waste-recycling monte carlo and the calculation of...

of 30 /30
1 Manuel Athènes, C.-M. Marinica Service de Recherches de Metallurgie Physique, CEA Saclay Gilles Adjanor, EDF-R&D les Renardières Florent Calvo, Université de Lyon Waste-Recycling Monte Carlo and the calculation of free energies

Upload: others

Post on 11-Apr-2020

7 views

Category:

Documents


0 download

Embed Size (px)

TRANSCRIPT

Page 1: Waste-Recycling Monte Carlo and the calculation of …cermics.enpc.fr/~lelievre/CECAM/M_Athenes.pdfWaste-recycling Monte Carlo 2 Goal : reducing the statistical variance of the estimator

1

Manuel Athènes, C.-M. Marinica

Service de Recherches de Metallurgie Physique, CEA Saclay

Gilles Adjanor, EDF-R&D les Renardières

Florent Calvo, Université de Lyon

Waste-Recycling Monte Carlo and

the calculation of free energies

Page 2: Waste-Recycling Monte Carlo and the calculation of …cermics.enpc.fr/~lelievre/CECAM/M_Athenes.pdfWaste-recycling Monte Carlo 2 Goal : reducing the statistical variance of the estimator

Waste-recycling Monte Carlo

2

Goal : reducing the statistical variance of the estimator in

Markov Chain Monte Carlo techniques based on the

Metropolis algorithm

How? by including information within the estimator about

the states that have been sampled but rejected.

Ceperley, Chester and Kalos, Phys. Rev.1977,

Frenkel, PNAS 2004,

Delmas &Jourdain, J. Applied Probab. 2009.

Page 3: Waste-Recycling Monte Carlo and the calculation of …cermics.enpc.fr/~lelievre/CECAM/M_Athenes.pdfWaste-recycling Monte Carlo 2 Goal : reducing the statistical variance of the estimator

Outline

3

I-Conditional expectations

Speeding-up of parallel tempering with configuration bias (col.

F. Calvo)

Control variate problem & optimal estimator (Delmas&Jourdain)

Applications : Ising systems and realistic FeCr system (col. G. Adjanor)

Free energy reconstruction from steered molecular dynamics

Vacancy in Iron, Structural transitions in LJ38 cluster (col. C. Marinica)

II-Posterior conditional expectations

Combination of waste-recycling and multistate Bennett acceptance ratio

method

Page 4: Waste-Recycling Monte Carlo and the calculation of …cermics.enpc.fr/~lelievre/CECAM/M_Athenes.pdfWaste-recycling Monte Carlo 2 Goal : reducing the statistical variance of the estimator

4

Parallel replica simulations

Exchanges between replicas monoproposal multiproposal

1

klI

R R

kl

klki

R

R RR

min 1,

klklacc

RR R

R

min 1,

klmkl

kl

acc

RR R

R

Esselink, Loyens,

Smit, PRE 1995

Page 5: Waste-Recycling Monte Carlo and the calculation of …cermics.enpc.fr/~lelievre/CECAM/M_Athenes.pdfWaste-recycling Monte Carlo 2 Goal : reducing the statistical variance of the estimator

5

LJ fluid

12 6

4ijE r r r

Nr ij

i j

U E r

Colluza, Frenkel

PhysChemPhys 2005

Athenes, Calvo

PhysChemPhys 2008

Page 6: Waste-Recycling Monte Carlo and the calculation of …cermics.enpc.fr/~lelievre/CECAM/M_Athenes.pdfWaste-recycling Monte Carlo 2 Goal : reducing the statistical variance of the estimator

6

Ferromagnetic

system

ij ij ijE E E

lnF M kT p M

i ii M Mp M h

Page 7: Waste-Recycling Monte Carlo and the calculation of …cermics.enpc.fr/~lelievre/CECAM/M_Athenes.pdfWaste-recycling Monte Carlo 2 Goal : reducing the statistical variance of the estimator

