vulnerability analysis wireless sensor networks ... · sensor networks using sequential...

40
Vulnerability Analysis Wireless Sensor Networks: Challenges and Solutions Sajal K. Das National Science Foundation, CISE/CNS C enter for Re search in W ireless M obility a nd N etworking (CReWMaN) E-mail: [email protected] http://crewman.uta.edu S. K. Das Acknowledgements: NSF, AFOSR

Upload: others

Post on 12-Jun-2020

20 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Vulnerability Analysis Wireless Sensor Networks ... · Sensor Networks Using Sequential Analysis,” IEEE INFOCOM 2009. • P. De, Y. Liu, and S. K. Das, “An Epidemic Theoretic

Vulnerability Analysis Wireless Sensor

Networks: Challenges and Solutions

Sajal K. Das

National Science Foundation, CISE/CNS

Center for Research in Wireless Mobility and Networking (CReWMaN)

E-mail: [email protected] http://crewman.uta.edu

S. K. Das

Acknowledgements: NSF, AFOSR

Page 2: Vulnerability Analysis Wireless Sensor Networks ... · Sensor Networks Using Sequential Analysis,” IEEE INFOCOM 2009. • P. De, Y. Liu, and S. K. Das, “An Epidemic Theoretic

Wi l S N k (WSN )

OutlineOutline

Wireless Sensor Networks (WSNs)

Security Challenges: Need for Multi-level Approachy g pp

Modeling Node Compromises: Epidemic Theory

Secure Data Aggregation: Reputation and Trust Model

N d R li ti S ti l H th i T tiNode Replication: Sequential Hypothesis Testing

Revoking Compromised Nodes: Key Managementg p y g

Self-Correction: Digital Watermarking

S. K. DasConclusions

Page 3: Vulnerability Analysis Wireless Sensor Networks ... · Sensor Networks Using Sequential Analysis,” IEEE INFOCOM 2009. • P. De, Y. Liu, and S. K. Das, “An Epidemic Theoretic

Wireless Sensor Network (WSN)Wireless Sensor Network (WSN)We live in a cyber-physical world that weWe live in a cyber physical world that we need to understand, serve, and control

Communication(Wireless)

Broadcast sensory data

ComputationSensory Data: A/D conversion, Broadcast sensory data,

Dissemination, RoutingCompression, Filtering, Aggregation, Analysis

Control(Sensing / Actuation)Sensing the physical world:

temperature, humidity, pressure, light, velocity, sound, image

S. K. Das

g t, e oc ty, sou d, age

Page 4: Vulnerability Analysis Wireless Sensor Networks ... · Sensor Networks Using Sequential Analysis,” IEEE INFOCOM 2009. • P. De, Y. Liu, and S. K. Das, “An Epidemic Theoretic

WSN ApplicationsWSN ApplicationsMonitoring and Control- Habitat- Environment

Ecos stem- Ecosystem- Agricultural- Structural- Traffic- Manufacturing

H l h- Health

Security and Surveillance- Infrastructure Security- Border and Perimeter Control

Target Tracking

S. K. Das

- Target Tracking- Intrusion Detection

Page 5: Vulnerability Analysis Wireless Sensor Networks ... · Sensor Networks Using Sequential Analysis,” IEEE INFOCOM 2009. • P. De, Y. Liu, and S. K. Das, “An Epidemic Theoretic

WSN ApplicationsWSN Applications

Sensor networks are deployed in unmonitored t i i hi h d it d l lterrain in high density and large scale

Post-deployment access and control is an issue

Micaz Tmote SunSPOT

Multi-modal functioning which require reprogramming/data dissemination

Change applicationsTroubleshootTroubleshoot

Security is critical in many applications

Wireless Sensing Devices embedded in our environment gathering data on physicalphenomena !

