whatcansystemidentificationofferto impedancespectroscopy? · 0 10 20 30 40-100-50 0 frequency...

110
What can System Identification Offer to Impedance Spectroscopy? Rik Pintelon Ebrahim Louarroudi, and John Lataire Vrije Universiteit Brussel, Department ELEC

Upload: others

Post on 23-May-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: WhatcanSystemIdentificationOfferto ImpedanceSpectroscopy? · 0 10 20 30 40-100-50 0 Frequency (kHz) Amplitude (dB) G BLTI (jw k) 0 10 20 30 40-8.5-8.4-8.3-8.2 Frequency (kHz) Amplitude

What can System Identification Offer toImpedance Spectroscopy?

Rik PintelonEbrahim Louarroudi, and John Lataire

Vrije Universiteit Brussel, Department ELEC

Page 2: WhatcanSystemIdentificationOfferto ImpedanceSpectroscopy? · 0 10 20 30 40-100-50 0 Frequency (kHz) Amplitude (dB) G BLTI (jw k) 0 10 20 30 40-8.5-8.4-8.3-8.2 Frequency (kHz) Amplitude

Outline

I Motivating ExamplesI System Identification in a NutshellI Nonparametric Impedance SpectroscopyI Parametric Impedance SpectroscopyI Take Home Message

Page 3: WhatcanSystemIdentificationOfferto ImpedanceSpectroscopy? · 0 10 20 30 40-100-50 0 Frequency (kHz) Amplitude (dB) G BLTI (jw k) 0 10 20 30 40-8.5-8.4-8.3-8.2 Frequency (kHz) Amplitude

Outline

I Motivating ExamplesI System Identification in a NutshellI Nonparametric Impedance SpectroscopyI Parametric Impedance SpectroscopyI Take Home Message

Page 4: WhatcanSystemIdentificationOfferto ImpedanceSpectroscopy? · 0 10 20 30 40-100-50 0 Frequency (kHz) Amplitude (dB) G BLTI (jw k) 0 10 20 30 40-8.5-8.4-8.3-8.2 Frequency (kHz) Amplitude

Motivating Examples

Example 1: myocardial electrical impedance measurements(EBI, Universitat Politecnica de Catalunya, Spain)

i t( )

i t( )

v t( )Z jw t,( )

Electrodes

• goal: distinguish normal, ischemic and infarcted heart tissue• observation: periodic change impedance• reason: heartbeat

Page 5: WhatcanSystemIdentificationOfferto ImpedanceSpectroscopy? · 0 10 20 30 40-100-50 0 Frequency (kHz) Amplitude (dB) G BLTI (jw k) 0 10 20 30 40-8.5-8.4-8.3-8.2 Frequency (kHz) Amplitude

Motivating Examples

Example 1: myocardial electrical impedance measurements(EBI, Universitat Politecnica de Catalunya, Spain)

i t( )

i t( )

v t( )Z jw t,( )

Electrodes

• goal: distinguish normal, ischemic and infarcted heart tissue• observation: periodic change impedance• reason: heartbeat

Page 6: WhatcanSystemIdentificationOfferto ImpedanceSpectroscopy? · 0 10 20 30 40-100-50 0 Frequency (kHz) Amplitude (dB) G BLTI (jw k) 0 10 20 30 40-8.5-8.4-8.3-8.2 Frequency (kHz) Amplitude

Motivating Examples

Example 2: non-invasive lung impedance measurements(EeSA, Universiteit Gent, Belgium)

p t( ) p0+

q t( )

• goal: detect pulmonary diseases• observation: periodic change impedance• reason: breathing

Page 7: WhatcanSystemIdentificationOfferto ImpedanceSpectroscopy? · 0 10 20 30 40-100-50 0 Frequency (kHz) Amplitude (dB) G BLTI (jw k) 0 10 20 30 40-8.5-8.4-8.3-8.2 Frequency (kHz) Amplitude

Motivating Examples

Example 2: non-invasive lung impedance measurements(EeSA, Universiteit Gent, Belgium)

p t( ) p0+

q t( )

• goal: detect pulmonary diseases• observation: periodic change impedance• reason: breathing

Page 8: WhatcanSystemIdentificationOfferto ImpedanceSpectroscopy? · 0 10 20 30 40-100-50 0 Frequency (kHz) Amplitude (dB) G BLTI (jw k) 0 10 20 30 40-8.5-8.4-8.3-8.2 Frequency (kHz) Amplitude

Motivating Examples

Example 3: electrochemical impedance spectroscopy(SURF, Vrije Universiteit Brussel, Belgium)

Al

counter electrodereference electrodei(t)

v(t)

working electrode

electrolyte

• goal: understanding/monitoring pit corrosion• observation: impedance evolves in time• reason: pitting

Page 9: WhatcanSystemIdentificationOfferto ImpedanceSpectroscopy? · 0 10 20 30 40-100-50 0 Frequency (kHz) Amplitude (dB) G BLTI (jw k) 0 10 20 30 40-8.5-8.4-8.3-8.2 Frequency (kHz) Amplitude

Motivating Examples

Example 3: electrochemical impedance spectroscopy(SURF, Vrije Universiteit Brussel, Belgium)

