vorstellung lehrstuhl für verbrennungskraftmaschinen · public funding industrial partners...

26
Introduction, Overview Technical University of Munich Department of Mechanical Engineering Institute of Internal Combustion Engines OME Vorstellung

Upload: votram

Post on 28-Aug-2018

214 views

Category:

Documents


0 download

TRANSCRIPT

Introduction, Overview

Technical University of Munich

Department of Mechanical Engineering

Institute of Internal Combustion Engines

OME Vorstellung

The Institute was founded in 1936 (Institute for Aircraft Engines

and Engines Theory). Experimental and computational analysis

of the combustion process is traditionally an essential research

focus.

• Head Prof. Dr.-Ing. Georg Wachtmeister

Dr.-Ing. Maximilian Prager

Dr.-Ing. Martin Härtl

• Administration 2 team assistants

• Research / 32 research assistants

Teaching 2 test bed engineers

1 electrical engineer

1 post-doc

• Workshop 9 employees

Overview

Institute of Internal Combustion Engines

Engine Laboratory Moosach

TUM Campus Garching

OME Compatibility 2

• Lectures

Combustion engines (basics)

Engine thermodynamics

Engine mechanics

Engine application methods

Injection technology

Engine construction

Measurement techniques

Fuels for internal combustion engines

• Practical Courses

Combustion engines (basics)

Electronic engine control

Hardware-in-the-Loop

Teaching

OME Compatibility 3

Research Partners

OME Compatibility

Public funding Industrial partners (examples)

4

Test Benches

OME Compatibility

St. 1 St. 2 St. 3 St. 4 E-Zentr. St. 5 Rolle St. 6

St. 8

1

a

1

b

2

a

2

b

3

a

3

b

4

a

4

b

5a

5b

250 kW

9500

1/min

420 kW

4000

1/min

70 kW

8000

1/min

220 kW

10000

1/min

380 kW

9000

1/min

150 kW

10000

1/min

80 kW

7500

1/min

80 kW

7500

1/min

44 kW

6500

1/min

44 kW

6500

1/min

700 kW

5500

1/min

250 kW

9500

1/min

St. 7

80 kW

7500 1/min

DC-Motor

Water brake

Gas Ready

Gas mixing device

5

Research Engines

OME Compatibility

0.5 l (LD) 1.8 l (HD) 4.8 l (Gas)

combustion development

piston ring movement,

oil transport phenomena

alternative fuels,

combustion development

(Diesel)

lean combustion,

dual fuel, ...

(Gas)

friction measurement

(floating liner)

in-house development of single

cylinder research engines

+ several multicylinder engines

6

• mechanical workshops

(turning, CNC- milling, welding,…)

• electronic laboratory

(calibration, adjusting,…)

• electro-technics laboratory

(measures, signal systems,…)

• adhesives - and chemical- laboratory

(hot and cold adhesives , etching,…)

Workshop

OME Compatibility 7

Simulation Portfolio

OME Compatibility

CFX®

STAR CD®

temperature stress/strainconstruction

in-house code

8

Research Activities

OME Compatibility

Abgasenthalpiestrom

Wärmestrom Kühlmittelkühler

Strahlung und Konvektion

Wärmestrom Ladeluftkühler

mech. Energie

Motor

Brennstoffenergieungenutzte Energie

9

10

OME-Research Group at TUM

OME Compatibility

Head of Institute

Prof. Dr.-Ing. Georg Wachtmeister

Senior Engineer

Dr.-Ing. Martin Härtl

Research Assistants:

Kai Gaukel, M.Sc.

Simulation

Patrick Dworschak, M.Sc.

Simulation / Engine Testing

Dominik Pélerin, M.Sc.