S. K. Das

p

Acknowledgment : http://www.eecs.harvard.edu/~mdw/proj/volcano/

Page 6: Vulnerability Analysis Wireless Sensor Networks ... · Sensor Networks Using Sequential Analysis,” IEEE INFOCOM 2009. • P. De, Y. Liu, and S. K. Das, “An Epidemic Theoretic

Security Challenges in WSNsSecurity Challenges in WSNs

Limited resources Limited defense capability

– Energy (battery power), wireless bandwidth, computational power, storage, radio communication range (connectivity), sensing range (coverage)

– Public key too costly to authenticate packets with digital signatures and to disclose key with each packet

– Storing one-way chain of keys requires more memory d t ti f t dand computation for message en-route nodes

S. K. Das

Page 7: Vulnerability Analysis Wireless Sensor Networks ... · Sensor Networks Using Sequential Analysis,” IEEE INFOCOM 2009. • P. De, Y. Liu, and S. K. Das, “An Epidemic Theoretic

Security Challenges in WSNsSecurity Challenges in WSNs

Uncertain, unattended / hostile environment– Uncertainty in sensing accuracy, wireless links,

mobility, topology control, deployment (density), . . .

– Faulty prone nature vs. compromises (insider attacks)Faulty prone nature vs. compromises (insider attacks)

Distributed control No global knowledge

In-network processing: data fusion to exploit spatio-temporal redundancy Loss of integrity, confidentiality

Multiple-attacking anglesSingle level defense mechanism highly vulnerable

S. K. Das

– Cryptographic technique is not the panacea

Page 8: Vulnerability Analysis Wireless Sensor Networks ... · Sensor Networks Using Sequential Analysis,” IEEE INFOCOM 2009. • P. De, Y. Liu, and S. K. Das, “An Epidemic Theoretic

Node Compromises / Replications and Intrusions

Threats to WSNsThreats to WSNsNode Compromises / Replications and Intrusions– Physical capture– Sophisticated analysis: differential timing / energy analysis

Revealed Secrets– Cryptographic keys, codes, commands, etc.

Enemy’s Puppeteers– Trojans in the network with full trust

Discredit normal nodes

Compromised NodeReport false data

Infect other nodesForge command

Selective packet dump

S. K. Das

False routing infoForge command

Page 9: Vulnerability Analysis Wireless Sensor Networks ... · Sensor Networks Using Sequential Analysis,” IEEE INFOCOM 2009. • P. De, Y. Liu, and S. K. Das, “An Epidemic Theoretic

Att k t lti l ibl l l t b d f d d

Need for MultiNeed for Multi--level Solutionlevel Solution

Attacks at multiple possible levels to be defended

– Model the propagation of node compromisesE t j i di M d liE.g., trojan virus spreading

– Detect compromised nodes & forged data

Modeling

DetectionE.g., abnormal reports

– Revoke revealed secrets Revocation

E.g., broadcast confidentiality

– Self-correct and purge false dataSelf-correction

E.g., average temperature calculation Purge

S. K. Das

Page 10: Vulnerability Analysis Wireless Sensor Networks ... · Sensor Networks Using Sequential Analysis,” IEEE INFOCOM 2009. • P. De, Y. Liu, and S. K. Das, “An Epidemic Theoretic

MultiMulti--Level, Integrative FrameworkLevel, Integrative Framework

Highly AssuredNetwork Operation

Compromise ProcessModeling Contain Outbreak

Epidemic Theory Architectural Components

Theoretical Foundations

Topology Control

Revoke Revealed Secrets

Detect CompromiseInformation Theory

Cryptography

Trust / Belief ModelKey Management

Topology Control

Self-Correct Tampered Data

P

Digital Watermarking

Secure Aggregation

Secure Routing

Node Compromise Purge Tampered Data

Uncertainty CharacterizedResource Limited Environment

pDoS Defense

Intrusion Detection

Game Theory

S. K. Das

Resource Limited Environment

Page 11: Vulnerability Analysis Wireless Sensor Networks ... · Sensor Networks Using Sequential Analysis,” IEEE INFOCOM 2009. • P. De, Y. Liu, and S. K. Das, “An Epidemic Theoretic

• W Zhang S K Das and Y Liu “A Trust Based Framework for Secure Data Aggregation in

Relevant PublicationsRelevant Publications• W. Zhang, S. K. Das, and Y. Liu, A Trust Based Framework for Secure Data Aggregation in

Wireless Sensor Networks,” IEEE SECON 2006.

• J.-W. Ho, M. Wright, and S. K. Das, “ZoneTrust: Fast Zone-Based Node Compromise Detection and Revocation in Sensor Networks Using Sequential Analysis," IEEE SRDS 2009.

• J.-W. Ho, M. Wright and S. K. Das, “Fast Detection of Replica Node Attacks in Mobile Sensor Networks Using Sequential Analysis,” IEEE INFOCOM 2009.