Al

counter electrodereference electrodei(t)

v(t)

working electrode

electrolyte

• goal: understanding/monitoring pit corrosion• observation: impedance evolves in time• reason: pitting

Page 10: WhatcanSystemIdentificationOfferto ImpedanceSpectroscopy? · 0 10 20 30 40-100-50 0 Frequency (kHz) Amplitude (dB) G BLTI (jw k) 0 10 20 30 40-8.5-8.4-8.3-8.2 Frequency (kHz) Amplitude

Motivating ExamplesConclusions

Observation: real life examples are oftenI time-variantI nonlinearI non-repeatable

Ultimate goal:I estimate a nonlinear time-variant model from

a single experiment

Does system identification offer a solution?I not yet

Page 11: WhatcanSystemIdentificationOfferto ImpedanceSpectroscopy? · 0 10 20 30 40-100-50 0 Frequency (kHz) Amplitude (dB) G BLTI (jw k) 0 10 20 30 40-8.5-8.4-8.3-8.2 Frequency (kHz) Amplitude

Motivating ExamplesConclusions

Observation: real life examples are oftenI time-variantI nonlinearI non-repeatable

Ultimate goal:I estimate a nonlinear time-variant model from

a single experiment

Does system identification offer a solution?I not yet

Page 12: WhatcanSystemIdentificationOfferto ImpedanceSpectroscopy? · 0 10 20 30 40-100-50 0 Frequency (kHz) Amplitude (dB) G BLTI (jw k) 0 10 20 30 40-8.5-8.4-8.3-8.2 Frequency (kHz) Amplitude

Motivating ExamplesConclusions

Observation: real life examples are oftenI time-variantI nonlinearI non-repeatable

Ultimate goal:I estimate a nonlinear time-variant model from

a single experiment

Does system identification offer a solution?I not yet

Page 13: WhatcanSystemIdentificationOfferto ImpedanceSpectroscopy? · 0 10 20 30 40-100-50 0 Frequency (kHz) Amplitude (dB) G BLTI (jw k) 0 10 20 30 40-8.5-8.4-8.3-8.2 Frequency (kHz) Amplitude

Outline

I Motivating ExamplesI System Identification in a NutshellI Nonparametric Impedance SpectroscopyI Parametric Impedance SpectroscopyI Take Home Message

Page 14: WhatcanSystemIdentificationOfferto ImpedanceSpectroscopy? · 0 10 20 30 40-100-50 0 Frequency (kHz) Amplitude (dB) G BLTI (jw k) 0 10 20 30 40-8.5-8.4-8.3-8.2 Frequency (kHz) Amplitude

Outline

I Motivating ExamplesI System Identification in a Nutshell

• Excitation Signal• Experimental Setup• Model• Cost Function

I Nonparametric Impedance SpectroscopyI Parametric Impedance SpectroscopyI Take Home Message

Page 15: WhatcanSystemIdentificationOfferto ImpedanceSpectroscopy? · 0 10 20 30 40-100-50 0 Frequency (kHz) Amplitude (dB) G BLTI (jw k) 0 10 20 30 40-8.5-8.4-8.3-8.2 Frequency (kHz) Amplitude

Outline

I Motivating ExamplesI System Identification in a Nutshell

• Excitation Signal• Experimental Setup• Model• Cost Function

I Nonparametric Impedance SpectroscopyI Parametric Impedance SpectroscopyI Take Home Message

Page 16: WhatcanSystemIdentificationOfferto ImpedanceSpectroscopy? · 0 10 20 30 40-100-50 0 Frequency (kHz) Amplitude (dB) G BLTI (jw k) 0 10 20 30 40-8.5-8.4-8.3-8.2 Frequency (kHz) Amplitude

System Identification in a NutshellChoice of the Excitation Signal

Single sine excitation

Broadband excitations:I binary signalsI random noiseI periodic noiseI random phase multisine

Page 17: WhatcanSystemIdentificationOfferto ImpedanceSpectroscopy? · 0 10 20 30 40-100-50 0 Frequency (kHz) Amplitude (dB) G BLTI (jw k) 0 10 20 30 40-8.5-8.4-8.3-8.2 Frequency (kHz) Amplitude

System Identification in a NutshellChoice of the Excitation Signal

Single sine excitation

Broadband excitations:I binary signalsI random noiseI periodic noiseI random phase multisine

Page 18: WhatcanSystemIdentificationOfferto ImpedanceSpectroscopy? · 0 10 20 30 40-100-50 0 Frequency (kHz) Amplitude (dB) G BLTI (jw k) 0 10 20 30 40-8.5-8.4-8.3-8.2 Frequency (kHz) Amplitude

System Identification in a NutshellChoice of the Excitation Signal: single sine versus broadband

For example, 3 sinewaves

0 100 200 300 400−1.0

−0.5

0.0

0.5

1.0single sine (ss)

0 100 200 300 400−2.0

−1.0

0.0

1.0

2.0multisine (ms)

with same total experiment time, and same power

rmsms (f ) = rmsss (f ) /√3

std noisems (f ) 6 std noisess (f ) /√3

⇓SNRms (f ) > SNRss (f )

