wdmam 1.02 2007 edition low resolution reduced1

2
Code Areacovered Resolution Reference 13.0 MF5 5 km Maus et al. (2007a) 101.41 Marinetrack-linevariable NGDC,http://www.ngdc.noaa.gov/mgg/geodas/ trackline.html 101.45 Interpolated(101.41)Non-interpola ted(101.45) 121.4 3 Arc tic 5km Geo sci enc eCanada ,http :// gsc .nr can .gc .ca /i nde x_e.php 131.45 ProjectMagnet variable NGDC,http://www.ngdc.noaa.gov/s eg/geomag /proj_mag.shtml 171. 44 Ocea nicmode l 10km NASA candi datemo del,acc ompa nyin gDVD 201.2 Afr ica 15mi n GET ECH,http: //www. get ech .co m 201.2 South America 15 min GETECH,http://www.getech.com 222.3 Sou thAfr ica 5km SADC,htt p:/ /www.s adc .int 23 1. 32Bot swana 5km ht tp:/ /www.gov.bw/  302.4 3 Ant arc tic 5km ADMAP,http: //e art hsc ien ces .os u.e du/ admap 401.3 Eur asi a 2km Geo sci enc eCan ada ,http :// gsc .nr can .gc .ca /in dex _e. php 411.4 3 Eas tAsi a 2km CCOP,htt p:/ /www.c cop .or .th 421. 43 Middl eEast 1km AAIME,http:// home .case ma.nl /erre nwijl ens/i tc/aa ime 44 1. 3 Indi a 5km GSI,htt p: // www. gs i. go v. in 442.2 India 50km Qur esh y,M. N.,19 82,Photog rammet ria ,Vol .37,161-18 4 45 1. 32Japan 1km ht tp:/ /www.ais t.g o. jp/GSJ/  504.4 3 Aus tra lia 1km Geo sci enc eAus tra lia ,http :// www.ga .go v.a u 601.4 3 Eur ope 5km Wonik ,T.etal .,2001,Ter raNo va,Vol13,20 3-2 13 611.3 Fen nos can dia 5km GTK,http:// www.gt k.f i 621. 321 Austri a 5km http:/ /www.g eolo gie.a c.at/ 622. 2 Canar yIsland s 5km Publ.Te c.,No.35,Ins titutoGe ogra ficoNac iona l,Madri d,1996 624.2 2 Fin lan d 1km htt p:/ /pr oje cts .gt k.f i/WDMAM/ 625.2 Fra nce 10km IPGP,htt p:/ /www.i pgp .jussi eu. fr 626.2 Ita ly 5km Chi app ini ,M.etal .,2000,Anna lidiGeophysic a,Vol43,No.5 627.4 3 Spa in 1.5min Soc iasI .,etal .,1991,Eart hPla net .Sci .Let t.,10 5,55 -64 628.3 Russia 5 km VSEGEI, http://www.vsegei.ru/WAY/247038/ locale/EN 701. 43 NorthAmeric a 1km NAMAG,http:// pubs.u sgs.g ov/s m/ma g_ma p 711.3 2 Mex ico 5km http:/ /www.c ore mis gm. gob.mx/ 811. 45 Arge ntinainl and 5km SEGEMAR,http: //www.seg emar .gov .ar/ db 812.3 Argentina margin 5 km Instituto Antárti co Argentino, http://ggt.conae.g ov.ar/iaa/p ictr2002 MAGNETIC ANOMAL YMAP OFTHE WORLD CARTE DES ANOMALIES MAGNÉTIQUES DU MONDE EXPLANATORYNOTES /  NOTICE EXPLICATIVE OBJECTIVE OFTHE MAP/ OBJECTIFDE LACARTE This map is the firstglobalcompilation ofthewealth of magneticanomaly informa tion derived frommorethan 50 years ofaeromagneticsurveys overland areas, research vesselmagnetometertraverses atsea, and observations fromearth- orbitingsatellites, supplemented byanomaly values derived fromoceaniccrustalages. Theobjectiveis to providean interpretivedimension to surface observations of theEarth’s composition and geologicstructure. Metamorphism, petrology, and redox stateallhaveimportant effects on themagnetismof crustalmaterials. Themagneticanomalies represented on this map originateprimarily in igneous and metamo rphicrocks, in the Earth’s crustand possibly, uppermostmantle. Magneticanomalies representan estimateofthe short-wavelength (<2600 km)fields associated with theseparts ofthe Earth, afterestimates offields fromothersources havebeen subtracted fr