w stein good 53p

Upload: renaud61

Post on 15-Apr-2018

233 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/6/2019 w Stein Good 53p

    1/53

    ENERGYENERGYENERGYENERGY TECHNOLOGY

    Australia and Europe

    Partnerships for Sustainable Energy R&D

    Solar Thermal Developments in Australia

    Wesley Stein

    Sponsored by The Australian Academy ofTechnological Sciences and Engineering (ATSE) and

    CSIRO, Australia's National R&D organisation.

    30 June 2002

  • 8/6/2019 w Stein Good 53p

    2/53

    ENERGYENERGYENERGYENERGY TECHNOLOGY

    DriversDriversDriversDrivers

    Renewable and sustainable energyincentives

    Solar is pure green

    Abundance of solar energy resource

    Compatibility with both existing and

    advanced energy technologies Distributed or large scale centralised

    New investment opportunity

  • 8/6/2019 w Stein Good 53p

    3/53

    ENERGYENERGYENERGYENERGY TECHNOLOGY

    Aust ra l ia s Mandat oryAust ra l ia s Mandat oryAust ra l ia s Mandat oryAust ra l ia s Mandat ory

    Renew able Energy TargetRenew able Energy TargetRenew able Energy TargetRenew able Energy Target

    9500GWh/yr of renewable energyrequired by 2010

    0

    1000

    2000

    3000

    4000

    5000

    6000

    7000

    8000

    9000

    10000

    2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020

    Year

    GWh

  • 8/6/2019 w Stein Good 53p

    4/53ENERGYENERGYENERGYENERGY TECHNOLOGY

    Aust ra l ia s Mandat oryAust ra l ia s Mandat oryAust ra l ia s Mandat oryAust ra l ia s Mandat ory

    Renew able Energy TargetRenew able Energy TargetRenew able Energy TargetRenew able Energy Target

    9500GWh/yr of renewable energyrequired by 2010

    Liability on electricity retailers

    Certificate trading system

    $40/MWh penalty for non-compliance

  • 8/6/2019 w Stein Good 53p

    5/53

    1100

    1400

    1950

    1700

    1950

    1700

    1400

    1100

    2200

    2200

    1950 1950

    1950

    1950

    1950

    17001700

    170019502200

    2200

    2200

    2200

    Solar Global Radiation > 2200 kWh/ma very good qualified

    Qualification for Solar Electricity Generation

    Solar Global Radiation > 1950 kWh/ma good qualified

    Global Solar Radiation

  • 8/6/2019 w Stein Good 53p

    6/53

  • 8/6/2019 w Stein Good 53p

    7/53

    ENERGYENERGYENERGYENERGY TECHNOLOGY

    Solar t herm al t ec hnologiesSolar t herm al t ec hnologiesSolar t herm al t ec hnologiesSolar t herm al t ec hnologies

    Solar hot water Solar tower

    Solar ponds

    Solar-assisted chilling

    Solar steam/ Rankine cycle

    Solar dish - Stirling or Brayton cycle Central Receivers

    Solar reforming or dissociation

  • 8/6/2019 w Stein Good 53p

    8/53

    ENERGYENERGYENERGYENERGY TECHNOLOGY

    Solar t herm al /b iom assSolar t herm al /b iom assSolar t herm al /b iom assSolar t herm al /b iom ass

    hybr idshybr idshybr idshybr ids

    Bioenergy and solar thermal both utilisethe same thermodynamic cycles

    Each fuel offers advantages to the other

    Solar unlimited, biomass low cost(sometimes)

