wavelet transform in image regions &odvvl¿fdwlrqdsp.vscht.cz/hostalke/upload/ima08_poster.pdf[6]...

1
Wavelet Transform in Image Regions Ales ´ azka, Eva Host ´ alkov ´ a, and Andrea Gavlasov ´ a Institute of C mi lT logy in Prague Dept of Computing and Control Engineering http://dsp.vscht.cz/ Processing Group Digital Signal and Image ICT PRAGUE Texture segmentation and n form gt s of e inter ry area of digital signal pr g wit tions g e analysis of m r , biom , satellite, or r types of images. In s work, we ribe a pattern r tion pr re g of image prepr , segmentation exploiting e water d transform, feature extr , and ments n using ar l neural networks. Our aim is to em ze e possibilities of e wavelet transform in stages of prepr g and features extr . T e proposed met are ver d for simulated images and subsequently applied to real biom l images to t and y e d tissues. Abstract Pattern recognition procedure 1. Image prepr Noise r n rete Wavelet Transform (DWT) [3,6] Contrast ment 2. Segmentation: e transform, water d transform [4] 3. Feature extr n [1,5]: DWT, rete Fourier Transf. (DFT) 4. : ar l neural networks [2] 1. Introduction Additional noise model of a noisy wavelet t observation w( k)= y( k)+ n( k) re y( k) and n( k) rrespond to e noise free signal and iid Gaussian noise, resp., for k = 0, 1,..., N 1. N is e no. s. Wavelet shrinkage algorithm for image smoothing [3] 1. MAD estimate of e standard deviation for iid Gaussian noise ˆ mad = median{| w j ( 0)|,| w j ( 1)|,...,| w j ( N j 1)|} / 0.6745 (1) re w j ( k) are wavelet s of all subbands of level j for k = 0, 1,..., N j 1 2. Universal r d for mposition level j ( s) j = 2 ˆ 2 mad log( N j ) (2) 3. Soft r g to obtain denoised ˆ y j ( k) ˆ y j ( k)= sign{ w j ( k)}· (| w j ( k)| ( s) j ) f or | w j ( k) |> ( s) j 0 otherwise (3) 2. Noise Reduction Fig. 1. Noise r n in biom l images by rinking wavelet s from 2 mposition levels (a) ORIGINAL (b) DENOISED (c) ABS. DIFFERENCE 2 4 6 8 10 12 14 16 x 10 4 0 1 2 WAVELET SHRINKAGE: SCALING AND WAVELET COEFFICIENTS OF 3 LEVELS Fig. 2. Sm g biom l images by rinking wavelet s of 3 levels using b splines bior l wavelets bior5.5 Image segmentation by the watershed method [4] 1. Conversion a to bla k & e image by r 2. e transform Assigns to pixel a value of eE n e tween e pixel and its nearest nonzero 3. Water d transform s ridge lines and separates e water d regions Results in a matrix of labeled regions separated by ew ter d pixels lines 3. Segmentation Te n pr s requires a pattern matrix P features extr d from separate image segments. Methods used feature extraction [5] A n transformation of e boundary signal of ment d by e water d transform Methods of features computation DFT-based features 1. T e mean of e g 2. T e mean abs. value of e detail s from level 1 DWT-based features 1. T e mean magnitude of e low fr y s from e interval 0; F s / 8 , re F s is e sampling fr 2. T e mean magnitude of e fr y s from e interval F s / 4; F s / 2 Combined features (best performing mbination of e above) 1. DFT based features 2 2. DWT based features 1 4. Feature Extraction 40 60 80 100 160 180 200 0 0.2 0.4 (a) REGION CONTOUR 50 100 150 200 0.1 0.2 0.3 0.4 (b) BOUNDARY SIGNAL Index 0 100 200 2 4 6 (c) FOURIER TRANSFORM Index (d) REGIONS SETECTED FOR NN TRAINING 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Fig. 3. DFT based features extr n using e 1 dimensional boundary of a d region (a, b, c) and e water d regions d for e neural network training (d) Classi cation using self-organizing neural networks [2] n of Q segments using R features organized in pattern matrix P R,Q T e no. S equals no. output layer elements P 21 P 11 Class C Class B Class A W, b T e learning pr Tew s matrix W S,R is r rsively r d to m mize e s between input v r and e r responding w s of e winning neuron (wit t to e rrent pattern) S l n e network w s belonging to separate output elements represent l s individuals The Cluster Segmentation Criterion (CSC) Proposed for results evaluation E i = 1, 2,···, S mprising N i segments n be r rized by e mean E n Dist of e mn feature v rs p j k of s segments j k for k = 1, 2,···, N i from e s r in i t row of matrix W S,R =[ w 1 , w 2 ,···, w S ] by relation ClassDist ( i)= 1 N i N i k= 1 Dist ( p j k , w i ) (4) T e mean value of average s s related to e mean value of s rs CSC = mean(ClassDist )/ mean( Dist ( W, W )) (5) Gives low values for m t and well separated rs and values for e rs wit extensive dispersion 0 0.1 0.2 0.3 0.4 0.5 0 0.5 1 1.5 2 2.5 3 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 A B C W(:,2), P(2,:) W(:,1), P(1,:) 0.005 0.01 0.015 0.02 0.025 0.03 0.2 0.3 0.4 0.5 0.6 0.7 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 A B C W(:,2), P(2,:) W(:,1), P(1,:) 0.2 0.3 0.4 0.5 0.6 0.7 0 0.1 0.2 0.3 0.4 0.5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 A B C W(:,2), P(2,:) W(:,1), P(1,:) Fig. 4. Comparison of e n results after sm g for e DFT, DWT, and mbined features (from left to r ) extr from e regions d in Fig.3d and used for training of t neural network. r s boundaries are d by e we matrix W S,R for R = 2 evaluated by a l algor m divides e plane into S = 3 s s. Table 1. C OMPARISON OF F EATURES C OMPUTATION M ETHODS ACCORDING TO THE CSC C RITERION V E Smoothing DFT Features DWT Features Combined Features es 0.12 0.10 0.18 No 0.14 0.11 0.14 Results (a) WATERSHED TRANSFORM (b) DFT+DWT SEGMENTATION (c) DFT SEGMENTATION (d) DWT SEGMENTATION Fig. 5. n of e MR image into 3 s and e ba ground (bla k) without smoothing (a) DENOISED IMAGE (b) DFT+DWT SEGMENTATION (c) DFT SEGMENTATION (d) DWT SEGMENTATION Fig. 6. n of e MR image into 3 s and e ba ground (bla k) after smoothing We demonstrated e n of e above m s to real biom l magneti r e data T e water d transform d most of image regions, ow ever, revealed oversegmentation We d 3 pairs of s for features mputation from regions boundaries and provided e mparison of e s using e CSC riterion Amongst e 3 feature extr n s, e DWT based m d performed best bot wit and t image sm as a prepr g step T e DWT transform was also implemented in e sm pr s d a positive im t on e water d segm tation results Conclusions [1] S. Ariv n and . Ganesan. Texture n Using Wavelet Transform. Pattern Recogn. Lett., 24(9 10):1513–1521, 2003. [2] C. M. B p. Neural Networks for Pattern Recognition. Oxford University Press, 1995. [3] D. B. Per val and A. T. Walden. Wavelet Methods for Time Se- ries Analysis. Cambridge Series in S l and Pr M m s. Cambridge University Press, New ork, U.S.A., 2006. [4] R. C. Gonzales, R. E. Woods, and S. . Eddins. Digital Image Processing Using MATLAB. Pr e Hall, 2004. [5] M. Nixon and A. Aguado. Feature Extraction & Image Process- ing. NewNes Elsevier, 2004. [6] Saeed V. V Advanced Digital Signal Processing and Noise Reduction. Wiley & Teubner, West Sussex, U.K., edition, 2000. References 8t International Conf on s in Signal IMA Royal Agr ral College & IET, 16 – 18 r 2008 Work was supported by resea grant MSM 6046137306.