omthemeasured field magnitude. In mostplaces themagneticanomaly field is le ss than 1 percentof thetotal magneticfield. Thenatural increaseoftemperaturewith depth in the Earth means thatrocks below a certain depth, termed theCuriedepth, willbe essentially non-mag netic. This depth is typically in excess of20 km in stablecontinentalregions, butmay be as shallow as 2 km in young oceanic regions. Studies of crustal magnetism have contributed to geodynamic models of the lithosphere, geologi cmapping, and natural resourceexploration. Inference s fromcrustal magneticfield maps such as these, interpreted in conjunction with otherinformation, can help delineategeologicprovinces, locateimpactstructures, dikes, faults, and othergeologicentities thathavea magneticcontrastwith theirsurroundings. To this end, theMagnetic Anomaly Map oftheWorld is availablein both digitaland map form. Theanomalyfield itselfis shown atan altitudeof 5kmabovethe WGS84 ellips oid. Themagneticfields shown on this map aredesigned to beinternally consistentoverthemeasurementdomain, extending fromthesurface tosatellitealtitude. Upward continuation o fthe data shown on this map to satellitealtitudeyields the magneticanomaly field modelderived fromtheCHAMP satellite(MF5, Maus etal., 2007a). Long-wav elength features appearing in themap arebased on downward continuation of theMF5 model. Short-wavelength anomalie s arefrom marineand aeromagneti ccompilations computed at5 kmaltitude, orfroma model based on a digitalagemap ofthe ocean combined with thegeomagneticpolarity timescale. Thenear-surfacecompilations aredistinguished fromthe satellite-based and oceani cmodeldata by way ofshading, and theirdistribution can be seen in theaccompanying index map. Finally , theentire data setis displayed using thenaturalcolorscale(red = high, blue= low)with a shaded relief effectusing artificialillumina tion. PREPARATION OFTHE MAP/  PRÉPARATION DE LACARTE Least-squares colloc ation (LSC), a technique commonly used in geodesy (Moritz, 1980)was the primary method used forgridding and estimating theanomalies at3 minutes of arcspacing. Themodelcorrelation functions weretuned to the observed correla tions fromthedata overAustralia, Russia and North America. Thedetails oftheLSC modelfunctions and theprocess itselfare described in Maus etal. (2007b). Othermethods ofinterpolation and gridding, embedded in Geosoft®orGMT(Wesseland Smith, 1998), werealsoused. Differentpre-existing data compilations weremerged by initiallyremovinglineartrends and then using the LSC techniques, with we ights proporti onalto distancefrom themargins ofthe grids. Long -wavelengths (>400 km, o r sphericalharmonicdegrees <100) wereremoved fromthe individualcompilations, a nd replaced wi th theCHAMP magneticanomaly field downwar d continued to 5 kmaltitude(Hemant etal., 2007). Themarinedata availablefromthe NationalGeophysicalData Center(NGDC) was reduced using theComprehensiveModel(Sabaka etal., 2004). The marinedata wereinterpolated wheneverthedata density was sufficientlyhigh (Hamoudiet al., 2007). In marineareas whereno near-surfac edata exist, thedigitalage map oftheoceans (Mülleret al., 1997)was combined with themagnetictime