    No exotic material breakthroughsrequired

    Transitional

  • 8/6/2019 w Stein Good 53p

    9/53

  • 8/6/2019 w Stein Good 53p

    10/53

    Solar Tower ProjectSolar Tower Project

  • 8/6/2019 w Stein Good 53p

    11/53

  • 8/6/2019 w Stein Good 53p

    12/53

  • 8/6/2019 w Stein Good 53p

    13/53

  • 8/6/2019 w Stein Good 53p

    14/53

    ENERGYENERGYENERGYENERGY TECHNOLOGY

  • 8/6/2019 w Stein Good 53p

    15/53

    ENERGYENERGYENERGYENERGY TECHNOLOGY

    ENERGY LOSSES UNDER TYPICAL OPERATION

    at 475degC, 900W/m2

    0

    50

    100

    150

    200

    250

    300

    350

    400

    Insolation

    Interceptedbyrec

    Stea

    mproduced@

    rec

    D

    eliveredatLRJ

    DeliveredatEngine

    Gros

    sengineoutput

    Ne

    tengineoutput

    kW

    0%

    20%

    40%

    60%

    80%

    100%

    120%

    Percentage

    Energy, kW

    Percentage

  • 8/6/2019 w Stein Good 53p

    16/53

    0

    50

    100

    150

    200

    250

    300

    350

    0 100 200 300 400

    Solar direct radiation into dish aperture, kW

    Thermalp

    oweroutpu

    t,kWth

    Measured data,

    480

    o

    C

    Model data for improved dish

    SOLAR COLLECTOR PERFORMANCE DATA

    Wesley Stein, March 2000

  • 8/6/2019 w Stein Good 53p

    17/53

    ENERGYENERGYENERGYENERGY TECHNOLOGY

    The Dish and Col lec t or The Dish and Col lec t or The Dish and Col lec t or The Dish and Col lec t or

  • 8/6/2019 w Stein Good 53p

    18/53

  • 8/6/2019 w Stein Good 53p

    19/53

    ENERGYENERGYENERGYENERGY TECHNOLOGY

  • 8/6/2019 w Stein Good 53p

    20/53

    ENERGYENERGYENERGYENERGY TECHNOLOGY

    Mul t iMu l t iMu l t iMu l t i ----t ow er so lar ar rayt ow er so la r a rrayt ow er so la r a rrayt ow er so la r a rray

    (Univers i t y of Sydney)(Univers i t y of Sydney)(Univers i t y of Sydney)(Univers i t y of Sydney)

    ReceiverInsolationReceiver

    Reflector orientation patterns set up to allow avoidance of blocking ofreflected radiation under close packing. This diagram applies schematically tothe MTSA along two axes. Courtesy of Philippe Schramek and David Mills.