• P. De, Y. Liu, and S. K. Das, “An Epidemic Theoretic Framework for Vulnerability Analysis of Broadcast Protocols in Wireless Sensor Networks ” IEEE Transactions on MobileBroadcast Protocols in Wireless Sensor Networks, IEEE Transactions on Mobile Computing, Vol. 8, No. 3, pp. 413-425, Mar 2009.

• P. De, Y. Liu and S. K. Das, “Deployment Aware Modeling of Compromise Spread in Wireless Sensor Networks,” ACM Transactions on Sensor Networks, 2009.

• J.-W. Ho, M. Wright, D. Liu, and S. K. Das, “Distributed Detection of Replicas with Deployment Knowledge in Wireless Sensor Networks,” Ad Hoc Networks, Aug 2009.

• P. De, Y. Liu and S. K. Das, “Energy Efficient Reprogramming of a Swarm of Mobile Sensors,” IEEE Transactions on Mobile Computing, 2009.p g,

• W. Zhang, S. K. Das, Y. Liu, “Secure Aggregation in Wireless Sensor Networks: A Digital Watermarking Approach,” Pervasive and Mobile Computing, 2008.

S. K. Das

Page 12: Vulnerability Analysis Wireless Sensor Networks ... · Sensor Networks Using Sequential Analysis,” IEEE INFOCOM 2009. • P. De, Y. Liu, and S. K. Das, “An Epidemic Theoretic

Modeling Compromises: Epidemic DefenseModeling Compromises: Epidemic Defense

Premise: Node compromises in WSN broadcast protocols– Capture node deployment, key distribution, topology

Research Objectives:

M d l d l di f d i– Model and analyze spreading process of node compromises

– Characterize network-wide propagation rate and outbreak transition point of compromise processtransition point of compromise process

– Study impact of infectivity duration of compromised nodes

– Capture time dynamics of the spread

– Identify critical parameters to prevent outbreaks

S. K. Das

Page 13: Vulnerability Analysis Wireless Sensor Networks ... · Sensor Networks Using Sequential Analysis,” IEEE INFOCOM 2009. • P. De, Y. Liu, and S. K. Das, “An Epidemic Theoretic

System ModelSystem Model

Random Pair-wise Key Pre-distribution–A set of keys randomly chosen from a key pool

Physical Topology Virtual Key-Sharing Topology

S. K. Das

Page 14: Vulnerability Analysis Wireless Sensor Networks ... · Sensor Networks Using Sequential Analysis,” IEEE INFOCOM 2009. • P. De, Y. Liu, and S. K. Das, “An Epidemic Theoretic

Sensor Network ModelModeled as undirected geometric random graphModeled as undirected geometric random graph

– N nodes uniformly randomly distributed

– Unit Disk Model with transmission radius

– is the probability of existence of an edge between nodes d t di t)( uvdα

d

cR

u and v at distance

Node density

uvd

N=σ cR– Node density

A = area of the terrain

A=σ c

u vA = area of the terrain

uvd

S. K. Das

Page 15: Vulnerability Analysis Wireless Sensor Networks ... · Sensor Networks Using Sequential Analysis,” IEEE INFOCOM 2009. • P. De, Y. Liu, and S. K. Das, “An Epidemic Theoretic

Sensor Topology ModelSensor Topology ModelN

denotes the node density of the network

N = total number of nodes R = sensing radius

2RN

N = total number of nodes, R = sensing radius

p = probability of existence of a physical link

Nrp ρ2

=

r = average communication range between nodes

Probabilit for l nodes ithin comm nication range

N

Probability for l nodes within communication range

( ) lNlNl −)1()(S. K. Das

( ) lNlNl pplp −−= )1()(

Page 16: Vulnerability Analysis Wireless Sensor Networks ... · Sensor Networks Using Sequential Analysis,” IEEE INFOCOM 2009. • P. De, Y. Liu, and S. K. Das, “An Epidemic Theoretic

Sensor Topology ModelSensor Topology Modelq = prob of sharing pair wise key between neighboring nodesq = prob. of sharing pair-wise key between neighboring nodes

Probability of sharing at least one key with exactly kneighbors given l nodes within its range:

( ) klklk qqlkp −−= )1()(

Probability of having k neighbors sharing at least one key:

