

    Kb1.066721439 10

    13×=   PM C

    2⋅

    9.1933675935 108

    ×=

  • 8/17/2019 VOLUMETRIC PERPETUAL HARMONIC OSCILLATOR

    14/44

    1.8835327 10

      28−

    ⋅   Kb k 1−( )2

    ⋅   Cx

    ⋅   1.6063382333 10  19−

    ×=

    1  1

    343+ 

       

     343⋅

    1+

    10⋅   C⋅   my C2

    ⋅   2 π⋅( )2

    k 1−( )−⋅⋅   1.3806581776 10  23−

    ×=

    my C2

    ⋅   2 π⋅( )2

    k 1−( )−⋅

    7

      6.6261986282 10

      34−×=

    my C2

    ⋅   2 π⋅( )2

    k 1−( )−⋅

    7

      6.6261986282 10

      34−×=

    7

    k 1−( )Lp 2 π⋅( )2

    k 1−( )−⋅   6.6261986282 10  34−

    ×=

    1  1

    343+ 

       

     343⋅

    1+

    10⋅   7⋅  C

    3

    C⋅

    6.1795617215 1018

    ×=

    1  1

    343+ 

       

     343⋅

    1+

    10⋅   7⋅  C

    3

    C2

    2.0836353618 1010

    ×=

    1  1

    343+ 

       

     343⋅

    1+

    10⋅   7⋅  C

    3

    C2

    my C2

    ⋅   2 π⋅( )2

    k 1−( )−⋅

    7⋅   1.3806581776 10×=

  • 8/17/2019 VOLUMETRIC PERPETUAL HARMONIC OSCILLATOR

    15/44

    1  1

    343+ 

       

     343⋅

    1+

    10⋅   7⋅  C

    3

    C⋅

    my C2

    ⋅   2 π⋅( )2

    k 1−( )−⋅

    7⋅   4.0947003402 1×=

    Lp2

    G⋅

    Mps7⋅   C

    2⋅

      2 π⋅( )2

    k 1−( )−

    7⋅   6.6261986282 10

      34−×=

    PM Pm−

    Pn PM−

    2

    7⋅   1.0204081633=

      Mep Me−

    Me Mee−

    k 2

    7⋅   1.0204081633=

    7 rs⋅   2+

    7 rs⋅   1  k 1−

    7

      

      

    2

    +

      2+

    Kx

    Px C3

    ⋅   1.672621512 10  27−

    ×=   Pm 1.6726=

    7 rs⋅   2+

    7 rs⋅   1  k 1−

    7

      

      

    2

    +

      2+

    1   k 1−7

      

      

    2

    +

    ⋅   Kx

    Px C3

    ⋅   1.6749276458 10   27−×=

    Kx

    Px C3

    k 1−

    7

      

      

    2

    ⋅  2 π⋅

    10

      

      

    2

    ⋅   9.1140580241 10  31−

    ×=   Mep 9.1140580241 10  31−

    ×=

    C1 x−( )

    7

    C6

    Kx

    7⋅   1

      2

    5− 

       

    ⋅   9.110233722 10  31−

    ×=   Me 9.110233722 10  31−

    ×=

    Kx k 1− 2

    ⋅  2 π⋅

    2

  • 8/17/2019 VOLUMETRIC PERPETUAL HARMONIC OSCILLATOR

    16/44

    Px C3

    ⋅  7 10

    Me1.0004197809=

    my C⋅   C2

    Px1.6744231791 10

    −×=

    PM Pt

    2

    ⋅Rp

    3G⋅

    1=

    Kx 0.9149879388=   Px 20.9479860976=   KV 56.9476283=

    π 2⋅

    100.6283185307=

      2 π⋅( )

    k 1−  24.1734377024=

    This QuickSheet can be used to create a parametric surface

     plot of a unit sphere.

    X φ θ,( )   sin φ( ) sin  θ( )⋅:=0   φ≤ π≤

    Y φ θ,( )   sin φ( ) cos  θ( )⋅:=0   θ≤   2 π⋅≤

    Z  φ θ,( )   cos φ( ):=

  • 8/17/2019 VOLUMETRIC PERPETUAL HARMONIC OSCILLATOR

    17/44

    X Y,   Z,( )

    KV

    7rs⋅ 

       

      

      

    Kb6.012642923 10

    23×=

    7

    k 1−  

      

    3

    KV

    7 8⋅   1.0204829⋅ 

     

     

     