Upload: others

Post on 06-Oct-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

  • Wavelet Transform in Image RegionsAles ázka, Eva Host’álková, and Andrea Gavlasová

    Institute of C mi l T logy in PragueDept of Computing and Control Engineering

    http://dsp.vscht.cz/

    Processing Group

    Digital Signal and Image

    ICT PRAGUE

    Texture segmentation and n form g t s ofe inter ry area of digital signal pr g wit

    tions g e analysis of m r , biom , satellite, orr types of images. In s work, we ribe a pattern r

    tion pr re g of image prepr , segmentationexploiting e water d transform, feature extr , andments n using ar l neural networks. Our aim is toem ze e possibilities of e wavelet transform in stagesof prepr g and features extr . T e proposed metare ver d for simulated images and subsequently applied to realbiom l images to t and y e d tissues.

    Abstract

    Pattern recognition procedure1. Image prepr

    • Noise r n rete Wavelet Transform (DWT) [3,6]• Contrast ment

    2. Segmentation: e transform, water d transform [4]3. Feature extr n [1,5]: DWT, rete Fourier Transf. (DFT)4. : ar l neural networks [2]

    1. Introduction

    Additional noise model of a noisy wavelet t observationw(k) = y(k)+ n(k)

    re y(k) and n(k) rrespond to e noise free signal and iidGaussian noise, resp., for k= 0,1, . . . ,N 1. N is e no. s.