( )k qqp )()(

∑∞

=kl

lkplpkp )()()(=kl

( ) ( )∑∞

−− −−= klklk

lNlNl qqppkp )1()1()(

S. K. Das

( ) ( )∑=kl

kl qqppkp )1()1()(

Page 17: Vulnerability Analysis Wireless Sensor Networks ... · Sensor Networks Using Sequential Analysis,” IEEE INFOCOM 2009. • P. De, Y. Liu, and S. K. Das, “An Epidemic Theoretic

Infection Spread Model

cR

Source Node

S. K. Das

Inoperative R(t) Infective I(t) Susceptible S(t)

Page 18: Vulnerability Analysis Wireless Sensor Networks ... · Sensor Networks Using Sequential Analysis,” IEEE INFOCOM 2009. • P. De, Y. Liu, and S. K. Das, “An Epidemic Theoretic

Epidemic Theoretic FrameworkEpidemic Theoretic Framework

Model infection spread in a population of susceptibles

- Random graph based spatial modelDiff i l i b d l d l- Differential equation based temporal model

Design spread model using network characteristicsg p g

- Local interactions based on transmission range- Number of contacts determined by degree distribution of the

key sharing network

Estimate the rate of infection (β) based on cR(β)

- Rate of communication paradigm of the broadcast protocol- Infectivity potential (ρ) of the data

c

S. K. Das

Page 19: Vulnerability Analysis Wireless Sensor Networks ... · Sensor Networks Using Sequential Analysis,” IEEE INFOCOM 2009. • P. De, Y. Liu, and S. K. Das, “An Epidemic Theoretic

Epidemic AnalysisEpidemic Analysis

When nodes do not recover, transmissibility (T) is expressed only in terms of the infection probability, \beta

N d i t d b i t i ibilitNode recovery is captured by expressing transmissibility as a function of average duration of infectivity, τ

Average cluster size as epidemic attains outbreak proportions

βτeT −= 1t

ttT δτ

δβδ )1(lim1

0−=−

Average cluster size as epidemic attains outbreak proportions

)1(1)1(1 '

1

'0

TGTGs−

+=

Average Epidemic size after outbreak results

)(1

)(1 0 uGS −=

S. K. Das)(

)(1

1

0

uGuuGS

=

Page 20: Vulnerability Analysis Wireless Sensor Networks ... · Sensor Networks Using Sequential Analysis,” IEEE INFOCOM 2009. • P. De, Y. Liu, and S. K. Das, “An Epidemic Theoretic

Epidemic Size with infection probabilityEpidemic Size with infection probabilityq = prob. of sharing pair-wise key between neighboring nodes

1

q p g p y g g

p = probability of existence of physical link

0.8

0.9

1

ed

0.6

0.7

rk C

ompr

omis

ed

0.3

0.4

0.5

tion

of N

etw

ork

N = 1000

0.1

0.2

0.3

Frac

tio

q=0.01q=0.02q=0.04

N = 1000p = 0.25

S. K. Das0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0

0.1

Transmissibility (T)

q=0.04q=0.1

Page 21: Vulnerability Analysis Wireless Sensor Networks ... · Sensor Networks Using Sequential Analysis,” IEEE INFOCOM 2009. • P. De, Y. Liu, and S. K. Das, “An Epidemic Theoretic

Epidemic Size with infectivity durationEpidemic Size with infectivity durationq = prob. of sharing pair-wise key between neighboring nodes

1

q p g p y g g

p = probability of existence of physical link

0.8

0.9

ised

0.5

0.6

0.7

ork

Com

prom

is

0.3

0.4

0.5

actio

n of

Net

wor

β = 0.01

N = 1000q = 0.04p = 0.25

0.1

0.2

0.3

Frac β = 0.02

β = 0.04β = 0.08β = 0.2

S. K. Das0 50 100 150 200 250 300 3500

Infectivity Duration τ

Page 22: Vulnerability Analysis Wireless Sensor Networks ... · Sensor Networks Using Sequential Analysis,” IEEE INFOCOM 2009. • P. De, Y. Liu, and S. K. Das, “An Epidemic Theoretic