Engine Testing

• Monomolecular fuel

• Components:

• CH3

• Oxygen

• Oxymethylene group

• No C-C-bondings

• High oxygen content

• Properties of OMEn

11

Overview propertiesOxymethylene Ether

Diesel OME

Boiling point, cetan number, oxygen content ↑

OME2 OME3 OME4 OME5 OME6

Higher OMEn>1:

CH3-O-(CH2-O)n-CH3

Calorific value ↓

OME1

DME

OME0

OME Compatibility

• Dimethyl Ether (DME) Studie (FVV 2009)

• MTZ 2010, 08, S. 540-542

• Project EREKA (BFS 2010-2014)

• Emissionsreduktion durch erneuerbare Kraftstoffanteile

• OME1 Experimental testings (2014, 2015)

• MTZ 2014, 07, p. 68-73; Fuel: 2015, 153; p. 328-335)

• Project „xME“ (BMWi, 2015-2018) -> n = 0, 1

• Combustion process development for OME1 and DME (Dimethyl Ether)

• Project „OME“ (FNR, 2016-2019) -> n = 2, 3, 4, 5, 6

• Combustion process development for higher OMEn (n>1)

12

TUM Research projects

OME Compatibility

13

OME Activities

OME Compatibility

OME storage at ASGmbh, Neusäß

16 t of OME from China

4 August 2016, visit of LVK

Härtl, Maus, Wachtmeister, Schlögl, Jacob

OME Projects in Germany

25 July 2016, LVK Engine Lab

14

Research Engine

• Single-cylinder research engine (based on the heavy-duty 6 cylinder Diesel MAN

D2066)

• Engine specifications:

Injection pressure: 3000 bar

EGR rate: 50 %

Cylinder pressure: 300 bar

Displacement: 1,75 l

Bore: 120 mm

Stroke/bore ratio: 1,3

External boost pressure: 8 bar

Compression ratio: 16,8

Mass balancing I. & II. order (Lanchester)

OME Compatibility

15

1753 ccm

ε = 17

Engine

Diesel OME1a

Switch

DOCThrottle

Throttle

EGR-Cooler

Air Supply

(T, p)

Switch

FTIR

(CH4, CH2O)

MEXA

(CO, CO2, THC,

NOx, EGR, λ)

Particle Counter

&

AVL Microsoot

Exhaust

Original Engine Test SetupHD one cylinder research engine

Co

mm

on R

ail

Syste

mFP

HP

Rail

Injector

OME Compatibility

16

Fuel propertiesComparison of Paraffinic Diesel Fuel (PDF) / OME1 / OME2 / OME3-6 (mixture)

OME Compatibility

• Tested fuels:

OME1

OME2

OME3-6 (mixture)

PDF (reference fuel)

• Operating conditions:

Indicated mean eff. pressure: imep = 13 bar

Engine speed: n = 1200 min-1

Rail pressure: prail = 1800 bar

Boost pressure: pboost = 1.94 bar

Injection strategy: Pre-injection (5 °CA before MI, 0.35 ms) & main injection

Center of combustion: 8°CA after FTDC

EGR-sweep: Step-by-step increase NOx ↓

17

Engine tests: medium speed & load

OME Compatibility

-0,03

-0,01

0,01

0,03

0,05

0,07

0,09

340 350 360 370 380 390 400

Heat

rele

ase

rate

[1/°

CA

]

Crank angle [° CA]

HVO

OME1

OME2

OME3-6

18

Combustion (no EGR)

Injector energizing

PDF

OME Compatibility

19

Soot emissions

0% AGR25% AGR

Hohe AGR-Toleranz

0

10

20

30

40

50

60

70

0,8 1 1,2 1,4 1,6 1,8

ind

. spec.

Soot

[mg/k

Wh]

Air-fuel equivalence ratio λ [-]

PDF

OME1

OME2

OME3-6

0% EGR25% EGR

High EGR tolerance

OME Compatibility

0,1

1

10

100

0,8 1 1,2 1,4 1,6 1,8

ind

. spec.

NO

x[g

/kW

h]

Air-fuel equivalence ratio λ [-]

HVO

OME1

OME2

OME3-6

20

NOx emissions

0% EGR25% EGR

High EGR tolerance

PDF

OME Compatibility

0,0E+00

5,0E+13

1,0E+14

1,5E+14

2,0E+14

2,5E+14

3,0E+14

0,1 1 10 100

ind. sp

ec. P

N [#

/kW

h]

ind. spec. NOx [g/kWh]

PDF

OME1

OME2

OME3-6

0

10

20

30

40

50

60

70

0,1 1 10 100

ind. sp

ec. so

ot[m

g/k

Wh

]

ind. spec. NOx [g/kWh]

PDF

OME1

OME2

OME3-6

21

Soot - NOx trade-off

OME Compatibility

0

15

30

45

60

75

90

0,8 1 1,2 1,4 1,6 1,8

ind. sp

ec. C

O [g

/kW

h]