    Wavelet shrinkage algorithm for image smoothing [3]1. MAD estimate of e standard deviation for iid Gaussian noise

    ˆmad = median{|wj(0)|, |wj(1)|, . . . , |wj(Nj 1)|} / 0.6745 (1)

    re wj(k) are wavelet s of all subbands of level jfor k = 0,1, . . . ,Nj 1

    2. Universal r d for mposition level j(s)j = 2 ˆ 2mad log(Nj) (2)

    3. Soft r g to obtain denoised ŷ j(k)

    ŷ j(k) =sign{wj(k)} · (|wj(k) |

    (s)j ) f or |wj(k) |>

    (s)j

    0 otherwise(3)

    2. Noise Reduction

    Fig. 1. Noise r n in biom l images by rinking wavelets from 2 mposition levels

    (a) ORIGINAL (b) DENOISED (c) ABS. DIFFERENCE

    2 4 6 8 10 12 14 16

    x 104

    0

    1

    2 WAVELET SHRINKAGE: SCALING AND WAVELET COEFFICIENTS OF 3 LEVELS

    Fig. 2. Sm g biom l images by rinking wavelets of 3 levels using b splines bior l wavelets bior5.5

    Image segmentation by the watershed method [4]1. Conversion a to bla k & e image by r2. e transform

    • Assigns to pixel a value of e E n etween e pixel and its nearest nonzero

    3. Water d transform• s ridge lines and separates e water d regions• Results in a matrix of labeled regions separated by e w

    ter d pixels lines

    3. Segmentation

    T e n pr s requires a pattern matrix Pfeatures extr d from separate image segments.Methods used feature extraction [5]

    • A n transformation of e boundary signal ofment d by e water d transform

    Methods of features computation• DFT-based features

    1. T e mean of e g2. T e mean abs. value of e detail s from level 1

    • DWT-based features1. T e mean magnitude of e low fr y s from

    e interval 0;Fs/ 8 , re Fs is e sampling fr2. T e mean magnitude of e fr y s from

    e interval Fs/ 4;Fs/ 2• Combined features (best performing mbination of e above)

    1. DFT based features 22. DWT based features 1

    4. Feature Extraction

    4060

    80100160

    180

    200

    0

    0.2

    0.4

    (a) REGION CONTOUR

    50 100 150 2000.1

    0.2

    0.3

    0.4

    (b) BOUNDARY SIGNAL

    Index

    0 100 200

    2

    4

    6 (c) FOURIER TRANSFORM

    Index

    (d) REGIONS SETECTED FOR NN TRAINING

    1

    23

    4

    5

    67

    89

    1011

    12 1314

    1516

    Fig. 3. DFT based features extr n using e 1 dimensionalboundary of a d region (a, b, c) and e water d regions

    d for e neural network training (d)

    Classi cation using self-organizing neural networks [2]• n of Q segments

    using R features organized inpattern matrix PR,Q

    • T e no. S equalsno. output layer elements

    P21

    P11

    Class C

    Class B

    Class A

    W, b

    • T e learning pr– T e w s matrix WS,R is r rsively r d to m

    mize e s between input v r and e rresponding w s of e winning neuron (wit

    t to e rrent pattern)– S l n e network w s belonging to separate

    output elements represent l s individualsThe Cluster Segmentation Criterion (CSC)

    • Proposed for results evaluation

    • E i= 1,2, · · · ,S mprising Ni segments n be rrized by e mean E n Dist of e mn

    feature v rs p jk of s segments jk for k= 1,2, · · · ,Ni frome s r in i t row of matrix WS,R = [w1,w2, · · · ,wS]

    by relationClassDist(i) =

    1Ni

    Ni

    k= 1Dist(p jk,wi) (4)

    • T e mean value of average s s related to e meanvalue of s rs

    CSC = mean(ClassDist)/ mean(Dist(W,W )) (5)• Gives low values for m t and well separated rs and

    values for e rs wit extensive dispersion

    0 0.1 0.2 0.3 0.4 0.50

    0.5

    1

    1.5

    2

    2.5

    3

    1

    2 3

    4

    5

    67

    8

    9

    10111213141516A

    B

    C

    W(:,2), P(2,:)

    W(:,

    1), P

    (1,:)

    0.005 0.01 0.015 0.02 0.025 0.03

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    1

    23

    45

    6 78

    9

    101112

    13

    141516

    A

    B

    C

    W(:,2), P(2,:)

    W(:,

    1), P

    (1,:)

    0.2 0.3 0.4 0.5 0.6 0.70

    0.1

    0.2

    0.3

    0.4

    0.5

    1

    23

    4

    5

    67

    8

    9

    101112 1314

    1516

    A

    B

    C

    W(:,2), P(2,:)

    W(:,

    1), P

    (1,:)

    Fig. 4. Comparison of e n results after sm g fore DFT, DWT, and mbined features (from left to r ) extr

    from e regions d in Fig.3d and used for training of tneural network. r s boundaries are d by e wematrixWS,R for R= 2 evaluated by a l algor m divides

    e plane into S= 3 s s.