Page 19: WhatcanSystemIdentificationOfferto ImpedanceSpectroscopy? · 0 10 20 30 40-100-50 0 Frequency (kHz) Amplitude (dB) G BLTI (jw k) 0 10 20 30 40-8.5-8.4-8.3-8.2 Frequency (kHz) Amplitude

System Identification in a NutshellChoice of the Excitation Signal: single sine versus broadband

For example, 3 sinewaves

0 100 200 300 400−1.0

−0.5

0.0

0.5

1.0single sine (ss)

0 100 200 300 400−2.0

−1.0

0.0

1.0

2.0multisine (ms)

with same total experiment time, and same power

rmsms (f ) = rmsss (f ) /√3

std noisems (f ) 6 std noisess (f ) /√3

⇓SNRms (f ) > SNRss (f )

Page 20: WhatcanSystemIdentificationOfferto ImpedanceSpectroscopy? · 0 10 20 30 40-100-50 0 Frequency (kHz) Amplitude (dB) G BLTI (jw k) 0 10 20 30 40-8.5-8.4-8.3-8.2 Frequency (kHz) Amplitude

System Identification in a NutshellChoice of the Excitation Signal: broadband excitations

time

DFT

signals

spectra

Page 21: WhatcanSystemIdentificationOfferto ImpedanceSpectroscopy? · 0 10 20 30 40-100-50 0 Frequency (kHz) Amplitude (dB) G BLTI (jw k) 0 10 20 30 40-8.5-8.4-8.3-8.2 Frequency (kHz) Amplitude

System Identification in a NutshellChoice of the Excitation Signal: broadband excitations

Two periods or more ⇒ noise variance estimate

0 50 100 150 200

−1.0

0.0

1.0

noisy sinewave

0 50 100 150 200

−1.0

0.0

1.0

residual sinewave

I true noise standard deviation σ = 0.1I estimated noise standard deviation σ = 0.103

Page 22: WhatcanSystemIdentificationOfferto ImpedanceSpectroscopy? · 0 10 20 30 40-100-50 0 Frequency (kHz) Amplitude (dB) G BLTI (jw k) 0 10 20 30 40-8.5-8.4-8.3-8.2 Frequency (kHz) Amplitude

System Identification in a NutshellChoice of the Excitation Signal: broadband excitations

Two periods or more ⇒ noise variance estimate

0 50 100 150 200

−1.0

0.0

1.0

noisy sinewave

0 50 100 150 200

−1.0

0.0

1.0

residual sinewave

I true noise standard deviation σ = 0.1I estimated noise standard deviation σ = 0.103

Page 23: WhatcanSystemIdentificationOfferto ImpedanceSpectroscopy? · 0 10 20 30 40-100-50 0 Frequency (kHz) Amplitude (dB) G BLTI (jw k) 0 10 20 30 40-8.5-8.4-8.3-8.2 Frequency (kHz) Amplitude

System Identification in a NutshellChoice of the Excitation Signal: conclusions

Advantages multisine excitations1. SNR(multisine) > SNR(single sine)2. guaranteed amplitude spectrum3. logarithmic frequency distribution possible4. measure 2 periods or more ⇒ quantify the noise variance and

the variance of the nonlinear distortions5. no leakage errors

Disadvantage multisine excitations1. loss in frequency resolution of a factor 2 w.r.t.

a random excitation2. synchronisation between generator and acquisition needed

Page 24: WhatcanSystemIdentificationOfferto ImpedanceSpectroscopy? · 0 10 20 30 40-100-50 0 Frequency (kHz) Amplitude (dB) G BLTI (jw k) 0 10 20 30 40-8.5-8.4-8.3-8.2 Frequency (kHz) Amplitude

System Identification in a NutshellChoice of the Excitation Signal: conclusions

Advantages multisine excitations1. SNR(multisine) > SNR(single sine)2. guaranteed amplitude spectrum3. logarithmic frequency distribution possible4. measure 2 periods or more ⇒ quantify the noise variance and

the variance of the nonlinear distortions5. no leakage errors

Disadvantage multisine excitations1. loss in frequency resolution of a factor 2 w.r.t.

a random excitation2. synchronisation between generator and acquisition needed

Page 25: WhatcanSystemIdentificationOfferto ImpedanceSpectroscopy? · 0 10 20 30 40-100-50 0 Frequency (kHz) Amplitude (dB) G BLTI (jw k) 0 10 20 30 40-8.5-8.4-8.3-8.2 Frequency (kHz) Amplitude

Outline

I Motivating ExamplesI System Identification in a Nutshell

• Excitation Signal• Experimental Setup• Model• Cost Function

I Nonparametric Impedance SpectroscopyI Parametric Impedance SpectroscopyI Take Home Message

Page 26: WhatcanSystemIdentificationOfferto ImpedanceSpectroscopy? · 0 10 20 30 40-100-50 0 Frequency (kHz) Amplitude (dB) G BLTI (jw k) 0 10 20 30 40-8.5-8.4-8.3-8.2 Frequency (kHz) Amplitude

System Identification in a NutshellChoice of the Experimental Setup: zero-order-hold

+

v kTs( )

i0 t( )+ZOH Actuator

r kTs( )

Acquisition

process noise

measurementnoise

Z s( )v0 t( )