scales o fGee and Kent(2007)and Kentand Gradstein (1 986)in orderto estimatethenear- surfacefields. Theassumptions utilized in estimating thesefields do notwork well overthe Cretaceous and Jura ssic quietzones, and hencethefields overthese features ar enot shown in thi s map. Magneticfields calculated fromthe digitalagemap ofthe oceans shoul d only b eused to indicatethegeneral characterofthe magneticfield pattern in a region,andmayproveunreliableindicatorsofactualindividualmagneticfieldamplitudesorpolarities. Two versions (Aand B)of themap areavailablein digitalformon theaccompanying DVD. TheB version is shown in theaccompanying map. TheAversion differs in its handling of areas withoutnear-surfacedata, which arefilled with the downward-continued CHAMPmagneticfield model. In contrast, theB version contains both model data derived from CHAMP, and marineages, with a priority given tothe marineagedata. Both versions, when upward-continued to satellitealtitude, reproducethemagneticanomalyfield derived fromtheCHAMPsatellite. Thethick whitelines shown on the map locateundifferentiated tectonicelements, and incl uderidges, fracturezones, and trenches. Theblack lines locatecoastlines, and a few majorrivers. In thecaseofthe Antarctic, theAntarcticDigitalData basehas been used forcoastlines. BIBLIOGRAPHY/  BIBLIOGRAPHIE Gee, J.S. and Kent, D.V., 2007. Sourceofoceanicmagneticanomalies and the geomagne ticpolaritytimescale,Chapter 12,inKono,M.,ed.,Volume5.Geomagnetism:Treatiseon Geophysics:Amsterdam, Elsevier , in press. Hamoudi, M., Thebault, E., Lesur, V., and Mandea, M., 2007. GeoForschungsZentrum Anomal y MagneticMap (GAMMA):A candidatemodelfor theWorldDigital MagneticAnomalyMap, Geochem. Geophys. Geosyst., in  press, doi:10.1029/2007 GC001638 Hemant, K., Thebault, E., Mandea, M., Ravat, D., and Maus, S., 2007.Magneticanomaly map ofthe world:merging airborne,marineandground-basedmagneticdatasets,EarthPlanet. Sci.Lett., in press Kent,D.V.andGradstein,F.M.,1986. JurassictoRecentchronology,inP.R.VogtandB.E.Tucholke(editors), TheWestern  North AtlanticRegion, GeologyofNorth America VolumeM (Geologica lSocietyAmerica, Boulder), 45–50. Maus, S., Lühr, H., Rother, M., Hemant, K., Balasis, G., Ritter, P., and Stolle, C., 2007a. Fifth generation lithospheric magneticfieldmodelfromCHAMPsatellitemeasurements,Geochem.Geophys.Geosyst., in press. Maus, S., Sazonova, T., Hema nt, K., Fairhead, D. and Ravat, D., 2007b.TheNGDC candidatefor theWorld Digital MagneticAnomaly Map, Geochem.Geophys. Geosyst., in press. Moritz, H., 1980. Advanced PhysicalGeodesy, HerbertWichmann Verlag, Karlsruhe. Müller, R. D., Roest, W.R., Royer, J.-Y., Gahagan, L.M., and Sclater, J.G., 1997. Digitalisochrons oftheworld’s ocean floor, J. Geophys. Res, 102, 3211-3214. Sabaka, T.J., Olsen, N., and Purucker, M.E., 2004. Extendingcomprehensivemodels oftheEarth's magneticfield with Oersted and CHAMPdata, Geophys. J. Int., 159, 521-547, doi:10.1111/j.13 65-246X.20 04.02421.x Wessel, P. and Smith, W., 1998. New, improved version ofGenericMapping Tools released, EOS transaction s of the American GeophysicalUnion, 79, 579. MAJOR DATASETS, THEIR WDMAMCODES, SPATIALRESOLUTION, AND LINKS _