  • 8/6/2019 w Stein Good 53p

    21/53

    CARNOT CYCLE EFFICIENCY AND SOLAR CONCENTRATION RATIO

    0%

    10%

    20%

    30%

    40%

    50%

    60%

    70%

    80%

    0 200 400 600 800 1000 1200

    Temperature, deg C

    Carnotcy

    cleefficiency

    10

    100

    1000

    10000

    Solarconcentrationratio,

    Aa/A

    r

    1

  • 8/6/2019 w Stein Good 53p

    22/53

    ENERGYENERGYENERGYENERGY TECHNOLOGY

    Gas Turbine

    Steam Turbine

    Condenser

    Solar Field

    SolarSteamGenerator

    Fuel

    Heat RecoverySteam Generator

    Stack

  • 8/6/2019 w Stein Good 53p

    23/53

    0

    100

    200

    300

    400

    500

    600

    0% 20% 40% 60% 80% 100%

    % heat transferred

    Temperatur

    e,oC

    Single pressure

    Dual pressure

    Infinite ressure sta es eva oration external to HRB

    Flue gas profile

  • 8/6/2019 w Stein Good 53p

    24/53

    20%

    22%

    24%

    26%

    28%

    30%

    32%

    34%

    36%

    0% 20% 40% 60% 80% 100%

    % of peak solar steam input

    Intern

    alandoverall

    steam

    cycleefficienc

    y

    73%

    74%

    75%

    76%

    77%

    78%

    79%

    80%

    81%

    82%

    HRBefficiency

    Internal steam cycle efficiency* Overall steam cycle efficiency*

    HRB efficiency

    Solar topping/ solar evaporation performance with

    increasing solar input

    Wesley Stein, March 2000

  • 8/6/2019 w Stein Good 53p

    25/53

    ENERGYENERGYENERGYENERGY TECHNOLOGY

  • 8/6/2019 w Stein Good 53p

    26/53

    ENERGYENERGYENERGYENERGY TECHNOLOGY

    Process heat

    OrganicRankine cycle

    Chiller

    Reverse cycleair conditioning

    Electricity

    CO/TRI-GENERATION FORDISTRIBUTED ENERGY APPLICATIONS

    Solar gas or Solar HTF

    preheated air

  • 8/6/2019 w Stein Good 53p

    27/53

    ENERGYENERGYENERGYENERGY TECHNOLOGY

    ThermochemicalThermochemical EnergyEnergy

  • 8/6/2019 w Stein Good 53p

    28/53

    ThermochemicalThermochemical EnergyEnergy

    StorageStorage

    NH3 + 66.8kJ/mol 1/2N2 + 3/2H2

    H2 / N2gas

    liquid

    NH3

    Heat Exchangers

    Power Generation(Steam Cycle)

    Ammonia Synthesis(Exothermic Reactor)

    Ammonia Dissociation(Endothermic Reactor)

    Separation and Storage

    Tow ards Sust a inab leTow ards Sust a inab leTow ards Sust a inab leTow ards Sust a inab le

  • 8/6/2019 w Stein Good 53p

    29/53

    ENERGYENERGYENERGYENERGY TECHNOLOGY

    Tow ards Sust a inab leTow ards Sust a inab leTow ards Sust a inab leTow ards Sust a inab le

    EnergyEnergyEnergyEnergy CSIRO so la rCSIRO solarCSIRO solarCSIRO solar

    re formingre formingre formingre forming

    Aim: demonstrate a solar thermal fossil energy hybrid concept for high

    efficiency / low CO2 powergeneration and appropriate forAustralian conditions

  • 8/6/2019 w Stein Good 53p

    30/53

    ENERGYENERGYENERGYENERGY TECHNOLOGY

    Projec t Dr iversPro jec t Dr iversPro jec t Dr iversPro jec t Dr ivers

    Deregulation of electricity and gas supply industries

    Move towards smaller-scale power generation based on gas

    By 2010 an additional 9,500 GWh pa to be sourced from newrenewable energy

    Introduction of renewable energy accreditation schemes by which

    electricity generated from renewable sources attracts a premium Legislation requiring distributors to sell electricity with reduced

    Greenhouse gas emissions

    Need for Greenhouse gas mitigation strategies to go beyondmore efficient fossil energy technologies and fuel substitution

  • 8/6/2019 w Stein Good 53p

    31/53

    ENERGYENERGYENERGYENERGY TECHNOLOGY

    Projec t Dr iversPro jec t Dr iversPro jec t Dr iversProjec t Dr ivers (c ont .)(cont . )(cont . )(cont . )

    No exotic material breakthroughs required

    Thermal and chemical processes well understood

    Simple integration with existing thermodynamic cycles and energyprocesses

    Coincidence of high levels of solar and gas

    Storage of solar energy in chemical form

  • 8/6/2019 w Stein Good 53p

    32/53

    O t i l M d /O t i l M d /O t i l M d /O t i l M d /

  • 8/6/2019 w Stein Good 53p

    33/53

    ENERGYENERGYENERGYENERGY TECHNOLOGY

    Operat ional Modes /Operat ional Modes /Operat ional Modes /Operat ional Modes /

    Produc t s 1Produc t s 1Produc t s 1Produc t s 1 Green syngas for electricity generation

    Production of synthesis gas as precursorfor gas-to-liquids production (potential

    bottled sunshine)

    Closed loop heat generation

    (methanation) (zero GHG emission)