Sensor+Generator/controller

I discrete-time model from r (kTs) to v (kTs)I known input, noisy outputI well suited for prediction and control

Page 27: WhatcanSystemIdentificationOfferto ImpedanceSpectroscopy? · 0 10 20 30 40-100-50 0 Frequency (kHz) Amplitude (dB) G BLTI (jw k) 0 10 20 30 40-8.5-8.4-8.3-8.2 Frequency (kHz) Amplitude

System Identification in a NutshellChoice of the Experimental Setup: zero-order-hold

+

v kTs( )

i0 t( )+ZOH Actuator

r kTs( )

Acquisition

process noise

measurementnoise

Z s( )v0 t( )

Sensor+Generator/controller

I discrete-time model from r (kTs) to v (kTs)I known input, noisy outputI well suited for prediction and control

Page 28: WhatcanSystemIdentificationOfferto ImpedanceSpectroscopy? · 0 10 20 30 40-100-50 0 Frequency (kHz) Amplitude (dB) G BLTI (jw k) 0 10 20 30 40-8.5-8.4-8.3-8.2 Frequency (kHz) Amplitude

System Identification in a NutshellChoice of the Experimental Setup: band-limited

+

i kTs( )

Acquisition

measurementnoise

Sensor++

v kTs( )

i0 t( )+Generator/ ZOHcontroller

r kTs( ) process noise

measurementnoise

Z s( )v0 t( )

Actuator

(anti-aliasfilter)

Acquisition

Sensor+

(anti-aliasfilter)

I continuous-time model from i (kTs) to v (kTs)I noisy input, noisy outputI well suited for physical interpretation

Page 29: WhatcanSystemIdentificationOfferto ImpedanceSpectroscopy? · 0 10 20 30 40-100-50 0 Frequency (kHz) Amplitude (dB) G BLTI (jw k) 0 10 20 30 40-8.5-8.4-8.3-8.2 Frequency (kHz) Amplitude

System Identification in a NutshellChoice of the Experimental Setup: band-limited

+

i kTs( )

Acquisition

measurementnoise

Sensor++

v kTs( )

i0 t( )+Generator/ ZOHcontroller

r kTs( ) process noise

measurementnoise

Z s( )v0 t( )

Actuator

(anti-aliasfilter)

Acquisition

Sensor+

(anti-aliasfilter)

I continuous-time model from i (kTs) to v (kTs)I noisy input, noisy outputI well suited for physical interpretation

Page 30: WhatcanSystemIdentificationOfferto ImpedanceSpectroscopy? · 0 10 20 30 40-100-50 0 Frequency (kHz) Amplitude (dB) G BLTI (jw k) 0 10 20 30 40-8.5-8.4-8.3-8.2 Frequency (kHz) Amplitude

System Identification in a NutshellChoice of the Experimental Setup: calibration

Gv s( )

vcal t( )

i0 t( )Generator/ ZOHcontroller Actuator

r kTs( )

Zcal s( )v0 t( )

Gi s( )

ical t( )

Vcal (jω)Ical (jω)

=Gv (jω)Gi (jω)

Zcal (jω)

Page 31: WhatcanSystemIdentificationOfferto ImpedanceSpectroscopy? · 0 10 20 30 40-100-50 0 Frequency (kHz) Amplitude (dB) G BLTI (jw k) 0 10 20 30 40-8.5-8.4-8.3-8.2 Frequency (kHz) Amplitude

System Identification in a NutshellChoice of the Experimental Setup: calibration

Gv s( )

vcal t( )

i0 t( )Generator/ ZOHcontroller Actuator

r kTs( )

Zcal s( )v0 t( )

Gi s( )

ical t( )

Vcal (jω)Ical (jω)

=Gv (jω)Gi (jω)

Zcal (jω)

Page 32: WhatcanSystemIdentificationOfferto ImpedanceSpectroscopy? · 0 10 20 30 40-100-50 0 Frequency (kHz) Amplitude (dB) G BLTI (jw k) 0 10 20 30 40-8.5-8.4-8.3-8.2 Frequency (kHz) Amplitude

System Identification in a NutshellChoice of the Experimental Setup: summary

Impedance spectroscopyI use a band-limited measurement setupI calibrate the setup (sensors and acquisition) with

a known impedanceI use continuous-time models

Page 33: WhatcanSystemIdentificationOfferto ImpedanceSpectroscopy? · 0 10 20 30 40-100-50 0 Frequency (kHz) Amplitude (dB) G BLTI (jw k) 0 10 20 30 40-8.5-8.4-8.3-8.2 Frequency (kHz) Amplitude

Outline

I Motivating ExamplesI System Identification in a Nutshell

• Excitation Signal• Experimental Setup• Model• Cost Function

I Nonparametric Impedance SpectroscopyI Parametric Impedance SpectroscopyI Take Home Message

Page 34: WhatcanSystemIdentificationOfferto ImpedanceSpectroscopy? · 0 10 20 30 40-100-50 0 Frequency (kHz) Amplitude (dB) G BLTI (jw k) 0 10 20 30 40-8.5-8.4-8.3-8.2 Frequency (kHz) Amplitude