Upload: qwer12

Post on 10-Apr-2018

221 views

Category:

Documents


0 download

TRANSCRIPT

8/8/2019 WDMAM 1.02 2007 Edition Low Resolution Reduced1

http://slidepdf.com/reader/full/wdmam-102-2007-edition-low-resolution-reduced1 1/1

Code Areacovered Resolution Reference

13.0 MF5 5 km Maus et al. (2007a)

101.41 Marinetrack-linevariable NGDC,http://www.ngdc.noaa.gov/mgg/geodas/trackline.html

101.45 Interpolated(101.41)Non-interpolated(101.45)

1 21 . 43 Ar ct i c 5 k m G e os c ie n ce Ca na d a, h t t p: / /g s c. n rc a n. g c. c a/ in d ex _e . ph p131.45 ProjectMagnet variable NGDC,http://www.ngdc.noaa.gov/seg/geomag/proj_mag.shtml

171 .44 Oceanicmodel 10km NASA candidatemodel ,accompanyingDVD

2 01 . 2 Af ri c a 1 5 m in G E TE CH, h t t p :/ / www.g e te c h. c om

201.2 South America 15 min GETECH,http://www.getech.com

2 22 . 3 S o ut h Af ri c a 5 k m S ADC, h t tp : // www. sa d c. i nt

2 31 .3 2 B o ts wa na 5 k m h tt p: // ww w. go v. bw /  

3 02 . 43 An ta r ct i c 5 k m ADMAP , ht t p :/ / ea r th s ci e nc e s. o su . ed u /a d ma p

4 01 . 3 E u ra s ia 2 k m G e os c ie n ce Ca na d a, h t t p: / /g s c. n rc a n. g c. c a/ i nd e x_ e .p h p

4 11 . 43 E a st As ia 2 k m CCOP , h t tp : // www. cc o p. o r. t h

421 .43 MiddleEast 1km AAIME,http:/ /home.casema.nl/errenwijlens/ itc/aaime

4 41 .3 I nd ia 5 k m G SI , ht tp :/ /w ww .g si .g ov .i n

4 42 . 2 I n di a 5 0 k m Q u re s hy , M .N. , 1 98 2, P h ot o gr a mm e tr i a, Vo l. 3 7 , 16 1- 1 84

4 51 .3 2 J a pa n 1 k m h tt p: // ww w. ai st . go .j p/ GS J/  

5 04 . 43 Au st r al i a 1 k m G e os c ie n ce Au st r al i a, h t t p: / /www. g a. g ov . au

6 01 . 43 E u ro p e 5 k m W on i k, T . e t a l. , 2 00 1, T e rr a Nov a, Vo l 13 , 2 03 - 21 3

6 11 . 3 F e nn o sc a nd i a 5 k m G T K, h t t p: / /www. g tk . fi

621 .321 Austria 5km http://www.geolog ie.ac.at/  

622 .2 CanaryIslands 5km Publ .Tec.,No.35 ,Insti tutoGeograficoNacional ,Madrid,1996

6 24 . 22 F i nl a nd 1 k m h t tp : // p ro j ec t s. g tk . fi / WDM AM /  

6 25 . 2 F r an c e 1 0 k m I P GP , h t tp : // www. ip g p. j us s ie u .f r

6 26 . 2 I t al y 5 k m Ch ia p pi n i, M . e t a l. , 2 00 0, An n al i d i Ge op h ys i ca , Vol 4 3 , No . 5

6 27 . 43 S p ai n 1 . 5 mi n S o ci a s I. , e t a l. , 1 99 1 , Ea r th P l an e t. S c i. L e tt . , 1 05 , 5 5- 6 4

628.3 Russia 5 km VSEGEI, http://www.vsegei.ru/WAY/247038/locale/EN

701.43 NorthAmerica 1km NAMAG,http:/ /pubs.usgs.gov/sm/mag_map

7 11 . 32 M e xi c o 5 k m h t tp : // www. co r em i sg m .g ob . mx /  

811 .45 Argentinainland 5km SEGEMAR,http:/ /www.segemar.gov.ar/db

812.3 Argentina margin 5 km Instituto Antártico Argentino, http://ggt.conae.gov.ar/iaa/pictr2002

MAGNETIC ANOMALYMAP OFTHE WORLD

CARTE DES ANOMALIES MAGNÉTIQUES DU MONDE

EXPLANATORYN OTES /   NOTICE EXPLICATIVE

OBJECTIVE OFTHE MAP/ OBJECTIFDE LACARTEThis map is the firstglobalcompilation ofthewealth of magneticanomaly information derived frommorethan 50 yearsofaeromagneticsurveys overland areas, research vesselmagnetometertraverses atsea, and observations fromearth-