    2−1−

    n 1 8..:=

    n

    2

    3

    1

    1.587401052

    2.0800838231

    2.5198420998

    2.9240177382

    3.3019272489

    3.65930571

    4

    =   1

    n

    2

    3

     

     

     

     

    3−

    1

    4

    9

    16

    25

    36

    49

    64

    =

    656.3 10  9−

    656.1 10  9−

     

     

     

     

     

     

     

     

    1.000=

    C

    656.1 10  9−

    ⋅   C1 x+

    8.85038=

    6.561 10  6−

    ⋅  C

    2.4177207157 10

    14

    ⋅( )

    5.33432412=

    ec

    C h⋅( )

    C

    k 2

    103

    ⋅( )−   6.283801213 10

    5×=   2 π⋅   10

    5⋅

    k 2

    103

    k 1−

    100

      

      

    ⋅   1.0288087687=

  • 8/17/2019 VOLUMETRIC PERPETUAL HARMONIC OSCILLATOR

    18/44

    23

    1−

    k 3

    rs⋅   3.5714285714=ExpP

    ComP3.5714285714=

    10

    logec

    h

      

      

      logc

    656.1 10  9−

     

     

     

     −

     

     

     

     

    1−

    1.88992484=

    h

    ecC⋅ 

       

    6.561 10  7−

    ⋅( )  1.8696477257=

    log 1 k 1−( )2

    +  1

    Pt⋅

    1−1+

      4.3928=

    2

    log 1 k 1−( )2

    +  1

    Pt⋅

    1−

    1+

    1.000304=

    656.3 10  9−

    656.1 10  9−

    ⋅ ,

    =

    Pn

    Pm1.0013787541=

    Pn0

    Pm01.=

    PM 1.0003045377⋅

    Pm1.0013820174=

    Pn

    PM

      

      

      1.0003012779=

    10

    log 1 k 1−( )2

    +  1

    Pt⋅

    1−

    1+

     log 2( )⋅

    1.0003045377=

    10

    logC

    656.1 1⋅

     

     log 2( )

     

     

    log  C

    656.1 10  9−

     

     

     

     log

      C

    656.3 10  9−

     

     

     

     − 

     

     

     1.3236649962 10

      4−×=

    log  C

    656.3 10  9−

    ⋅ log 2( )

    48.=c

    656.1 10  9−

    4.5693104405 1014

    ×=

  • 8/17/2019 VOLUMETRIC PERPETUAL HARMONIC OSCILLATOR

    19/44

    Kx

    Px C3

    Kx

    Px c3

    −   5.331878286 10  29−

    ×=

    1

    C3

    1

    c3

    − 

     

     

     

    Kx

    Px⋅

    Mep

    Kx

    C3

    Kx

    c3

    Mep1.225492661 10

    3×=

    my C3

    ⋅  Kx

    c3

    GePM Mee+( )−   4.7776831516 10

      30−×=

    4000 PM⋅   Na⋅   4.0333505538=

    my C3

    ⋅   3.5075793477 10  26−

    ×=Kx

    Px c

    3

    my C3

    Px−

     

     

     

     

    5.331878286−   10  29−

    ×=

    73

    343=103

    1 103

    ×=Sahasrara =thousandfold

    63

    216= Ajna= motivating

    53

    125=Visuddha=purifying

    5 8+   1+   14=43

    64= Anahata= livingforce

    5 5+   1+   2+   1+33

    27=Manipuraka = fullmagnetic

    1 9+   10=23

    8=Swadhisthana =independant

    5 3+   8=13

    1=k 3

    2=Moola=root

    ExpP ExpM⋅

    ComP ComM⋅

     

     

     

     

    3

    0.5=

    ExpP

    ComP

    2

    rs⋅   7=

    ExpM k ⋅  3.5714285714=

  • 8/17/2019 VOLUMETRIC PERPETUAL HARMONIC OSCILLATOR

    20/44

    Kx

    Px C3

    1.6744231791 10  27−

    ×=

    Mee 7 rs⋅

    k 2

    ⋅ −

    7 rs⋅

    k 2

    − 

     

    Me  7 rs⋅

    k 2

    1− 

    7 rs⋅

    2Pn⋅   Pm+

    7 rs⋅

    2

    1+ 

     

     

     

    1.6744231791 10  27−

    ×=

    Mee 7 rs⋅

    k 2

    ⋅ −7 rs⋅

    21+ 

       