Deluge : Data Propagation RateDeluge : Data Propagation Rate

Analytical Simulation

S. K. Das

Model captures rate of data propagation over dissemination protocols

Page 23: Vulnerability Analysis Wireless Sensor Networks ... · Sensor Networks Using Sequential Analysis,” IEEE INFOCOM 2009. • P. De, Y. Liu, and S. K. Das, “An Epidemic Theoretic

Simulation StudySimulation Study

Capture the time dynamics of the spread of compromise

Observe duration and nature of gradual recovery processObserve duration and nature of gradual recovery process

Observe effects of various network parameters

– Average node degree of key sharing network– Average infection rate– Average duration of infectivity

S. K. Das

Page 24: Vulnerability Analysis Wireless Sensor Networks ... · Sensor Networks Using Sequential Analysis,” IEEE INFOCOM 2009. • P. De, Y. Liu, and S. K. Das, “An Epidemic Theoretic

Simulation ResultsSimulation ResultsUnder both scenarios – no node recovery and node recovery

1

1.2Dynamics of the Infected, Susceptible and Revoked nodes

1

1.2Dynamics of the Infected, Susceptible and Revoked nodes

10=τ30=τ

0.2

0.4

0.6

0.8

Frac

tion

of N

etw

ork

S(t)I(t)R(t)

z = 3β = 0.6

0.2

0.4

0.6

0.8

Frac

tion

of N

etw

ork

S(t)I(t)

z = 3β = 0.9

0 100 200 300 400 500 600 700−0.2

0

0.2

Time(t)

R(t)

0 100 200 300 400 500 600 700−0.2

0

0.2

Time(t)

I(t)R(t)

Dynamics of the Infected, Susceptible and Revoked nodes1.2

Dynamics of the Infected, Susceptible and Revoked nodes

0.8

1

1.2

wor

k

Dynamics of the Infected, Susceptible and Revoked nodes

S(t)I(t)R(t)

0.8

1

1.2

twor

k

0.2

0.4

0.6

Frac

tion

of N

etw

o R(t)

z = 5β = 0.35

0.2

0.4

0.6Fr

actio

n of

Net

w

S(t)I(t)R(t)

β = 0.5z = 5

S. K. Das0 100 200 300 400 500 600 700

−0.2

0

Time(t)

0 100 200 300 400 500 600 700−0.2

0

Time(t)

10=τ 10=τ

Page 25: Vulnerability Analysis Wireless Sensor Networks ... · Sensor Networks Using Sequential Analysis,” IEEE INFOCOM 2009. • P. De, Y. Liu, and S. K. Das, “An Epidemic Theoretic

Developing Belief / Trust ModelDeveloping Belief / Trust ModelPremise: False data injection from compromised nodesPremise: False data injection from compromised nodes–Cryptographic techniques ineffective

Objectives: Trust model to identify and purge false dataObjectives: Trust model to identify and purge false data. Reduce uncertainty in data aggregation / fusion.

Solution:Solution:–Information theoretic (relative entropy) measure to quantify

reputation / opinion of data, leading to higher confidenceBelief, disbelief, uncertainty, relative atomicity

–Josang’s belief model to define and manage trust propagation through intermediate nodes along the routepropagation through intermediate nodes along the route

–Identify malicious nodes by learning and outlier classification– purge false data to achieve secure aggregation

S. K. Das

p g gg g

W. Zhang, S. K. Das and Y. Liu, “A Trust Based Framework for Secure Data Aggregation in Wireless Sensor Networks, IEEE SECON, Oct 2006.

Page 26: Vulnerability Analysis Wireless Sensor Networks ... · Sensor Networks Using Sequential Analysis,” IEEE INFOCOM 2009. • P. De, Y. Liu, and S. K. Das, “An Epidemic Theoretic

Sensor Network ModelSensor Network Model

Base Station (Sink)

cluster headaggregatorsensor nods(cluster member)

S. K. Das

Page 27: Vulnerability Analysis Wireless Sensor Networks ... · Sensor Networks Using Sequential Analysis,” IEEE INFOCOM 2009. • P. De, Y. Liu, and S. K. Das, “An Epidemic Theoretic

Josang’s Belief ModelJosang’s Belief ModelOpinion: ω = (b, d, u, a), b + d + u = 1Opinion: ω (b, d, u, a), b d u 1

b: beliefd: disbelief u: uncertainu: uncertain a: relative atomicityb, d, u, a ∈ [0,1]