orbitingsatellites, supplemented byanomaly values derived fromoceaniccrustalages. Theobjectiveis to providean

interpretivedimension to surface observations of theEarth’s composition and geologicstructure. Metamorphism,

petrology, and redox stateallhaveimportant effects on themagnetismof crustalmaterials. Themagneticanomaliesrepresented on this map originateprimarily in igneous and metamorphicrocks, in the Earth’s crustand possibly,

uppermostmantle. Magneticanomalies representan estimateofthe short-wavelength (<2600 km)fields associated

with theseparts ofthe Earth, afterestimates offields fromothersources havebeen subtracted fromthemeasured field

magnitude. In mostplaces themagneticanomaly field is less than 1 percentof thetotal magneticfield. Thenaturalincreaseoftemperaturewith depth in the Earth means thatrocks below a certain depth, termed theCuriedepth, willbe

essentially non-magnetic. This depth is typically in excess of20 km in stablecontinentalregions, butmay be as shallow

as 2 km in young oceanic regions. Studies of crustal magnetism have contributed to geodynamic models of the

lithosphere, geologicmapping, and natural resourceexploration. Inferences fromcrustal magneticfield maps such asthese, interpreted in conjunction with otherinformation, can help delineategeologicprovinces, locateimpactstructures,

dikes, faults, and othergeologicentities thathavea magneticcontrastwith theirsurroundings. To this end, theMagnetic

Anomaly Map oftheWorld is availablein both digitaland map form. Theanomalyfield itselfis shown atan altitudeof 5kmabovethe WGS84 ellipsoid.

Themagneticfields shown on this map aredesigned to beinternally consistentoverthemeasurementdomain, extending

fromthesurface tosatellitealtitude. Upward continuation ofthe data shown on this map to satellitealtitudeyields themagneticanomaly field modelderived fromtheCHAMP satellite(MF5, Maus etal., 2007a). Long-wavelength features

appearing in themap arebased on downward continuation of theMF5 model. Short-wavelength anomalies arefrom

marineand aeromagneticcompilations computed at5 kmaltitude, orfroma model based on a digitalagemap ofthe

ocean combined with thegeomagneticpolarity timescale. Thenear-surfacecompilations aredistinguished fromthesatellite-based and oceanicmodeldata by way ofshading, and theirdistribution can be seen in theaccompanying index

map. Finally, theentire data setis displayed using thenaturalcolorscale(red = high, blue= low)with a shaded relief 

effectusing artificialillumination.

PREPARATION OFTHE MAP/  PRÉPARATION DE LACARTELeast-squares collocation (LSC), a technique commonly used in geodesy (Moritz, 1980)was the primary method used

forgridding and estimating theanomalies at3 minutes of arcspacing. Themodelcorrelation functions weretuned to the

observed correlations fromthedata overAustralia, Russia and North America. Thedetails oftheLSC modelfunctionsand theprocess itselfare described in Maus etal. (2007b). Othermethods ofinterpolation and gridding, embedded in

Geosoft®orGMT(Wesseland Smith, 1998), werealsoused.

Differentpre-existing data compilations weremerged by initiallyremovinglineartrends and then using the LSCtechniques, with weights proportionalto distancefrom themargins ofthe grids. Long-wavelengths (>400 km, or

sphericalharmonicdegrees <100) wereremoved fromthe individualcompilations, and replaced with theCHAMP

magneticanomaly field downward continued to 5 kmaltitude(Hemant etal., 2007). Themarinedata availablefromthe

NationalGeophysicalData Center(NGDC) was reduced using theComprehensiveModel(Sabaka etal., 2004). Themarinedata wereinterpolated wheneverthedata density was sufficientlyhigh (Hamoudiet al., 2007).