     PM⋅   7.6545059615 10  27−

    ×=

    7 rs⋅

    k 2

    Me⋅   Me− =PM PM 7 rs⋅

    2⋅+   7.6545059615 10

      27−×=

    7 rs⋅

    2Pn⋅   Pm+   7.6545059615 10

      27−×=

    Mep Me−

    Me Mee−  4.49=

    PM Pm−

    Pn PM−  3.5714285714=

    Lp k 1−( )⋅   4.39152098 10  36−

    ×=

    h

    2 π⋅( )3

    k 1−( ) 2⋅ π⋅  1−

    4.3914393767 10  3−

    ×=2 π⋅( )3

    248.0502134424=

    Pm Ne 8⋅   k 1−( )⋅−

    Pm00.9999997632=

    Pn  Ne

    k 1−−

    Pn0

    0.99999999=Pn Pn0−

     Ne

    k 1−

    0.9979458885=

  • 8/17/2019 VOLUMETRIC PERPETUAL HARMONIC OSCILLATOR

    21/44

    Kx

    Px0.0436790408=

    7 rs⋅

    2Pn⋅   Pm+

    7 rs⋅

    21+ 

     

     

     

    C3

    ⋅   0.0436790408=

    Kx

    Px

    k 1−

    7

    2 π⋅

    10⋅ 

       

    2

    ⋅   2.3774952294 10  5−

    ×=

    Mee 7 rs⋅

    k 2

    ⋅   Mep−

    7 rs⋅

    k 2

    1− 

     

     

     

    C 3( )

    ⋅   2.3759275133 10−

    ×=

    n 1 ..:=

    Mps

    Pn 1018

    ⋅   Px⋅

    1

    2⋅   0.3140386162=   An 2n

    0.3128689301

    0.3138363829

    0.3140785261

    0.3141390794

    =

    Mps

    Mep  7

    k 1−

    10

    2 π⋅

    ⋅ 

     

     

     

    2

    ⋅   1018

    ⋅   Px⋅

    1

    2⋅   0.3141332291=

    An 2

    n⋅

    0.31286893010.3138363829

    0.3140785261

    0.3141390794

    =

    log Dp( )

    log  1

    x3

     

     

     

     

    154.1715269782=  log Dp( )

    log 2( )321.09700775=

  • 8/17/2019 VOLUMETRIC PERPETUAL HARMONIC OSCILLATOR

    22/44

    70 0.0143876−(−

    7

  • 8/17/2019 VOLUMETRIC PERPETUAL HARMONIC OSCILLATOR

    23/44

    7

    k 1−  

      

    3

    1.9533036532 104

    ×=

    1  1

    73

    +   1.0029154519=

    1

    73

    4.9⋅ 

     

     

     

    1−1

    73

    4.95⋅ 

     

     

     

    1−−

    0.7070707071=

    343

    273.26 1−

      

      

    1−

    8.3081529089=

    343 273.26−

    343

      

      

    1−1

    k 1−−   1−

    1−

    2

    3.7543677222=

  • 8/17/2019 VOLUMETRIC PERPETUAL HARMONIC OSCILLATOR

    24/44

    n 3 4..:=

    7 rs⋅   C2

    ⋅   10⋅

    2n

    An

    ⋅   10⋅   2⋅   1018

     

     

     

     

    1−

    1−

    1−

    -5.7425171218·103

    5.3695760681·104

    =

    2 π⋅( )2

    710

    4⋅   5.6397739435 10

    4×=

    7 k 1−( )⋅   1.8194473493=

    100

    2 π⋅( )2

    21−   0.2665147955=

  • 8/17/2019 VOLUMETRIC PERPETUAL HARMONIC OSCILLATOR

    25/44

    π

    A100

     2100

    10=

    Kaivalya

    MU

    my

      

      

    1

    Lp3

    2 x⋅( )6

    MU

    my

    1−

    7

    k 1−  

      

    3

    392.7616293442=

    C3

    6.022 1023

    ⋅  7

    k 1−

    10

    2 π⋅⋅ 

       

    1.0106258319=

    100

    283.5714285714=

    102

    7 7−( )−[ ] 7⋅  1.0204081633=   Mps

      Kx

    C7⋅   RS⋅:=

  • 8/17/2019 VOLUMETRIC PERPETUAL HARMONIC OSCILLATOR

    26/44

    KV  1

    k 1−  

      

    3

    :=Tama

    102

    7 7−( )−[ ][ ] 7 7−( )−[ ]+

      3.5714285714=

    0

    100

    n

    1−( )n

    2 n⋅   1+( )2∑

    =

    0.915977847=

    101 x+

    2

    1

    3⋅

    2

    3

    2

    3

    1−( )⋅

    100 2−

    100

      