  • 8/6/2019 w Stein Good 53p

    34/53

    ENERGYENERGYENERGYENERGY TECHNOLOGY

    The Conc eptThe Conc eptThe Conc eptThe Conc ept

    FossilFuel (CH4)

    Water

    water

    CO/H2/CO2 H2/CO2 H2 - fuel

    CO2 to disposal /sequestration

    Fuel cells Gas turbines Cogeneration etc

    CH4 + H2O(llll) + 250 KJ CO + 3H2

    CO + H2O(llll) H2 + CO2 + 3 KJ

    SolarThermal

    Fuel

    Reforming

    Solar Thermal

    Water GasShift

    Conversion

    CO2Recovery

    AdvancedPower

    Generation~

    O t i l M d /O t i l M d /O t i l M d /O t i l M d /

  • 8/6/2019 w Stein Good 53p

    35/53

    ENERGYENERGYENERGYENERGY TECHNOLOGY

    Operat ional Modes /Operat ional Modes /Operat ional Modes /Operat ional Modes /

    Produc t s 2Produc t s 2Produc t s 2Produc t s 2 Hydrogen production with CO2

    capture/sequestration Fuel cell electricity generation from

    hydrogen

    Hydrogen for refining of heavier crude

    oils

  • 8/6/2019 w Stein Good 53p

    36/53

    ENERGYENERGYENERGYENERGY TECHNOLOGY

    The Conc eptThe Conc eptThe Conc eptThe Conc ept

    FossilFuel (CH4)

    Water

    water

    CO/H2/CO2 H2/CO2 H2 - fuel

    CO2 to disposal /sequestration

    Fuel cells Gas turbines Cogeneration etc

    CH4 + H2O(llll) + 250 KJ CO + 3H2

    CO + H2O(llll) H2 + CO2 + 3 KJ

    SolarThermal

    Fuel

    Reforming

    Solar Thermal

    Water GasShift

    Conversion

    CO2Recovery

    AdvancedPower

    Generation~

    The CSIRO Dem onst rat ionThe CSIRO Dem onst rat ionThe CSIRO Dem onst rat ionThe CSIRO Dem onst rat ion

  • 8/6/2019 w Stein Good 53p

    37/53

    ENERGYENERGYENERGYENERGY TECHNOLOGY

    The CSIRO Dem onst rat ionThe CSIRO Dem onst rat ionThe CSIRO Dem onst rat ionThe CSIRO Dem onst rat ion

    Fac i l i t yFac i l i t yFac i l i t yFac i l i t y A 107m2 twin axis tracking solar dish

    Catalytic gas reforming reactors Receiver and flux modifier at focal point

    Absorption-based H2/CO2 separation units A 10 kWe polymer electrolyte membrane fuel cell

    (unavailable)

    Complete integrated operation has been

    successfully demonstrated - H2 has CO levels low

    enough for PEM fuel cell operation

  • 8/6/2019 w Stein Good 53p

    38/53

    ENERGYENERGYENERGYENERGY TECHNOLOGY

    The Dish and Col lec t or The Dish and Col lec t or The Dish and Col lec t or The Dish and Col lec t or

  • 8/6/2019 w Stein Good 53p

    39/53

    CSIRO MARK 2 SOLAR REFORMERWATER

    PRODUCT

    GAS

    NATURAL GAS / CO2

    SOLAR ENERGY

    PREDICTED THERMAL PERFORMANCE OF CSIRO MARK II SOLAR REFORMER WITH 900W/M2 DIRECT SOLAR ENERGY

  • 8/6/2019 w Stein Good 53p

    40/53

    112 MIRROR PANELS

    48 ACTIVE MIRRORS

    43.2kW (900W/m2) INCIDENT ON MIRROR SURFACE AREA

    40.6kW REFLECTED FROM 48 ACTIVE MIRRORS

    94% DISH REFLECTIVITY

    8.6kW LOST BY ABSORPTION

    OR RERADIATION

    32.0kW USED

    FOR REFORMING

    SS20T

    DISH

    FEED

    NATURAL GAS

    (95.7kW HHV)