7

Maxwell construction G(c)

(c)c

2

1

c

c

2 1 2 1

(c) * dc 0

G(c ) G(c ) c c *

c

conf

Cr

c Cr Fe

A(c, *) kT ln h (conf )

Nh (conf ) c

N N

c

c

c

c

G(c)

A(c, *)

2c1c

1c 2c

A

A

Page 8: Waste-Recycling Monte Carlo and the calculation of …cermics.enpc.fr/~lelievre/CECAM/M_Athenes.pdfWaste-recycling Monte Carlo 2 Goal : reducing the statistical variance of the estimator

8

Estimation of chemical potential differences

Gradual transmutation of a Fe atom into Cr atom

Reference system 0: nFe - (m-n)Cr

Target system 1: (n-1)Fe - (m-n+1)Cr

0λ 1λ

ex

0 11 0

1exp(- ) = exp(- G) = exp W

exp W

forward MD trajectory

backward MD trajectory

nFe,(m-n)Cr (n-1)Fe,(m-n+1)CrH = (1- ) H + H

C. Jarzynski PRL (1997), G. E. Crooks, J. Stat. Phys. (1998)

Page 9: Waste-Recycling Monte Carlo and the calculation of …cermics.enpc.fr/~lelievre/CECAM/M_Athenes.pdfWaste-recycling Monte Carlo 2 Goal : reducing the statistical variance of the estimator

9

Exploration of alloy configurations: path sampling

ex 1/2

1/2

exp W2

exp(- )

exp W2

backward trial

transmutation

Monte Carlo test on

trial transmutations

forward trial

transmutation

exp W2

Acceptance rate

Measurement of chemical

potential difference

G. Adjanor, M. Athènes, J. Rodgers, J. Chem. Phys. 2011

Page 10: Waste-Recycling Monte Carlo and the calculation of …cermics.enpc.fr/~lelievre/CECAM/M_Athenes.pdfWaste-recycling Monte Carlo 2 Goal : reducing the statistical variance of the estimator

10

Metropolis estimator

Waste-recycling estimator (Frenkel, PNAS 2004)

Optimal estimator (Delmas & Jourdain, J. Appl. Probab. 2009)

n nf exp W2

n nf exp W2

N0N n

n 1

1J (f ) f f

N

N

WR acc accN n n n n

n 1

1J (f ) f 1 p f p

N

b* 0 1N N NJ (f ) 1 b* J (f ) b*J (f ) n n 1b* 1 corr f ,f

Page 11: Waste-Recycling Monte Carlo and the calculation of …cermics.enpc.fr/~lelievre/CECAM/M_Athenes.pdfWaste-recycling Monte Carlo 2 Goal : reducing the statistical variance of the estimator

11

Assessement of optimal estimator

in a BCC Ising-like binary system

Page 12: Waste-Recycling Monte Carlo and the calculation of …cermics.enpc.fr/~lelievre/CECAM/M_Athenes.pdfWaste-recycling Monte Carlo 2 Goal : reducing the statistical variance of the estimator

12

Statistical variances and chemical potentials

A

G. Adjanor, M. Athènes, J. Rodgers, J. Chem. Phys. 2011

Page 13: Waste-Recycling Monte Carlo and the calculation of …cermics.enpc.fr/~lelievre/CECAM/M_Athenes.pdfWaste-recycling Monte Carlo 2 Goal : reducing the statistical variance of the estimator

13

Empirical potential used:

two-band model (2BM) (P. Olsson et al.Phys. Rev. B 2005)

EAM potential reproducing α and α’ phases

Fe Fe Cr Fe Fe Cr

(Olsson et al.2005, Phys. Rev. B

frustration

fig :G. Bonny et al., J. Nucl. Mat. 2008)

CDM potential : A. Caro et al

Page 14: Waste-Recycling Monte Carlo and the calculation of …cermics.enpc.fr/~lelievre/CECAM/M_Athenes.pdfWaste-recycling Monte Carlo 2 Goal : reducing the statistical variance of the estimator