      

    ⋅   0.9149879388=

    Rp  k 1−

    C1 x+

    :=

    0

    100

    n

    2

    100

      

      

    n

    ∑=

    1.0204081633=

    1  1

    49+   1.0204081633=

    1

    100

    n

    1 22

    +   1−

    2

     

     

     

     

    n

    ∑=

    1.6180339887=

    1  1 2

    2+   1−

    2

     

     

     

     +   1.6180339887=

    0

    100

    n

    0.6816901138( )n

    ∑=

    3.1415926534=

    Pt  PM

    Rp3 G⋅

     

     

     

     

    1−

    :=   Pt 1.0803802741 10  3−

    ×=

    C1 x+( )

    3

    KV⋅

    1−

    1.3179913508 10  43−

    ×=

  • 8/17/2019 VOLUMETRIC PERPETUAL HARMONIC OSCILLATOR

    27/44

    Pm0 Pm−

    Pm

     

     

     

     

     

     

     

     

    C

    10

      3.5101237714=

    Lp 2 π⋅( )2

    ⋅   Lp k 1−( )⋅−

     Ne 7⋅   Lp k 1−( )⋅−  1=

    n 1:=   c 299792458:=

    h

    79.4658221429 10

      35−×=

    Rp

      k 1−

    C1 x+:=   Rp 5.0890594006 10

      15−

    ×=

    KV  1

    k 1−  

      

    3

    :=

    PM

     NePx⋅

      2 π⋅

    10

      

      

    2

    ⋅   2⋅   rs⋅   2.9657596692 108

    ×=

    PM n⋅   Pm n⋅−

    Pn n⋅   PM n⋅−

    Mep n⋅   Me n⋅−

    Me n⋅   Mee n⋅−  

      

    1−⋅   0.793700526=

  • 8/17/2019 VOLUMETRIC PERPETUAL HARMONIC OSCILLATOR

    28/44

    7

    k 1−( ) 26⋅

      1.035817489=

    26 2  1

    7+ 

       

    ⋅   55.7142857143=2 rs⋅( )

    1

    31−

    3

    1+

      1.0193425607=

    55.867

    2  1

    7+

    26.0712666667=

    h C⋅

    PM Px⋅

    2 π⋅( )2

    7−

     7⋅

    1−

    3.836565253−=

    Mee 9.1093838239 10

      31−

    ×=

    PM Px⋅

    C

    2 π⋅( )2

    k 1−( )−

    7

    ⋅   6.6261986282 10

      34−×=

    Mee

     Ne9.5599098181 10

    3×=

    1

    k 0.793700526=

    Mee

    h C1 x−

    0.7982972696=

    h 6.6260755 10  34−

    ×=Planks constant

    h C1 x−

    k 9.0569303036 10

      31−×=

    PM Px⋅

    Cx

    k ⋅

    2 π⋅( )2

    k 1−( )−

    7

    ⋅   9.0570986028 10

      31−×=

    Cx

    3Cx

    C1 x−

      100=

    PM Px⋅Mee2 π⋅10     

    3

    ⋅   9.5512037113 103×=

  • 8/17/2019 VOLUMETRIC PERPETUAL HARMONIC OSCILLATOR

    29/44

    M

    Pd   PM

    Rp3

    :=

    Ge

    Dp

    DD

      

      

    1

    3

    DD⋅

    PM

    Rp3

    :=

    1

    Pt

      

      

    6

    6.2883994818 1017

    ×==

    Mps

    PM Px⋅

     Ne 7⋅

    my− 

       

      1.3220714614 1017

    ×=

    Dp

    DD

      

      

    1

    3

    DD⋅

    PM

    Rp3

    1−

    1.5042349611=

    7my

    h

    C2

    ⋅   39.2177677955=

    1

    k 1−( )2

    c⋅

    4.937378163 10  8−

    ×=

    A10

     210

    ⋅   10⋅     1

    k 1−( )2

    C⋅

    +   3.1415926542=π   3.1415926536=

    7 rs⋅

    23.5714285714=

    Me Mee−

    2

    C2

    ec⋅

  • 8/17/2019 VOLUMETRIC PERPETUAL HARMONIC OSCILLATOR

    30/44

    10

    1

    3

    7−

    13.6058163144=

    c 299792458:=   n 1 3..:=  k 1−

    70.0371315786=

    my C2

    ⋅   2 π⋅( )2

    72

    9.5287340542 10  35−

    ×=

    ec 1.602 10  19−

    ⋅:=

    2 π⋅   1017

    107

    G⋅   4⋅ π⋅

    3⋅   1.0115452142=

    2 π⋅

    1010

    18⋅   my⋅

    1057.862 106

    ⋅   h

    ec4.3754516108 10

      6−×=

    1057 106

    ⋅   h⋅

    c2

     