    PRODUCT GAS

    (120.2kW HHV)

    11.9 kW RECOVERED IN PRODUCT GAS

    THROUGH WATER PREHEATING

    FEED

    WATER

    7.5kW LOST TO STEAMAND SENSIBLE HEAT IN PRODUCT GAS

    PREDICTED THERMAL PERFORMANCE OF CSIRO MARK II SOLAR REFORMER WITH 900W/M2 DIRECT SOLAR ENERGY

    Methane conversion @ 850C, 1MPa and steam-to-methane molar ratio of 2.5 = 87.1%

    Solar-to-chemical energy conversion (HHV)= 60.3%

    Increase in chemical energy of feed natural gas (HHV) = 25.6%

    Fut ure Plans & Out look forFut ure Plans & Out look forFut ure Plans & Out look forFut ure Plans & Out look for

  • 8/6/2019 w Stein Good 53p

    41/53

    ENERGYENERGYENERGYENERGY TECHNOLOGY

    Fut ure Plans & Out look for Fut ure Plans & Out look for Fut ure Plans & Out look for Fut ure Plans & Out look for

    CSIRO so la r re fo rm ingCSIRO so la r re fo rm ingCSIRO so la r re fo rm ingCSIRO so la r re fo rm ing Commercial prospects being evaluated

    Demonstration facility establishing proof ofconcept being pursued

    Appropriate solar concentrator is required

    Industrial partners being sought to move intoa commercial implementation phase

  • 8/6/2019 w Stein Good 53p

    42/53

    ENERGYENERGYENERGYENERGY TECHNOLOGY

    0

    200

    400

    600

    800

    1,000

    1,200

    1,400

    3 5 7 9 11 13 15 17 19

    Equivalent gas price, $/GJ

    Total

    installedcostofsolararray

    ,$/m2(aperture)

    6000MJ/m2, 0% O&M

    4000MJ/m2, 3% O&M

    5000MJ/m2, 3% O&M

    6000MJ/m2, 3% O&M

    4000MJ/m2, 0% O&M

    Estimated costs for

    Tennant Creek

    25 yr life, 7% discount rate

    Gas boiler avge efficiency = 83%

    0%/yr gas price escalation

    5000MJ/m2, 0% O&M

    Greenhouse gas em issions

  • 8/6/2019 w Stein Good 53p

    43/53

    12 21 15 18 1684

    442

    980

    0

    200

    400

    600

    800

    1000

    SEGS

    Parab

    olicTrough

    Dish/S

    tirling

    PHOE

    BUSP

    owerTower

    SolarT

    ower

    WindT

    urbine

    Photov

    oltaics

    Combine

    dCycle

    CoalPl

    ant(Au

    stralia)

    G

    reenhouseGa

    semissionsin

    CO2equivale

    nts

    [g/kWhel]

    Source: Weinrebe, G.: Greenhouse Gas Mitigation with Solar Thermal Power Plants, Proceedings of the PowerGen Europe 1999 Conference, Frankfurt, Germany, June 1-3

    In te rna t iona lIn te rna t iona lIn te rna t iona lIn te rna t iona l

  • 8/6/2019 w Stein Good 53p

    44/53

    Oppor tun i t iesOppor tun i t iesOppor tun i t iesOppor tun i t ies

    ABENGOA

    Solel

    KfWFICHTNER

    EEA/NREA

    KJCSMA

    World BankBECHTEL

    ONE NEPCO

    LOCATIONLOCATION TYPETYPE solar MWsolar MWAus traliaAus tralia CLFRCLFR FresnelFresnel 1313CreteCrete SEGSSEGS TroughTrough 5252EgyptEgypt ISCCSISCCS TroughTrough 30-8030-80IndiaIndia ISCCSISCCS TroughTrough 3535

