welcome statement, kcj no links word - welcome statement, kcj no links.docx author kathy marvin...

5
Welcome to the web page for Ken Janda’s laboratory! Currently, my students and I are studying a class of solids called gas clathrate hydrates. In these species, a water lattice is formed that creates cages, and these cages then enclose guest species that make the whole structure stable under certain conditions. Formally, these are called solid solutions since there is no formal chemical bonding between the guest molecules and the water lattice, and they are only stable as solid crystals. You may have heard about methane hydrates that are found in ocean and deep lake sediments and the arctic permafrost. They are one very important example of a gas clathrate hydrate. In the video above, we demonstrate the combustion of a propane hydrate clathrate. The sample looks like a cylinder of packed snow. However, when ignited, the ice lattice melts and the caged propane burns. The propane density in the sample is similar to that in a gas cylinder at 180 atmospheres of pressure. Gas clathrate hydrates are a fascinating for both theoretical and practical reasons. The methane hydrates mentioned above could potentially be an important source of energy for our modern economy. Burning methane contributes to global warming, but much less than does burning oil or coal. By some estimates, there is enough methane stored in ocean sediments to power our economy for 500 years! Gas hydrates could also provide a safe method to ship methane and LPG around the world economically and safely. However, methane hydrate is also a potential source of disaster. Methane is a powerful greenhouse gas, more dangerous than carbon monoxide. If the natural methane hydrates are released as global warming progresses, the heating could accelerate out of control with drastic results. The Deepwater Horizon disaster in the Gulf of Mexico in 2010 may well have been triggered by drilling through a methane hydrate deposit. Explore the “Gas Hydrates” link on this page to learn more about these issues.

Upload: lamkhuong

Post on 16-Aug-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

Welcome  to  the  web  page  for  Ken  Janda’s  laboratory!  Currently,  my  students  and  I  are  studying  a  class  of  solids  called  gas  clathrate  hydrates.  In  these  species,  a  water  lattice  is  formed  that  creates  cages,  and  these  cages  then  enclose  guest  species  that  make  the  whole  structure  stable  under  certain  conditions.  Formally,  these  are  called  solid  solutions  since  there  is  no  formal  chemical  bonding  between  the  guest  molecules  and  the  water  lattice,  and  they  are  only  stable  as  solid  crystals.  You  may  have  heard  about  methane  hydrates  that  are  found  in  ocean  and  deep  lake  sediments  and  the  arctic  permafrost.  They  are  one  very  important  example  of  a  gas  clathrate  hydrate.  In  the  video  above,  we  demonstrate  the  combustion  of  a  propane  hydrate  clathrate.  The  sample  looks  like  a  cylinder  of  packed  snow.  However,  when  ignited,  the  ice  lattice  melts  and  the  caged  propane  burns.  The  propane  density  in  the  sample  is  similar  to  that  in  a  gas  cylinder  at  180  atmospheres  of  pressure.    Gas  clathrate  hydrates  are  a  fascinating  for  both  theoretical  and  practical  reasons.  The  methane  hydrates  mentioned  above  could  potentially  be  an  important  source  of  energy  for  our  modern  economy.  Burning  methane  contributes  to  global  warming,  but  much  less  than  does  burning  oil  or  coal.  By  some  estimates,  there  is  enough  methane  stored  in  ocean  sediments  to  power  our  economy  for  500  years!  Gas  hydrates  could  also  provide  a  safe  method  to  ship  methane  and  LPG  around  the  

world  economically  and  safely.  However,  methane  hydrate  is  also  a  potential  source  of  disaster.  Methane  is  a  powerful  greenhouse  gas,  more  dangerous  than  carbon  monoxide.  If  the  natural  methane  hydrates  are  released  as  global  warming  progresses,  the  heating  could  accelerate  out  of  control  with  drastic  results.  The  Deepwater  Horizon  disaster  in  the  Gulf  of  Mexico  in  2010  may  well  have  been  triggered  by  drilling  through  a  methane  hydrate  deposit.  Explore  the  “Gas  Hydrates”  link  on  this  page  to  learn  more  about  these  issues.  