System Identification in a NutshellChoice of the Model

I ZOH measurement setup ⇒ discrete-time model

I BL measurement setup ⇒ continuous-time model

Page 35: WhatcanSystemIdentificationOfferto ImpedanceSpectroscopy? · 0 10 20 30 40-100-50 0 Frequency (kHz) Amplitude (dB) G BLTI (jw k) 0 10 20 30 40-8.5-8.4-8.3-8.2 Frequency (kHz) Amplitude

System Identification in a NutshellChoice of the Model: continuous-time

I linear time-invariant: (fractional) differential equationdifficulty: synthesis equivalent electrical network

• non-uniqueness• non-identifiability• lacking theory

I linear time-variant: differential equation with (periodically)time-varying coefficientsdifficulty: synthesis equivalent electrical network

I nonlinear: block oriented, nonlinear state space, neural nets,Gaussian processesdifficulty: no unique description, physical interpretation

I nonlinear time-varying: not mature yet

Page 36: WhatcanSystemIdentificationOfferto ImpedanceSpectroscopy? · 0 10 20 30 40-100-50 0 Frequency (kHz) Amplitude (dB) G BLTI (jw k) 0 10 20 30 40-8.5-8.4-8.3-8.2 Frequency (kHz) Amplitude

System Identification in a NutshellChoice of the Model: continuous-time

I linear time-invariant: (fractional) differential equationdifficulty: synthesis equivalent electrical network

• non-uniqueness• non-identifiability• lacking theory

I linear time-variant: differential equation with (periodically)time-varying coefficientsdifficulty: synthesis equivalent electrical network

I nonlinear: block oriented, nonlinear state space, neural nets,Gaussian processesdifficulty: no unique description, physical interpretation

I nonlinear time-varying: not mature yet

Page 37: WhatcanSystemIdentificationOfferto ImpedanceSpectroscopy? · 0 10 20 30 40-100-50 0 Frequency (kHz) Amplitude (dB) G BLTI (jw k) 0 10 20 30 40-8.5-8.4-8.3-8.2 Frequency (kHz) Amplitude

System Identification in a NutshellChoice of the Model: continuous-time

I linear time-invariant: (fractional) differential equationdifficulty: synthesis equivalent electrical network

• non-uniqueness• non-identifiability• lacking theory

I linear time-variant: differential equation with (periodically)time-varying coefficientsdifficulty: synthesis equivalent electrical network

I nonlinear: block oriented, nonlinear state space, neural nets,Gaussian processesdifficulty: no unique description, physical interpretation

I nonlinear time-varying: not mature yet

Page 38: WhatcanSystemIdentificationOfferto ImpedanceSpectroscopy? · 0 10 20 30 40-100-50 0 Frequency (kHz) Amplitude (dB) G BLTI (jw k) 0 10 20 30 40-8.5-8.4-8.3-8.2 Frequency (kHz) Amplitude

System Identification in a NutshellChoice of the Model: continuous-time

I linear time-invariant: (fractional) differential equationdifficulty: synthesis equivalent electrical network

• non-uniqueness• non-identifiability• lacking theory

I linear time-variant: differential equation with (periodically)time-varying coefficientsdifficulty: synthesis equivalent electrical network

I nonlinear: block oriented, nonlinear state space, neural nets,Gaussian processesdifficulty: no unique description, physical interpretation

I nonlinear time-varying: not mature yet

Page 39: WhatcanSystemIdentificationOfferto ImpedanceSpectroscopy? · 0 10 20 30 40-100-50 0 Frequency (kHz) Amplitude (dB) G BLTI (jw k) 0 10 20 30 40-8.5-8.4-8.3-8.2 Frequency (kHz) Amplitude

Outline

I Motivating ExamplesI System Identification in a Nutshell

• Excitation Signal• Experimental Setup• Model• Cost Function

I Nonparametric Impedance SpectroscopyI Parametric Impedance SpectroscopyI Take Home Message

Page 40: WhatcanSystemIdentificationOfferto ImpedanceSpectroscopy? · 0 10 20 30 40-100-50 0 Frequency (kHz) Amplitude (dB) G BLTI (jw k) 0 10 20 30 40-8.5-8.4-8.3-8.2 Frequency (kHz) Amplitude

System Identification in a NutshellChoice of the Cost Function

The cost function

• measures the distance between the data and the model• sets the statistical properties of the estimated model• weighted nonlinear least squares, for example,

∑k

|Z (jωk)− Z (jωk , θ)|2

var (Z (jωk))

Result

• estimate θ• Cov(θ) due to noise and nonlinear distortion

Page 41: WhatcanSystemIdentificationOfferto ImpedanceSpectroscopy? · 0 10 20 30 40-100-50 0 Frequency (kHz) Amplitude (dB) G BLTI (jw k) 0 10 20 30 40-8.5-8.4-8.3-8.2 Frequency (kHz) Amplitude

System Identification in a NutshellChoice of the Cost Function

The cost function

• measures the distance between the data and the model• sets the statistical properties of the estimated model• weighted nonlinear least squares, for example,

∑k

|Z (jωk)− Z (jωk , θ)|2

var (Z (jωk))