    IranIran ISCCS/SEGSISCCS/SEGS TroughTrough 30-8030-80JordanJordan PHOEBUSPHOEBUS TowerTower 3030MexicoMexico ISCCSISCCS TroughTrough 30-8030-80MoroccoMorocco ISCCS/SEGSISCCS/SEGS TroughTrough 30-8030-80SpainSpain SEGS, SP10SEGS, SP10 Trough,TowerTrough,Tower 10-5010-50

    USAUSA SEGSSEGS TroughTrough 354354

    BOEING DukeSolar

    GamesaGhersa

    AGOESTIAEuropean Solar Thermal Power

    Industry Association

    Slide courtesy of:

  • 8/6/2019 w Stein Good 53p

    45/53

    ENERGYENERGYENERGYENERGY TECHNOLOGY

    Where t o f rom here?Where t o f rom here?Where t o f rom here?Where t o f rom here?

    A number of technology types opening up many

    different opportunities. Major hurdle at present is capital cost of the

    collector / concentrator.

    Apart from mirrors, manufacturing and civilworks similar to wind turbines so could followsame cost reduction curve.

    Opportunity to link the best technologies ofEurope and Australia to produce flexible solarthermal driven packages that can becustomised for specific applications.

  • 8/6/2019 w Stein Good 53p

    46/53

    ENERGYENERGYENERGYENERGY TECHNOLOGY

    Required st epsRequired st epsRequired st epsRequired st eps

    Demonstration plants at pre-commercial level

    are critical. Problem-free operation is possiblymore crucial to technology confidence than costat this time.

    Such plants should be installed in hybridconfigurations (with reliable back-up fuel suchas gas) and in parallel so that seamlessoperation can be demonstrated

    They should operate in a commercialenvironment (whether or not they are producingcommercially-competitive energy) so that realexperience is gained and investors see realsolutions emerging

  • 8/6/2019 w Stein Good 53p

    47/53

    ENERGYENERGYENERGYENERGY TECHNOLOGY

    Col laborat ive opport un i t iesCol laborat ive opport un i t iesCol laborat ive opport un i t iesCol laborat ive opport un i t ies

    Alliance with European partners soughtfor various aspects

    Collaboration could be:Technical R&D

    ModellingProduct development

    Product demonstration and testing

    C l l b i i iC l l b i i iC l l b i i iC l l b i i i

  • 8/6/2019 w Stein Good 53p

    48/53

    ENERGYENERGYENERGYENERGY TECHNOLOGY

    Col laborat ive opport un i t iesCol laborat ive opport un i t iesCol laborat ive opport un i t iesCol laborat ive opport un i t ies

    Some immediate areas of interest: Solar/gas hybrid Brayton cycle

    Solar thermal supplementation of distributedgeneration plants, especially cogen and trigen

    Solar steam Rankine cycle integration

    Solar reformed methane

    Solar biomass hybrids Work also required on associated equipment,

    for example: Small heat engines utilising medium temperature

    steam Organic Rankine Cycles

    Absorption cycle chilling

  • 8/6/2019 w Stein Good 53p

    49/53

    ENERGYENERGYENERGYENERGY TECHNOLOGY

    THANK YOUTHANK YOUTHANK YOUTHANK YOU

    M k 2 S l C i R i P di d P f (N di h l ) i h R f @ 8 0C & 000kP

  • 8/6/2019 w Stein Good 53p

    50/53

    Mark 2 Solar Cavity Receiver Predicted Performance (No dish louvers) with Reformer @ 850C & 1000kPa,

    LT WGS @215C, Solar Energy @43kW (900W/m2), Gas Engine Efficiency = 40% & Fuell Cell Efficiency = 60%