 

 

The  theoretical  interest  in  gas  hydrate  clathrates  stems  from  the  fact  that  they  are  solids  at  near  ambient  temperatures  and  pressures,  yet  their  stability  is  due  to  weak  van  der  Waals  forces.  These  species  were  first  observed  by  Humphrey  Davy  in  1811.  He  was  trying  to  produce  solid  chlorine.  However,  since  he  was  working  with  an  impure  sample,  he  made  a  green  solid  that  was  stable  to  283  K.  This  is  now  known  to  be  chlorine  clathrate  hydrate.  Although  water  has  thirteen  different  solid  phases,  none  of  them  resemble  those  of  they  hydrate  lattices.  The  weak  van  der  Waals  interactions  between  the  guest  molecules  and  the  water  lattice  are  just  enough  to  make  the  solid  solution  stable.  This  makes  computer  simulation  of  these  species  difficult  since  the  computer  must  correctly  calculate  the  chemical  bonds  of  the  water  and  guest  molecules,  the  hydrogen  bonds  between  the  water  molecules,  and  the  van  der  Waals  forces  between  the  guest  and  water  molecules.    

   

 

 

Currently  we  have  two  active  research  projects.  Several  of  my  students  are  studying  the  kinetics  of  gas  hydrate  formation  from  ice  particles  and  the  potential  guest  gas.  We  have  learned,  for  instance,  that  propane  reacts  much  more  quickly  with  small  ice  

particles  than  with  large  ones.  This  is  not  surprising.  The  big  surprise  of  this  work  is  that  the  reaction  speeds  up  as  the  temperature  is  lowered  below  273  K.  Most  chemical  reactions  slow  down  as  the  temperature  goes  down.  This  one  speeds  up!  (For  more  information,  see:  Journal  of  Physical  Chemistry  C,  Vol  116,  page  19062.)  I  am  especially  proud  of  the  paper  because  all  of  the  work,  and  most  of  the  writing,  was  

performed  by  a  single  U.C.  Irvine  undergraduate  student,  Joel  Rivera.  I  mainly  work  with  undergraduate  students  now  that  I  am  a  Dean.  For  more  on  previous  gas  clathrate  hydrate  work  that  my  students  performed,  please  explore  the  links  on  this  page.    The  second  current  project  is  the  one  being  performed  in  collaboration  with  Professor  Martin’s  group.  We  are  using  solid-­‐state  NMR  techniques  to  study  the  motions  of  water  molecules  in  the  hydrate  lattice  and  guest  molecules  within  the  lattice.  This  work  is  still  in  the  preliminary  stages,  and  we  need  to  get  more  results  before  publically  discussing  them.    A  little  background:  I  have  always  tried  to  choose  research  projects  that  are  just  beyond  the  ability  of  current  chemical  theory.  The  idea  is  to  measure  something  that  gives  theoreticians  a  goal,  and  a  test  for  the  theories  they  are  developing.  For  forty  years  I  have  been  fascinated  by  the  forces  that  hold  molecules  together  and  make  them  interact  with  each  other.  During  this  time,  the  ability  of  scientists  to  measure  and  compute  the  structure  and  dynamics  of  molecules  has  improved  dramatically.  

During  my  Ph.D.  studies,  I  was  the  first  person  to  learn  how  one  hydrogen  chloride  molecule  and  one  hydrogen  fluoride  molecule  would  stick  together.  (For  more  information,  see:  Journal  of  Chemical  Physics,  67,  5162  (1977)  At  the  time,  this  

 

 

phenomenon  was  too  difficult  for  chemical  theory  to  predict.  Ten  years  later,  we  were  able  to  stick  a  single  helium  atom  onto  a  single  chlorine  molecule  and  excite  the  “van  der  Waals  molecule”  to  a  single  quantum  state  with  a  laser.  We  were  then  able  to  measure  exactly  how  the  laser  energy  caused  the  molecule  to  dissociate:  how  long  the  process  took  and  how  the  excess  energy  was  distributed  among  the  product  translational,  rotational  and  vibrational  motions.  We  then  worked  with  an  international  group  of  scientists  to  reproduce  the  experimental  results  on  a  computer.  (For  more  information,  see:  Journal  of  Chemical  Physics,  89,  3535  (1988)  Today,  either  of  these  projects  would  be  so  “easy”  that  an  experiment  would  be  almost  unnecessary.  The  results  can  be  calculated  more  easily  than  measured.  However,  only  slightly  more  complicated  problems  are  still  impossible  to  predict  by  theory.  Only  in  2011  were  we  able  to  measure  in  detail  the  dissociation  dynamics  for  a  van  der  Waals  cluster  composed  of  two  neon  atoms  and  a  bromine  molecule.  (For  more  information,  see:  Journal  of  Chemical  Physics,  132  (22),  221103  (2010).    