Result

• estimate θ• Cov(θ) due to noise and nonlinear distortion

Page 42: WhatcanSystemIdentificationOfferto ImpedanceSpectroscopy? · 0 10 20 30 40-100-50 0 Frequency (kHz) Amplitude (dB) G BLTI (jw k) 0 10 20 30 40-8.5-8.4-8.3-8.2 Frequency (kHz) Amplitude

Outline

I Motivating ExamplesI System Identification in a NutshellI Nonparametric Impedance SpectroscopyI Parametric Impedance SpectroscopyI Take Home Message

Page 43: WhatcanSystemIdentificationOfferto ImpedanceSpectroscopy? · 0 10 20 30 40-100-50 0 Frequency (kHz) Amplitude (dB) G BLTI (jw k) 0 10 20 30 40-8.5-8.4-8.3-8.2 Frequency (kHz) Amplitude

Outline

I Motivating ExamplesI System Identification in a NutshellI Nonparametric Impedance Spectroscopy

• Linear Time-Invariant• Linear Time-Variant• Summary

I Parametric Impedance SpectroscopyI Take Home Message

Page 44: WhatcanSystemIdentificationOfferto ImpedanceSpectroscopy? · 0 10 20 30 40-100-50 0 Frequency (kHz) Amplitude (dB) G BLTI (jw k) 0 10 20 30 40-8.5-8.4-8.3-8.2 Frequency (kHz) Amplitude

Outline

I Motivating ExamplesI System Identification in a NutshellI Nonparametric Impedance Spectroscopy

• Linear Time-Invariant• Linear Time-Variant• Summary

I Parametric Impedance SpectroscopyI Take Home Message

Page 45: WhatcanSystemIdentificationOfferto ImpedanceSpectroscopy? · 0 10 20 30 40-100-50 0 Frequency (kHz) Amplitude (dB) G BLTI (jw k) 0 10 20 30 40-8.5-8.4-8.3-8.2 Frequency (kHz) Amplitude

Nonparametric Impedance SpectroscopyLTI Framework: definition of the best linear time-invariant approximation

Nonlinear time-variant (NLTV) system

excited by a random phase multisine u(t)

Definition

GBLTI (jωk) =E

Y (k)U (k)

E|U (k)|2

= E

Y (k)U (k)

with U(k) = DFT(u(t)), and E taken w.r.t. the randomrealisation of u(t)

Page 46: WhatcanSystemIdentificationOfferto ImpedanceSpectroscopy? · 0 10 20 30 40-100-50 0 Frequency (kHz) Amplitude (dB) G BLTI (jw k) 0 10 20 30 40-8.5-8.4-8.3-8.2 Frequency (kHz) Amplitude

Nonparametric Impedance SpectroscopyLTI Framework: definition of the best linear time-invariant approximation

Nonlinear time-variant (NLTV) system

excited by a random phase multisine u(t)

Definition

GBLTI (jωk) =E

Y (k)U (k)

E|U (k)|2

= E

Y (k)U (k)

with U(k) = DFT(u(t)), and E taken w.r.t. the randomrealisation of u(t)

Page 47: WhatcanSystemIdentificationOfferto ImpedanceSpectroscopy? · 0 10 20 30 40-100-50 0 Frequency (kHz) Amplitude (dB) G BLTI (jw k) 0 10 20 30 40-8.5-8.4-8.3-8.2 Frequency (kHz) Amplitude

Nonparametric Impedance SpectroscopyLTI Framework: properties of the best linear time-invariant approximation

Property

is the best linear time-invariant (BLTI) approximation of the NLTVsystem

• Yres(k) is uncorrelated with – but not independent of – U(k)• Yres(k) has zero mean value

Conclusion

• Yres(k) acts as noise on the nonparametricfrequency response function (impedance) estimate

Page 48: WhatcanSystemIdentificationOfferto ImpedanceSpectroscopy? · 0 10 20 30 40-100-50 0 Frequency (kHz) Amplitude (dB) G BLTI (jw k) 0 10 20 30 40-8.5-8.4-8.3-8.2 Frequency (kHz) Amplitude

Nonparametric Impedance SpectroscopyLTI Framework: properties of the best linear time-invariant approximation

Property

is the best linear time-invariant (BLTI) approximation of the NLTVsystem

• Yres(k) is uncorrelated with – but not independent of – U(k)• Yres(k) has zero mean value

Conclusion

• Yres(k) acts as noise on the nonparametricfrequency response function (impedance) estimate

Page 49: WhatcanSystemIdentificationOfferto ImpedanceSpectroscopy? · 0 10 20 30 40-100-50 0 Frequency (kHz) Amplitude (dB) G BLTI (jw k) 0 10 20 30 40-8.5-8.4-8.3-8.2 Frequency (kHz) Amplitude

Nonparametric Impedance SpectroscopyLTI Framework: properties of the best linear time-invariant approximation

Assumption: the output is the sum of

• a nonlinear time-invariant part• a linear time-variant part

Page 50: WhatcanSystemIdentificationOfferto ImpedanceSpectroscopy? · 0 10 20 30 40-100-50 0 Frequency (kHz) Amplitude (dB) G BLTI (jw k) 0 10 20 30 40-8.5-8.4-8.3-8.2 Frequency (kHz) Amplitude