     

     

     

    13−

    5.0439411733 1013

    ×=

    C1 x+( )

      3−C

    2⋅

    h 106

    rs2

    ⋅   1.0374127495 103

    ×=

  • 8/17/2019 VOLUMETRIC PERPETUAL HARMONIC OSCILLATOR

    31/44

    Mep

    Me1−        4.1978089734 10

      4−×=

    Me

    Mee1− 

       

    1−

      1.071820629 10

    4×=

  • 8/17/2019 VOLUMETRIC PERPETUAL HARMONIC OSCILLATOR

    32/44

  • 8/17/2019 VOLUMETRIC PERPETUAL HARMONIC OSCILLATOR

    33/44

    Kx rs⋅   7⋅

    4913.605⋅   1.8146371585=   Mps C⋅   6.5356281344=

    4.39 1014

    ⋅   h⋅

    ec

    13.605

     

     

     

     

    1−

    Kx⋅   rs⋅   6.9956721976=

    Kx rs⋅

    7 13.605⋅

      ec

    h⋅   4.3872858497 1014

    ×=

    Mps C⋅

    4913.605⋅

      ec

    h⋅   4.3872858497 10

    14×=

    224577

  • 8/17/2019 VOLUMETRIC PERPETUAL HARMONIC OSCILLATOR

    34/44

    1

    15 60⋅  1+   1.0011111111=

    4 π⋅3

    103⋅   4.1887902048 103×=   72

    3.5=

    n 1 8..:=   m 1 8..:=

    0 5 100

    0.5

    1

    n

    7 Kx⋅   rs⋅   6.5356281344=

    PM1n

    PM=

  • 8/17/2019 VOLUMETRIC PERPETUAL HARMONIC OSCILLATOR

    35/44

    1.0040409863

    1.000945863

    1.00017417

    0.9999813769

    0.9999331868

    0.9999211397

    0.999918128

    0.9999173751

     

    13.6 .28⋅   3.808=

    Phn

      Mee−( ) Ne

    25.640481881

    4.1967287414

    0.4336199355

    -0.0290405127

    -0.0849418215

    -0.0942358728

    -0.0962482202

    -0.0967315501

    =

    Kb 1.380658 10  23−

    ⋅:=

    6282 10  34−

    ×1

    ec 2⋅   3.1210986267 1018

    ×=

    680635144 10  15−

    ×

    nn 9.9395351411:=

    nn

    ec6.2044538958 10

    19×=

    KbRp

      k 1−

    C1 x+

    :=

    ec

    1 x−  13.4752991801=

  • 8/17/2019 VOLUMETRIC PERPETUAL HARMONIC OSCILLATOR

    36/44

    Kb2

    Cx

    k 1−( )2

    ⋅   1.163458462 104

    ×=

    n 1 3..:=

    Kb 1.380658 10  23−

    ×=

    1  1

    343+ 

       

     343⋅

    1+

    10⋅   7⋅   C⋅   2.0836353618 1010

    ×=

    1  1

    343+ 

       

     343⋅

    1+

    10⋅   7⋅   C⋅  my C

    2⋅   2 π⋅( )

    2k 1−( )−⋅

    7⋅   1.3806581776 10

      23−×=

    2⋅

    C1 x−

    2⋅   1.1594835022 10

    4×=

      ec

    Kb1.1603163129 10

    4×=

    1  1

    k 1−+ 

       

    103

    1+   1.0048473221=23 ec

    h2⋅

    C1.6304225462 10

    6×=

  • 8/17/2019 VOLUMETRIC PERPETUAL HARMONIC OSCILLATOR

    37/44

    15−   h

    ec 4.0947003402 10  15−×( )⋅

    2

    1.0203366523=

    Kx

    Px C3

    k 1−

    7

      

      

    2

      2 π⋅

    10

      

      

    2

    9.1140580241 10

      31−

    ×=

    1512 10  27−

    ×

    Pt  PM

    Rp3

    G⋅

     

     

     

     