14

Calculations in FeCr

432 atoms

G. Adjanor, M. Athènes, J. Rodgers, J. Chem. Phys. 2011

Page 15: Waste-Recycling Monte Carlo and the calculation of …cermics.enpc.fr/~lelievre/CECAM/M_Athenes.pdfWaste-recycling Monte Carlo 2 Goal : reducing the statistical variance of the estimator

15

Equilibrium phase diagram of FeCr

G. Adjanor, et al.

J. Chem. Phys. 2011

432 atoms:

Strong finite size

effects

Page 16: Waste-Recycling Monte Carlo and the calculation of …cermics.enpc.fr/~lelievre/CECAM/M_Athenes.pdfWaste-recycling Monte Carlo 2 Goal : reducing the statistical variance of the estimator

16

Interfacial free energy

51at.% Cr

1456 atoms

T=300K

1456 & 2000 atoms

CDM potential

B. Sadigh & P. Erhart,

cond-mat.mtrl-sci 2011

Page 17: Waste-Recycling Monte Carlo and the calculation of …cermics.enpc.fr/~lelievre/CECAM/M_Athenes.pdfWaste-recycling Monte Carlo 2 Goal : reducing the statistical variance of the estimator

Waste-recycling & steered molecular dynamics

17

nncondnselnncondnsel xPxzPzxPxPxzPzxP |||| '''

nx

'nxShooting procedure with

nonequilibrium paths

N

nnsel

W

WzxP

exp

exp|

Crooks work theorem

Page 18: Waste-Recycling Monte Carlo and the calculation of …cermics.enpc.fr/~lelievre/CECAM/M_Athenes.pdfWaste-recycling Monte Carlo 2 Goal : reducing the statistical variance of the estimator

Summary of Monte Carlo algorithm

1. Run the following sampler

1. Proposed states in generated nonequilibrium path

2. Select new state using posterior conditional

probability

2. Evaluate average with estimator

18

M

mN

n

mn

mn

N

n

mn

W

WrA

MA

1

0

|

|

0

|

exp

exp1

Page 19: Waste-Recycling Monte Carlo and the calculation of …cermics.enpc.fr/~lelievre/CECAM/M_Athenes.pdfWaste-recycling Monte Carlo 2 Goal : reducing the statistical variance of the estimator

Vacancy migration

in Fe Mendelev potential

Fe structure (bcc)

Single additional

steering variable

Harmonic spring on

nearest vacancy

neighbor

19

hD

hP

ln

N

n

n

N

n

nn

W

Wh

h

0

0

exp

exp

Page 20: Waste-Recycling Monte Carlo and the calculation of …cermics.enpc.fr/~lelievre/CECAM/M_Athenes.pdfWaste-recycling Monte Carlo 2 Goal : reducing the statistical variance of the estimator

Vacancy migration in Fe Mendelev potential

Fe structure (bcc)

20

hkTF ln

Page 21: Waste-Recycling Monte Carlo and the calculation of …cermics.enpc.fr/~lelievre/CECAM/M_Athenes.pdfWaste-recycling Monte Carlo 2 Goal : reducing the statistical variance of the estimator

Comparison with classical harmonic

approximation

21

Page 22: Waste-Recycling Monte Carlo and the calculation of …cermics.enpc.fr/~lelievre/CECAM/M_Athenes.pdfWaste-recycling Monte Carlo 2 Goal : reducing the statistical variance of the estimator

22

incomplete

icosahedron (fivefold symmetry)

E=-173,252 [r.u.]

truncated

octahedron

(fcc symmetry )

E=-173.928 [r.u.]

Q4=0.19

Q4=4·10-2

orientational order

parameter Q4

Intermezzo: the 38-atom cluster « LJ38 »

liquid structures

(desordered)

T

Tmelt=0.17 (reduced units)

Tss=0.12

→ Λ(Q4) ?