In marineareas whereno near-surfacedata exist, thedigitalage map oftheoceans (Mülleret al., 1997)was combinedwith themagnetictime scales ofGee and Kent(2007)and Kentand Gradstein (1986)in orderto estimatethenear-

surfacefields. Theassumptions utilized in estimating thesefields do notwork well overthe Cretaceous and Jurassic

quietzones, and hencethefields overthese features arenot shown in this map. Magneticfields calculated fromthe

digitalagemap ofthe oceans should only beused to indicatethegeneral characterofthe magneticfield pattern in aregion, and may proveunreliableindicators ofactualindividualmagneticfield amplitudes orpolarities.

Two versions (Aand B)of themap areavailablein digitalform on theaccompanying DVD. TheB version is shown in

theaccompanying map. TheAversion differs in its handling of areas withoutnear-surfacedata, which arefilled with thedownward-continued CHAMPmagneticfield model. In contrast, theB version contains both model data derived from

CHAMP, and marineages, with a priority given tothe marineagedata. Both versions, when upward-continued to

satellitealtitude, reproducethemagneticanomalyfield derived fromtheCHAMPsatellite.

Thethick whitelines shown on the map locateundifferentiated tectonicelements, and includeridges, fracturezones, and

trenches. Theblack lines locatecoastlines, and a few majorrivers. In thecaseofthe Antarctic, theAntarcticDigitalData

basehas been used forcoastlines.

BIBLIOGRAPHY/  BIBLIOGRAPHIEGee, J.S. and Kent, D.V., 2007. Sourceofoceanicmagneticanomalies and the geomagneticpolaritytimescale,Chapter

12,in Kono,M.,ed.,Volume5.Geomagnetism:Treatiseon Geophysics:Amsterdam, Elsevier , in press.Hamoudi, M., Thebault, E., Lesur, V., and Mandea, M., 2007. GeoForschungsZentrum Anomaly MagneticMap

(GAMMA):A candidatemodelfor theWorldDigital MagneticAnomalyMap, Geochem. Geophys. Geosyst., in press, doi:10.1029/2007GC001638 

Hemant, K., Thebault, E., Mandea, M., Ravat, D., and Maus, S., 2007.Magneticanomaly map ofthe world:merging

airborne, marineand ground-based magneticdata sets, Earth Planet. Sci. Lett., in pressKent,D.V.andGradstein,F.M.,1986. JurassictoRecentchronology,inP.R.VogtandB.E.Tucholke(editors), TheWestern

 North AtlanticRegion, GeologyofNorth America VolumeM  (GeologicalSocietyAmerica, Boulder), 45–50.

Maus, S., Lühr, H., Rother, M., Hemant, K., Balasis, G., Ritter, P., and Stolle, C., 2007a. Fifth generation lithosphericmagneticfield modelfromCHAMPsatellitemeasurements, Geochem. Geophys. Geosyst., in press.

Maus, S., Sazonova, T., Hemant, K., Fairhead, D. and Ravat, D., 2007b.TheNGDC candidatefor theWorld Digital

MagneticAnomaly Map, Geochem.Geophys. Geosyst., in press.Moritz, H., 1980. Advanced PhysicalGeodesy, HerbertWichmann Verlag, Karlsruhe.Müller, R. D., Roest, W.R., Royer, J.-Y., Gahagan, L.M., and Sclater, J.G., 1997. Digitalisochrons oftheworld’s ocean

floor, J. Geophys. Res, 102, 3211-3214.

Sabaka, T.J., Olsen, N., and Purucker, M.E., 2004. Extendingcomprehensivemodels oftheEarth's magneticfield with

Oersted and CHAMPdata, Geophys. J. Int., 159, 521-547, doi:10.1111/j.1365-246X.2004.02421.xWessel, P. and Smith, W., 1998. New, improved version ofGenericMapping Tools released, EOS transactions of the

American GeophysicalUnion, 79, 579.

MAJOR DATASETS, THEIR WDMAMCODES, SPATIALRESOLUTION, AND LINKS

_