    1−

    :=

    Pn 1.6749276458 10   27−×=

    PM C3

    ⋅   0.0436790408=  Kx

    Px0.0436790408=

    Kx

    PxPM C

    3⋅−   0=

    Kx rs⋅( ) 7⋅   Mps C⋅−   8.881784197 10  16−

    ×=

    Kx   3⋅

      7 10⋅ 2

    ⋅− =

  • 8/17/2019 VOLUMETRIC PERPETUAL HARMONIC OSCILLATOR

    38/44

    Px   k 1−( ) 2⋅ π⋅

    Px

    7

     

     

     

     

      2.9925694425=7

    72 rs 1.0204081633=

    8.314 8−

    8

      

      

    1−

    2

    5.0475446513=

  • 8/17/2019 VOLUMETRIC PERPETUAL HARMONIC OSCILLATOR

    39/44

    KV

    5.04711.2834611397=

    7

    k 1−  

      

    3

    137.02

    1.0201506579=

    1137.0375366202=

    C1 x−

    4 π⋅  137.0433964307=

    048316

    2

    x10

    3⋅ 

       

    1−3.0901699437 10

      4−×=

    ec

    h2.4177207157 10

    14×=

    3607C

    ec

    h

     

     

     

     

    1−

    2

    Pt⋅   0.9754650967=

    72 10  6−

    ×   k 2

    103

    C

    5.3524264574 10  6−

    ×=

    ec

    h2.4177207157 10

    14×=

  • 8/17/2019 VOLUMETRIC PERPETUAL HARMONIC OSCILLATOR

    40/44

    SwadhistanaMoola

    15

    ComM Mep Me−:=ComP Pn PM−:=

    ExpM Me Mee−:=ExpP PM Pm−:=

    2 4.3928808931 10

      4−×( )

    1.0003045377=08931 10

      4−×

    5377

    1 k 1−( )2

    +  1

    Pt⋅

    1−1+

      1.0010120099=

    013784169

    987.1794998356 Pt⋅   1.0665292587=

    1

    .001012987987.1794998356=

    0  9−

     

     log

    C

    656.3 10  9−

     

     

     

     log 2( )

     

     1.001012987=

    Pt 1+   1.0010803803=

    249

    248.6829676837

    −   1.1105910028 1014

    ×=829676837

  • 8/17/2019 VOLUMETRIC PERPETUAL HARMONIC OSCILLATOR

    41/44

     

    Vijna Ajna

    Sahasrara 103

    1 103

    ×=   73

    343=

    Pd  PM

    Rp3

    :=

    14=Dp

    DD

      

      

    1

    3DD

    Pd⋅   0.6647897608=

     Na 6.022 1023

    ⋅:=

    Ge  Dp

    DD

      

      

    1

    3DD

    Pd⋅:=

    1

    5 100⋅1+   1.004472136=

    x

    2 100⋅  1+   1.0030901699=

    58.5016934481=1

    1.3717421125=

  • 8/17/2019 VOLUMETRIC PERPETUAL HARMONIC OSCILLATOR

    42/44

    .

    96

    Mps

    C2

    G⋅

    Mps

    C2

    G⋅

    k 1−( )⋅−   1.2504074747 10  35−

    ×=

    2 π⋅( )3

    2 π⋅  k 1−( )−

     Lp⋅   6.6261986282 10

      34−×=

    h 6.6260755 10  34−

    ×=

    7180353

    3.1883249263 10  30−

    ×

    ep 3.1875600659 10  30−

    ×=

    3.1883249263 10  30−

    ×=

    Mep

     

    9.1080482305 10  31−

    ×=

  • 8/17/2019 VOLUMETRIC PERPETUAL HARMONIC OSCILLATOR

    43/44

    Px

    Kx

    7

    k 1−

    10

    2 π⋅⋅ 

       

    2

      4.2061072832 10

    4×=

    7

    k 1−  

      

    3

    RS137.036−

    1−

    14.1697921538−=5

    4

    Kx 7⋅   rs⋅

    Pn 1018

    ⋅   Px⋅

    1

    2 C⋅⋅   0.3140386162=

    Px

    Kx 103

    ⋅   rs⋅

    c3

    ⋅   Na−

     Na3.8627538596 10

      3−×=

     Na

    k 1−( ) 1000⋅   2.3168573697 1021

    ×=

    Kx

    3

    1

     

     

     

        1−   0.2339694184−=

  • 8/17/2019 VOLUMETRIC PERPETUAL HARMONIC OSCILLATOR

    44/44

    7

    k 1−  26.931254713=

    1)

    1−

    14.1213123948=