4·10-2 ≤ Q4 ≤ 9·10-2

Page 23: Waste-Recycling Monte Carlo and the calculation of …cermics.enpc.fr/~lelievre/CECAM/M_Athenes.pdfWaste-recycling Monte Carlo 2 Goal : reducing the statistical variance of the estimator

23

Autonomous steering with two additional coordinates

add

add

rEr

rQr

22

141

kTm

bE

mj

j

j

j

add

jjadd

jj

jadd

j

2

1

10

0

j

j

j

j

add

j dtrEzW addj

0

,1

Non-autonomous steering

Autonomous steering out of equilibrium

Equilibrium case

TAMD,( Eric Vanden-Eijden)

Page 24: Waste-Recycling Monte Carlo and the calculation of …cermics.enpc.fr/~lelievre/CECAM/M_Athenes.pdfWaste-recycling Monte Carlo 2 Goal : reducing the statistical variance of the estimator

24

Free energy contour plot 44 ,ln, QEpkTQEFT

m

n mn

n mnmnQE

W

Wrh

MQEp

exp

exp1, 4,

4

Page 25: Waste-Recycling Monte Carlo and the calculation of …cermics.enpc.fr/~lelievre/CECAM/M_Athenes.pdfWaste-recycling Monte Carlo 2 Goal : reducing the statistical variance of the estimator

25

Free energy landscape

Page 26: Waste-Recycling Monte Carlo and the calculation of …cermics.enpc.fr/~lelievre/CECAM/M_Athenes.pdfWaste-recycling Monte Carlo 2 Goal : reducing the statistical variance of the estimator

26

Comparative study

PT : Parallel tempering

PS : Path sampling

WL : Wang Landau

IR : Mutiple State Estimator

Page 27: Waste-Recycling Monte Carlo and the calculation of …cermics.enpc.fr/~lelievre/CECAM/M_Athenes.pdfWaste-recycling Monte Carlo 2 Goal : reducing the statistical variance of the estimator

Reformulation of conditional expectations

27

L

sel zPzOO1

LdPzPzO

dzdzPzPzO

dzzPzOO

1 margsel

cond

SP expmarg

zszP exp

Page 28: Waste-Recycling Monte Carlo and the calculation of …cermics.enpc.fr/~lelievre/CECAM/M_Athenes.pdfWaste-recycling Monte Carlo 2 Goal : reducing the statistical variance of the estimator

Waste-recycling & multi-state Bennett

acceptance ratio method

28

M

mK

k kk

m

zsf

zsfOOB

11 )()(

ˆexp

ˆexp

M

mK

k kk

m

WR

Sf

SfOOB

11 )()(

ˆexp

ˆexp

zPzOO sel

L

1

Page 29: Waste-Recycling Monte Carlo and the calculation of …cermics.enpc.fr/~lelievre/CECAM/M_Athenes.pdfWaste-recycling Monte Carlo 2 Goal : reducing the statistical variance of the estimator

Transition path sampling simulations

Bias depends on eigenvalues of

jacobian matrix

Shifting procedure

29

z

WR & MBAR

MB

AR

Fre

e e

nerg

ies

Uncert

ain

ties

Page 30: Waste-Recycling Monte Carlo and the calculation of …cermics.enpc.fr/~lelievre/CECAM/M_Athenes.pdfWaste-recycling Monte Carlo 2 Goal : reducing the statistical variance of the estimator

30

Summary

Two points of view to see waste-recycling estimators

1. Information of the unselected states is retrieved using a

conditional expectation.

2. Information is infered from the posterior likelihood of states

(paths) in the set of generated states (paths).

First approach is more general

• can be used in combination with existing methods

• rigorous mathematical analysis (Delmas and Jourdain)

Second approach can be used in combination with post-processing

tools (MBAR). Open question: is variance reduction guaranteed?