   There  are  several  other  previous  research  themes  of  which  I  am  still  very  proud.  As  a  postdoctoral  fellow  I  collaborated  on  a  project  in  which  our  team  was  able  to  bounce  argon  and  xenon  atoms  off  of  single  crystal  surfaces.    We  were  able  to  measure  the  probability  that  the  atoms  would  stick  to  or  bounce  off  the  surface,  and  many  other  subtle  details  of  the  collisions.  (For  more  information,  see:  Physical  Review  Letters,  43,  1175-­‐1177  (1979),  Journal  of  Chemical  Physics,  78,  1559  

 

(1983),  and  Journal  of  Chemical  Physics,  83,  1376  (1985).  Later,  my  collaborators  and  I  were  able  to  measure  the  kinetics  of  recombinative  desorption  of  hydrogen  molecules  from  a  silicon  surface  covered  with  hydrogen  atoms.  (For  more  information,  see:  Physical  Review  Letters,  62,  567,  (1989)  and  Journal  of  Chemical  Physics,  92,  5700  (1990.)  Another  fascinating  topic  for  me  was  the  behavior  of  liquid  like  He  clusters.  Helium  is  the  only  substance  that  never  freezes  at  1  atm,  even  at  absolute  zero  temperature.  So,  understanding  how  several  to  several  thousand  helium  atoms  behave  at  low  temperatures  is  lots  of  fun.  One  of  the  most  technically  demanding  projects  I’ve  been  associated  with  is  understanding  in  great  detail  the  quantum  states  and  dissociation  dynamics  of  a  van  der  Waals  cluster  made  up  of  two  helium  atoms  and  a  chlorine  molecule.  (For  more  information,  see:  Journal  of  Chemical  Physics,  95,  729  (1991)  and  Journal  of  Chemical  Physics,  113,  7252-­‐7267  (2000).)  My  students  and  collaborators  also  performed  a  series  of  fascinating  studies  that  showed  what  happens  after  an  atom  is  ionized  inside  of  a  large  helium  cluster.  (For  more  information,  see:  Journal  of  Chemical  Physics,  108,  9371-­‐9382  (1998),  Journal  of  Chemical  Physics,  108,  9351-­‐9361  (1998),  Journal  of  Chemical  Physics,  109,  10195-­‐10200  (1998),  Journal  of  Chemical  Physics,  109,  10679-­‐10687  (1998)  and  Journal  of  Chemical  Physics,  109,  10873-­‐10884  (1998).    Finally,  I  would  like  to  mention  an  experimental  and  theoretical  tour-­‐de-­‐force  that  is  a  mostly  unrecognized  treasure.  My  students  and  collaborators  performed  spectroscopy  on  the  iodine  chloride  molecule  with  1  part  per  500,000,000  resolution.  They  were  able  to  measure  the  effects  due  to  the  fact  that  neither  the  iodine  atom,  nor  the  chlorine  atom  nuclei  are  spherical.  This  asymmetry  allowed  us  to  measure  the  asymmetry  of  the  molecules’  electronic  wave  function  as  a  function  of  the  distance  between  the  two  nuclei.  In  essence,  we  measured  the  rehybridization  of  the  electronic  wave  function  as  the  molecule  vibrates.  I  think  it  is  fair  to  claim  that  this  is  the  most  detailed  study  of  a  heavy  molecules’  wave  function  currently  in  the  literature.  (For  more  information,  see:  Journal  of  Chemical  Physics,  101,  7221  (1994),  Journal  of  Chemical  Physics,  103,  9125  (1995)  and  Journal  of  Chemical  Physics,  113,  7211-­‐7223  (2000).    To  date,  ab  initio  electronic  structure  theory  has  yet  to  be  able  to  match  these  experimental  results.