Air-fuel equivalence ratio λ [-]

PDF pre DOC

OME1 pre DOC

OME2 pre DOC

OME3-6 pre DOC

PDF post DOC

OME1 post DOC

OME2 post DOC

OME3-6 post DOC

22

CO- and formaldehyde (CH2O) emissions

Formaldehyd

n

0

15

30

45

60

0,8 1 1,2 1,4 1,6 1,8

ind. spec. C

H2O

[ppm

]

Air-fuel equivalence ratio λ [-]

Formaldehyd

n

Methyl

Formaldehyde

n

OME Compatibility

0,01

0,1

1

0,8 1 1,2 1,4 1,6 1,8

ind

. sp

ec. V

OC

[g

/kW

h]

Air-fuel equivalence ratio λ [-]

PDF pre DOC

OME1 pre DOC

OME2 pre DOC

OME3-6 pre DOC

PDF post DOC

OME1 post DOC

OME2 post DOC

OME3-6 post DOC

23

“THC“ Emissions

0

50

100

150

200

250

300

pre DOC post DOC

Em

issio

ns

[pp

m]

OME2

OME1

HCHO

CH4

Emissions

post DOC:

CH4

VOC and methane emissions

OME Compatibility

0

0,9

1,8

0,8 1 1,2 1,4 1,6 1,8

ind. sp

ez. C

H4

[g

/kW

h]

Air-fuel equivalence ratio λ [-]

0,01

0,1

1

0,8 1 1,2 1,4 1,6 1,8

ind

. sp

ec. V

OC

[g

/kW

h]

Air-fuel equivalence ratio λ [-]

PDF pre DOC

OME1 pre DOC

OME2 pre DOC

OME3-6 pre DOC

PDF post DOC

OME1 post DOC

OME2 post DOC

OME3-6 post DOC

24

“THC“ EmissionsVOC and methane emissions

1,0 < λ <1,1

AVOID

λ >1,1: DOC/SCR

(reduced size)

λ = 1:

three-way

cath. reduction.

Strategy for exhaust

gas aftertreatment

OME Compatibility

25

Engine map investigation• Tested fuels:

• OME1b (additives for CN and lubricity)

• Paraffinic Diesel Fuel (PDF) as reference

• Operating conditions:

• Injection pressure: pRail = 1800 bar

• Injection strategy: pre-injection (5 °CA before MI, 0.35 ms) & main injection

• Center of combustion: 8°CA after FTDC

• Boost pressure: variable 𝜆 = 1.65 for every operating point (without EGR)

EGR increased by adjusting boost pressure

With EGR

λ=1.40

λ=1.25

λ=1.10

λ=1.02

λ=1.00

λ=0.98

EGR

0

5

10

15

20

25

500 1000 1500 2000

Imep

[bar

]

Engine speed [1/min]

full load (BMEP)

ESC (BMEP)

WHSC (BMEP)

LVK (IMEP)

λ=1.65 NO EGR

Full load (pme)

ESC (pme)

WHSC (pme)

LVK (imep)

OME Compatibility

Engine speed [1/min]

OME1b with EGR λ = 1,40

1000

Engine speed [1/min]

5

10

20

15

Imep

[bar]

5

10

20

15

5

10

20

15

1250 1500 1750

Ruß-Emission zu hoch

(Vermeidung von

Beschädignungen an

Messgeräten)

1000 1250 1500 1750

ind. spec. soot [mg/kWhi]

0 1 2 3 4 5 6 ≥107 8 9

AGR-Ventil = 100% offen λ > 1,25

5

10

20

15

Imep

[bar]

PDF with EGR λ = 1,40

OME1b with EGR λ = 1,25 PDF with EGR λ = 1,25

EGR valve = 100% open λ > 1,25

Imep

[bar]

Imep

[bar]

OME1b

• Low soot emissions within the entire

engine map, independent of speed,

load and EGR rate.

26

PDF• soot emission increase significantly

• λ = 1,40:

soot > 10 mg/kWhi (EURO VI)

only at low loads and high speed.

• λ = 1,25:

soot < 10 mg/kWhi

only at high loads and low speed.

Engine map investigation

OME Compatibility