    0.0

    10.0

    20.0

    30.0

    40.0

    1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50

    Water-to-Methane Molar Ratio

    OverallSolar-To

    -ElectricalEnergy

    Convers

    ion(LHV),%

    0.0

    15.0

    30.0

    45.0

    60.0

    S

    olar-To-ChemicalEn

    ergyconversion(LH

    V),

    %

    Overall Conversion

    with Heat Recovery @300C,

    LT WGS@215C & Fuel Cell Unit

    Overall Conversionwith Heat Recovery@200C

    & Gas Engine

    CO2/CH4

    ratio

    = 0

    = 1.0

    = 0.5

    Chemical energy

    conversion (LHV)

    reforming only

    Chemical energy

    conversion (LHV)

    with LT WGS

    M k 2 S l C it R i P di t d P f (N di h l ) ith R f @ 850C & 1000kP

  • 8/6/2019 w Stein Good 53p

    51/53

    Mark 2 Solar Cavity Receiver Predicted Performance (No dish louvers) with Reformer @ 850C & 1000kPa,

    LT WGS @215C, Solar Energy @43kW (900W/m2), Gas Engine Efficiency = 40% & Fuell Cell Efficiency = 60%

    0.0

    10.0

    20.0

    30.0

    40.0

    1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50

    Water-to-Methane Molar Ratio

    Ov

    erallSolar-To-Electr

    icalEnergyConvers

    ion,

    %

    10.0

    35.0

    60.0

    85.0

    110.0

    Feednaturalgas(LHV),kW

    Conversion with Heat Recovery @300C,

    LT WGS@215C & Fuel Cell Unit

    Conversionwith Heat Recovery@200C

    & Gas Engine

    CO2/CH4

    ratio

    = 0

    = 1.0

    = 0.5

    Feed natural gas (LHV)

    reforming only

    Feed natural gas (LHV)

    with LT WGS

    M k 2 S l C it R i P di t d P f (N di h l ) ith R f @ 850C & 1000kP

  • 8/6/2019 w Stein Good 53p

    52/53

    Mark 2 Solar Cavity Receiver Predicted Performance (No dish louvers) with Reformer @ 850C & 1000kPa,

    LT WGS @215C and Solar Energy @43kW (900W/m2)

    10.0

    20.0

    30.0

    1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50

    Water-to-Methane Molar Ratio

    Increaseinchemicalenergy(LHV),kW

    20.0

    40.0

    60.0

    80.0

    100.0

    120.0

    Feednaturalgas(LHV),kW

    Feed natural gas (LHV)reforming only

    CO2/CH4

    ratio

    = 0

    = 1.0

    = 0.5

    Increase in Chemical Energy (LHV)

    with Heat Recovery @300C,

    LT WGS@215C & Fuel Cell Unit

    Increase in Chemical Energy (LHV)

    with Heat Recovery@200C

    & Gas Engine

    Feed natural gas (LHV)

    with LT WGS

    PREDICTED THERMAL PERFORMANCE OF CSIRO MARK II SOLAR REFORMER WITH 900W/M2 DIRECT SOLAR ENERGY

  • 8/6/2019 w Stein Good 53p

    53/53

    112 MIRROR PANELS

    48 ACTIVE MIRRORS

    43.2kW (900W/m2) INCIDENT ON MIRROR SURFACE AREA

    40.6kW REFLECTED FROM 48 ACTIVE MIRRORS

    94% DISH REFLECTIVITY

    8.6kW LOST BY ABSORPTION

    OR RERADIATION

    32.0kW USED

    FOR REFORMING

    SS20T

    DISH

    FEED

    NATURAL GAS

    (86.4kW LHV)

    PRODUCT GAS

    (105.6kW LHV)

    11.9 kW RECOVERED IN PRODUCT GAS

    THROUGH WATER PREHEATING

    FEED

    WATER

    7.5kW LOST TO STEAM

    AND SENSIBLE HEAT IN PRODUCT GAS

    Methane conversion @ 850C, 1MPa and steam-to-methane molar ratio of 2.5 = 87.1%

    Solar-to-chemical energy conversion (LHV) = 47.4%

    Increase in chemical energy of feed natural gas (LHV) = 22.3%