Nonparametric Impedance SpectroscopyLTI Framework: properties of the best linear time-invariant approximation

Assumption: the output is the sum of

• a nonlinear time-invariant part• a linear time-variant part

Page 51: WhatcanSystemIdentificationOfferto ImpedanceSpectroscopy? · 0 10 20 30 40-100-50 0 Frequency (kHz) Amplitude (dB) G BLTI (jw k) 0 10 20 30 40-8.5-8.4-8.3-8.2 Frequency (kHz) Amplitude

Nonparametric Impedance SpectroscopyLTI Framework: properties of the best linear time-invariant approximation

Properties

• YTV(k) and YS(k) are uncorrelated with – but notindependent of – U(k)

• YTV(k) and YS(k) are mutually uncorrelated• YTV(k) and YS(k) have zero mean value

Conclusion

• YTV(k) and YS(k) act as (frequency correlated) noiseon the FRF estimate

Page 52: WhatcanSystemIdentificationOfferto ImpedanceSpectroscopy? · 0 10 20 30 40-100-50 0 Frequency (kHz) Amplitude (dB) G BLTI (jw k) 0 10 20 30 40-8.5-8.4-8.3-8.2 Frequency (kHz) Amplitude

Nonparametric Impedance SpectroscopyLTI Framework: properties of the best linear time-invariant approximation

Properties

• YTV(k) and YS(k) are uncorrelated with – but notindependent of – U(k)

• YTV(k) and YS(k) are mutually uncorrelated• YTV(k) and YS(k) have zero mean value

Conclusion

• YTV(k) and YS(k) act as (frequency correlated) noiseon the FRF estimate

Page 53: WhatcanSystemIdentificationOfferto ImpedanceSpectroscopy? · 0 10 20 30 40-100-50 0 Frequency (kHz) Amplitude (dB) G BLTI (jw k) 0 10 20 30 40-8.5-8.4-8.3-8.2 Frequency (kHz) Amplitude

Nonparametric Impedance SpectroscopyLTI Framework: measuring the best linear time-invariant approximation

How to distinguish

• noise NY (k)• nonlinear distortion YS(k)• time-variation YTV(k)

for random phase multisines u(t)?

Page 54: WhatcanSystemIdentificationOfferto ImpedanceSpectroscopy? · 0 10 20 30 40-100-50 0 Frequency (kHz) Amplitude (dB) G BLTI (jw k) 0 10 20 30 40-8.5-8.4-8.3-8.2 Frequency (kHz) Amplitude

Nonparametric Impedance SpectroscopyLTI Framework: measuring the best linear time-invariant approximation

How to distinguish

• noise NY (k)• nonlinear distortion YS(k)• time-variation YTV(k)

for random phase multisines u(t)?

Page 55: WhatcanSystemIdentificationOfferto ImpedanceSpectroscopy? · 0 10 20 30 40-100-50 0 Frequency (kHz) Amplitude (dB) G BLTI (jw k) 0 10 20 30 40-8.5-8.4-8.3-8.2 Frequency (kHz) Amplitude

Nonparametric Impedance SpectroscopyLTI Framework: measuring the best linear time-invariant approximation

Key properties• ys(t) has the same periodicity as u(t)• yTV(t) depends linearly on u(t)• ys(t) and yTV(t) are uncorrelated

Page 56: WhatcanSystemIdentificationOfferto ImpedanceSpectroscopy? · 0 10 20 30 40-100-50 0 Frequency (kHz) Amplitude (dB) G BLTI (jw k) 0 10 20 30 40-8.5-8.4-8.3-8.2 Frequency (kHz) Amplitude

Nonparametric Impedance SpectroscopyLTI Framework: electrical circuit operating in open loop

Time-variant second order bandpass filter

u(t): input, random phase multisine, 100 mVrms,522 sinewaves in [230 Hz, 40 kHz]

y(t): outputp(t): gate voltage

Page 57: WhatcanSystemIdentificationOfferto ImpedanceSpectroscopy? · 0 10 20 30 40-100-50 0 Frequency (kHz) Amplitude (dB) G BLTI (jw k) 0 10 20 30 40-8.5-8.4-8.3-8.2 Frequency (kHz) Amplitude

Nonparametric Impedance SpectroscopyLTI Framework: electrical circuit operating in open loop

Time-variant second order bandpass filter

u(t): input, random phase multisine, 100 mVrms,522 sinewaves in [230 Hz, 40 kHz]

y(t): outputp(t): gate voltage

Page 58: WhatcanSystemIdentificationOfferto ImpedanceSpectroscopy? · 0 10 20 30 40-100-50 0 Frequency (kHz) Amplitude (dB) G BLTI (jw k) 0 10 20 30 40-8.5-8.4-8.3-8.2 Frequency (kHz) Amplitude

Nonparametric Impedance SpectroscopyLTI Framework: electrical circuit operating in open loop

Variation gate voltage over 2 multisine periods

0 5000 10000 15000

−830

−820

−810

−800

Samples

p(t)

(m

V)