Expected Opinion: O = E(ω) = b + au

Cluster head’s opinion about aggregator:HAωA

)5.0,02.0,03.0,95.0(1=H

96.002.0*5.095.01

=+=HAO

Aggregator’s opinion about its report X:AXω

)9.0,312.0,0,688.0(1 =AXω

S. K. Das

969.0312.0*9.0688.01 =+=AXO

Page 28: Vulnerability Analysis Wireless Sensor Networks ... · Sensor Networks Using Sequential Analysis,” IEEE INFOCOM 2009. • P. De, Y. Liu, and S. K. Das, “An Epidemic Theoretic

Belief Propagation: Subjective LogicBelief Propagation: Subjective LogicBelief discounting (recommendation)Belief discounting (recommendation)Cluster head’s opinion about X as a result of aggregator’s opinion:

),,,( ::::: AHX

AHX

AHX

AHX

AX

HA

AHX audb=⊗= ωωω ),,,( XXXXXAX audb⊗ωωω

AX

HA

AHX

AX

HA

AHX

dddbbb

∗=

∗=:

:

AX

AHX

AX

HA

HA

HA

AHX

aaubudu

=

++=:

:

65406880*950:AHb

)9.0,312.0,0,688.0();5.0,02.0,03.0,95.0( 11

== AX

HA ωω

364.0312.0*95.002.003.0

0

654.0688.0*95.0

1

1

1

:

:

:

=++=

=

==

AHX

AHX

AHX

u

d

b

)9.0,364.0,0,654.0(

9.01

1

:

:

=

=AH

X

AHXa

ω

S. K. Das

Belief decreases, uncertainty increases

Page 29: Vulnerability Analysis Wireless Sensor Networks ... · Sensor Networks Using Sequential Analysis,” IEEE INFOCOM 2009. • P. De, Y. Liu, and S. K. Das, “An Epidemic Theoretic

Belief ConsensusBelief ConsensusCluster head’s opinion about X via A1: ),,,( 1:1:1:1:1: AH

XAH

XAH

XAH

XAH

X audb=ωC us e ead s op o abou a 1

Cluster head’s opinion about X via A2:Cluster head’s consensus opinion about X:

),,,( XXXXX audbω

),,,( 2:2:2:2:2: AHX

AHX

AHX

AHX

AHX audb=ω

),,,( 2:,1:2:,1:2:,1:2:,1:2:1:2:,1: AHAHX

AHAHX

AHAHX

AHAHX

AHX

AHX

AHAHX audb=⊕= ωωω

)7.0,632.0,0,368.0();9.0,346.0,0,654.0( 21 :: == AHX

AHX ωω )7.0,632.0,0,368.0();9.0,346.0,0,654.0( XX ωω

0

712.021

21

:,:632.0*346.0632.0346.0346.0*368.0632.0*654.0:,: == −+

+

AHAH

AHAHX

d

b

850

288.0

0

21

21

21

63.0*35.0)*9.07.0(63.0*9.0346.0*7.0:,:

632.0*346.0632.0346.0632.0*346.0:,:

:,:

==

==

=

+−+

−+

AHAH

AHAHX

AHAHX

a

u

d

)85.0,288.0,0,712.0(

85.021 :,:

63.0*35.0*263.035.0

=

== −+

AHAHX

Xa

ω

S. K. Das

More evidences, belief in the result increases

Page 30: Vulnerability Analysis Wireless Sensor Networks ... · Sensor Networks Using Sequential Analysis,” IEEE INFOCOM 2009. • P. De, Y. Liu, and S. K. Das, “An Epidemic Theoretic

Aggregator: Compute Sensor ReputationOutlier exclusion: Too far from median outlierOutlier exclusion: Too far from median outlierHigh density Normal distribution N(µ, σ)

Red: 68% of data within [ σ +σ]Red: 68% of data within [µ- σ, µ+σ]Green: 95% of data within [µ- 2σ, µ+2σ]Yellow: 99.7% of data within [µ- 3σ, µ+3σ]

Each sampling independent

Id l d f i l 680])[|P (

N(µ, σ)

– Ideal node frequency: in long run,– Actual node frequency: learn from observation

– Measure difference in ideal and actual frequencies: Kullback Leibler distance

68.0]),[|Pr( =+−∈ σσ xxxp ii

]),,[|Pr( σσ +−∈ xxxq ii

Reputation:

;)()(log)()||( ∑=

xqxpxpqpD p(x), q(x) prob. mass function for ideal/actual node freq.