    Table 1. COMPARISON OF FEATURES COMPUTATION METHODSACCORDING TO THE CSC CRITERION V E

    Smoothing DFTFeaturesDWT

    FeaturesCombinedFeatures

    es 0.12 0.10 0.18No 0.14 0.11 0.14

    Results

    (a) WATERSHED TRANSFORM (b) DFT+DWT SEGMENTATION

    (c) DFT SEGMENTATION (d) DWT SEGMENTATION

    Fig. 5. n of e MR image into 3 s and e baground (bla k) without smoothing

    (a) DENOISED IMAGE (b) DFT+DWT SEGMENTATION

    (c) DFT SEGMENTATION (d) DWT SEGMENTATION

    Fig. 6. n of e MR image into 3 s and e baground (bla k) after smoothing

    • We demonstrated e n of e above m s to realbiom l magneti r e data

    • T e water d transform d most of image regions, owever, revealed oversegmentation

    • We d 3 pairs of s for features mputationfrom regions boundaries and provided e mparison of e

    s using e CSC riterion• Amongst e 3 feature extr n s, e DWT based

    m d performed best bot wit and t image smas a prepr g step

    • T e DWT transform was also implemented in e smpr s d a positive im t on e water d segmtation results

    Conclusions

    [1] S. Ariv n and . Ganesan. Texture n UsingWavelet Transform. Pattern Recogn. Lett., 24(9 10):1513–1521,2003.

    [2] C. M. B p. Neural Networks for Pattern Recognition. OxfordUniversity Press, 1995.

    [3] D. B. Per val and A. T. Walden. Wavelet Methods for Time Se-ries Analysis. Cambridge Series in S l and PrM m s. Cambridge University Press, New ork, U.S.A.,2006.

    [4] R. C. Gonzales, R. E. Woods, and S. . Eddins. Digital ImageProcessing Using MATLAB. Pr e Hall, 2004.

    [5] M. Nixon and A. Aguado. Feature Extraction & Image Process-ing. NewNes Elsevier, 2004.

    [6] Saeed V. V Advanced Digital Signal Processing andNoise Reduction. Wiley & Teubner, West Sussex, U.K.,edition, 2000.

    References

    8t International Confon s in Signal

    IMARoyal Agr ral College & IET,

    16 – 18 r 2008

    Work was supported by resea grant MSM6046137306.

    /ColorImageDict > /JPEG2000ColorACSImageDict > /JPEG2000ColorImageDict > /AntiAliasGrayImages false /CropGrayImages true /GrayImageMinResolution 300 /GrayImageMinResolutionPolicy /OK /DownsampleGrayImages true /GrayImageDownsampleType /Bicubic /GrayImageResolution 300 /GrayImageDepth -1 /GrayImageMinDownsampleDepth 2 /GrayImageDownsampleThreshold 1.50000 /EncodeGrayImages true /GrayImageFilter /DCTEncode /AutoFilterGrayImages true /GrayImageAutoFilterStrategy /JPEG /GrayACSImageDict > /GrayImageDict > /JPEG2000GrayACSImageDict > /JPEG2000GrayImageDict > /AntiAliasMonoImages false /CropMonoImages true /MonoImageMinResolution 1200 /MonoImageMinResolutionPolicy /OK /DownsampleMonoImages true /MonoImageDownsampleType /Bicubic /MonoImageResolution 1200 /MonoImageDepth -1 /MonoImageDownsampleThreshold 1.50000 /EncodeMonoImages true /MonoImageFilter /CCITTFaxEncode /MonoImageDict > /AllowPSXObjects false /CheckCompliance [ /None ] /PDFX1aCheck false /PDFX3Check false /PDFXCompliantPDFOnly false /PDFXNoTrimBoxError true /PDFXTrimBoxToMediaBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXSetBleedBoxToMediaBox true /PDFXBleedBoxToTrimBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXOutputIntentProfile (None) /PDFXOutputConditionIdentifier () /PDFXOutputCondition () /PDFXRegistryName () /PDFXTrapped /False

    /Description > /Namespace [ (Adobe) (Common) (1.0) ] /OtherNamespaces [ > /FormElements false /GenerateStructure false /IncludeBookmarks false /IncludeHyperlinks false /IncludeInteractive false /IncludeLayers false /IncludeProfiles false /MultimediaHandling /UseObjectSettings /Namespace [ (Adobe) (CreativeSuite) (2.0) ] /PDFXOutputIntentProfileSelector /DocumentCMYK /PreserveEditing true /UntaggedCMYKHandling /LeaveUntagged /UntaggedRGBHandling /UseDocumentProfile /UseDocumentBleed false >> ]>> setdistillerparams> setpagedevice