D(.) also called relative entropy measure

r = 1

S. K. Das

pD

r+

=1The shorter the distance, more trustworthy, higher reputation

Page 31: Vulnerability Analysis Wireless Sensor Networks ... · Sensor Networks Using Sequential Analysis,” IEEE INFOCOM 2009. • P. De, Y. Liu, and S. K. Das, “An Epidemic Theoretic

Sensor Node’s Reputation: Example

Two sensors s and sTwo sensors, s1 and s2

– Time t1: 63.0,65.0 12

11

== ts

ts ff

0029.068.065.0log*65.0

)68.01()65.01(log*)65.01()||( 11

1=+

−−

−=tideal

ts ffD

949.0002901

1)( 11 =

+=tsr

– Time t2:0029.01 +

30.0,68.0 22

21

== ts

ts ff

Time Sensor node

Actual freq.

Ideal freq. KL-distance

Reputation

t1 s1 0.65 0.68 0.0029 0.9490 63 0 68 0 0081 0 918s2 0.63 0.68 0.0081 0.918

t2 s1 0.68 0.68 0 1s2 0.30 0.68 0.436 0.602

S. K. DasReputation changes with time based on behavior

Page 32: Vulnerability Analysis Wireless Sensor Networks ... · Sensor Networks Using Sequential Analysis,” IEEE INFOCOM 2009. • P. De, Y. Liu, and S. K. Das, “An Epidemic Theoretic

Aggregator: Reputation Classification

Classify reputation to identify malicious nodes– Traditional system: threshold based classification– Online unsupervised learning, K-mean algorithm– No prior K available, how to dynamically decide K?

K=1 K=2 K=3 K=4

Determining K

Time Sensor node ReputationEx:1 groupTime Sensor node Reputation

t1 s1 0.949s2 0.918

t s 1

1 group

2

S. K. Das

t2 s1 1s2 0.602

2 groups

Page 33: Vulnerability Analysis Wireless Sensor Networks ... · Sensor Networks Using Sequential Analysis,” IEEE INFOCOM 2009. • P. De, Y. Liu, and S. K. Das, “An Epidemic Theoretic

Aggregator: Opinion Formulation

Degree of trust in aggregation resultTrustworthy

),,,( AX

AX

AX

AX

AX audb=ω

TrustworthyNodes whose data close to mean

UncertainN d h d t t l tNodes whose data not close to meanUncertain nodes’ reputation- how much contribution to expected opinion?

How much to trust?

Formulationbelief: percentage in ( )disbelief: 0 (after excluding outlier)

σ±x

uncertain: percentage out of above rangerelative atomicity: reputation of nodes fall out the range

S. K. Das

Page 34: Vulnerability Analysis Wireless Sensor Networks ... · Sensor Networks Using Sequential Analysis,” IEEE INFOCOM 2009. • P. De, Y. Liu, and S. K. Das, “An Epidemic Theoretic

Trust FrameworkTrust Framework

Josang’s trust model:Represent belief in result

Cryptography not enough Reputation-basedtrust model

atio

n

Trust propagation

Statistical analysis:Robust estimation

classification analysis

Intrusion detection:Compromised nodes

Information theoryre

puta

O li i d l i

High redundancy

Online unsupervised learning:Identify compromised nodes

Purge false dataRelative entropy: reputationShannon’s entropy: Kulback-Leibler distance

Result: Robustness and Reliability under Attack

S. K. Das

Page 35: Vulnerability Analysis Wireless Sensor Networks ... · Sensor Networks Using Sequential Analysis,” IEEE INFOCOM 2009. • P. De, Y. Liu, and S. K. Das, “An Epidemic Theoretic

Simulation Results: ReputationSimulation Results: Reputation

Case No.

Misbehaving time (%)

False data type

1 0 N/A

2 100 Obvious0.8

1

2 100 Obvious

3 100 Tricky

4 66 Obvious

5 66 Tricky

0.4

0.6

Rep

utat

ion

0.2

0.4Re

Case 1Case 2Case 3Case 4

00 5 10 15 20 25 30

Node ID

Case 4Case 5

No malicious nodes, all nodes’ reputation close to 1

Reputation of malicious nodes significantly lower than legitimate ones

S. K. Das

Reputation of malicious nodes proportional to amount of true data they send

Page 36: Vulnerability Analysis Wireless Sensor Networks ... · Sensor Networks Using Sequential Analysis,” IEEE INFOCOM 2009. • P. De, Y. Liu, and S. K. Das, “An Epidemic Theoretic

Test case1

Simulation Result: OpinionSimulation Result: Opinion

Case No.

Misbehaving time (%)

False data type

1 0 N/A

Test case

0.97

0.98

0.99

n 2 100 Obvious

3 100 Tricky

4 66 Obvious

5 66 Tricky0.95

0.96

0.97

Opi

nion

Case 1 5 66 Tricky

0.93

0.94

0 5 10 15 20 25 30 35 40

Case 1Case 2Case 3Case 4Case 5

False data sneaking into aggregation (Cases 2, 4) may affect result “pollute” legitimate node’s reputation

0 5 10 15 20 25 30 35 40

Time

pollute legitimate node s reputation

Low opinion or polluted reputation result from low reputation nodes

Detection/blocking malicious nodes opinion / confidence increases

S. K. Das

g p

Opinion correctly represents the belief in the result

Page 37: Vulnerability Analysis Wireless Sensor Networks ... · Sensor Networks Using Sequential Analysis,” IEEE INFOCOM 2009. • P. De, Y. Liu, and S. K. Das, “An Epidemic Theoretic

Cooperative Malicious Nodes (10%)Cooperative Malicious Nodes (10%)Scenario: Malicious nodes behave “good” at first 1/3Scenario: Malicious nodes behave good at first 1/3 experiment, then they all send same data each time

Evolution of Reputation Aggregation Result

30

32all

goodcluster

0.9

0.95

1

24

26

28

Dat

a

0.7

0.75

0.8

0.85

0.9

Rep

utat

ion

20

22

24

0.5

0.55

0.6

0.65

0.7Re

malicious nodesgood nodes

0 10 20 30 40 50 60

Time

0.50 5 10 15 20 25 30 35 40

Time

Malicious nodes can be identified as long as they misbehave.

S. K. Das

Aggregation result robust to cooperative malicious nodes of different fractions

Page 38: Vulnerability Analysis Wireless Sensor Networks ... · Sensor Networks Using Sequential Analysis,” IEEE INFOCOM 2009. • P. De, Y. Liu, and S. K. Das, “An Epidemic Theoretic

- Integrated multi-level security framework in wireless

ConclusionsConclusionsIntegrated multi level security framework in wireless

sensor networks.

- Epidemic theory modeling to control spread of infectedEpidemic theory modeling to control spread of infected nodes and outbreak.

- Information theory based reputation to detect intrusion- Information theory-based reputation to detect intrusion of malicious nodes.

- Belief / trust model to ensure secure information- Belief / trust model to ensure secure information aggregation by effectively filtering false data.

Distributed key sharing and collaboration to revoke- Distributed key sharing and collaboration to revoke reveals secrets.

Digital watermarking technique to self correct

S. K. Das

- Digital watermarking technique to self-correct compromised data.

Page 39: Vulnerability Analysis Wireless Sensor Networks ... · Sensor Networks Using Sequential Analysis,” IEEE INFOCOM 2009. • P. De, Y. Liu, and S. K. Das, “An Epidemic Theoretic

“A t h t l t h l h i

EpilogueEpilogue

“A teacher can never truly teach unless he is still learning himself. A lamp can never light another lamp unless it continues to burn its own flame. The teacher who has come to the end of his subject, who has no living traffic with his knowledge but merely repeats hiswith his knowledge but merely repeats his lesson to his students, can only load their minds he cannot quicken them”minds, he cannot quicken them”.

Rabindranath Tagore (1861Rabindranath Tagore (1861--1941)1941)

S. K. Das

Rabindranath Tagore (1861Rabindranath Tagore (1861 1941)1941)

(Indian Poet, Nobel Laureate,1913)(Indian Poet, Nobel Laureate,1913)

Page 40: Vulnerability Analysis Wireless Sensor Networks ... · Sensor Networks Using Sequential Analysis,” IEEE INFOCOM 2009. • P. De, Y. Liu, and S. K. Das, “An Epidemic Theoretic

S. K. Das

http://crewman.uta.edu