Scheduling signal

1 LTV experiment (black)3 LTI experiments (gray)

Page 59: WhatcanSystemIdentificationOfferto ImpedanceSpectroscopy? · 0 10 20 30 40-100-50 0 Frequency (kHz) Amplitude (dB) G BLTI (jw k) 0 10 20 30 40-8.5-8.4-8.3-8.2 Frequency (kHz) Amplitude

Nonparametric Impedance SpectroscopyLTI Framework: electrical circuit operating in open loop

0 10 20 30 40−100

−50

0

Frequency (kHz)

Am

plitu

de (

dB)

GBLTI

(jωk)

0 10 20 30 40−8.5

−8.4

−8.3

−8.2

Frequency (kHz)

Am

plitu

de (

dB)

Input BLTI Model

0 10 20 30 40−120

−80

−40

0

Frequency (kHz)

Am

plitu

de (

dB)

Output BLTI Model

Y (k) = GBLTI (jωk)U (k)+YTV(k)+YS(k)+NY (k)

Page 60: WhatcanSystemIdentificationOfferto ImpedanceSpectroscopy? · 0 10 20 30 40-100-50 0 Frequency (kHz) Amplitude (dB) G BLTI (jw k) 0 10 20 30 40-8.5-8.4-8.3-8.2 Frequency (kHz) Amplitude

Nonparametric Impedance SpectroscopyLTI Framework: electrical circuit operating in open loop

Comparison with time-invariant experiments

0 10 20 30 40−100

−50

0

Frequency (kHz)

FR

F (

dB)

Comparison LTV and LTI

0 10 20 30 40

−100

−80

−60

Frequency (kHz)

var(

FR

F)

(dB

)

Comparison LTV and LTI

YS(k) NY (k)

Page 61: WhatcanSystemIdentificationOfferto ImpedanceSpectroscopy? · 0 10 20 30 40-100-50 0 Frequency (kHz) Amplitude (dB) G BLTI (jw k) 0 10 20 30 40-8.5-8.4-8.3-8.2 Frequency (kHz) Amplitude

Outline

I Motivating ExamplesI System Identification in a NutshellI Nonparametric Impedance Spectroscopy

• Linear Time-Invariant• Linear Time-Variant• Summary

I Parametric Impedance SpectroscopyI Take Home Message

Page 62: WhatcanSystemIdentificationOfferto ImpedanceSpectroscopy? · 0 10 20 30 40-100-50 0 Frequency (kHz) Amplitude (dB) G BLTI (jw k) 0 10 20 30 40-8.5-8.4-8.3-8.2 Frequency (kHz) Amplitude

Nonparametric Impedance SpectroscopyLTV Framework: time-variant FRF

LTV

y (t) =ˆ +∞

−∞g (t, τ) u (τ) dτ

Page 63: WhatcanSystemIdentificationOfferto ImpedanceSpectroscopy? · 0 10 20 30 40-100-50 0 Frequency (kHz) Amplitude (dB) G BLTI (jw k) 0 10 20 30 40-8.5-8.4-8.3-8.2 Frequency (kHz) Amplitude

Nonparametric Impedance SpectroscopyLTV Framework: time-variant FRF

LTV

y (t) =ˆ +∞

−∞g (t, τ) u (τ) dτ

Page 64: WhatcanSystemIdentificationOfferto ImpedanceSpectroscopy? · 0 10 20 30 40-100-50 0 Frequency (kHz) Amplitude (dB) G BLTI (jw k) 0 10 20 30 40-8.5-8.4-8.3-8.2 Frequency (kHz) Amplitude

Nonparametric Impedance SpectroscopyLTV Framework: time-variant FRF

Define

G (jω, t) =´ +∞−∞ g (t, t − τ) e−jωτdτ

Properties (Zadeh, 1950)

• Steady state response to u (t) = sin (ω0t)

y (t) = |G (jω0, t)| sin (ω0t + ∠G (jω0, t))

• Transient response

y (t) = L−1 G (s, t)U (s)

Page 65: WhatcanSystemIdentificationOfferto ImpedanceSpectroscopy? · 0 10 20 30 40-100-50 0 Frequency (kHz) Amplitude (dB) G BLTI (jw k) 0 10 20 30 40-8.5-8.4-8.3-8.2 Frequency (kHz) Amplitude

Nonparametric Impedance SpectroscopyLTV Framework: time-variant FRF

Define

G (jω, t) =´ +∞−∞ g (t, t − τ) e−jωτdτ

Properties (Zadeh, 1950)

• Steady state response to u (t) = sin (ω0t)

y (t) = |G (jω0, t)| sin (ω0t + ∠G (jω0, t))

• Transient response

y (t) = L−1 G (s, t)U (s)

Page 66: WhatcanSystemIdentificationOfferto ImpedanceSpectroscopy? · 0 10 20 30 40-100-50 0 Frequency (kHz) Amplitude (dB) G BLTI (jw k) 0 10 20 30 40-8.5-8.4-8.3-8.2 Frequency (kHz) Amplitude

Nonparametric Impedance SpectroscopyLTV Framework: time-variant FRF

Define

G (jω, t) =´ +∞−∞ g (t, t − τ) e−jωτdτ

Properties (Zadeh, 1950)

• Steady state response to u (t) = sin (ω0t)

y (t) = |G (jω0, t)| sin (ω0t + ∠G (jω0, t))

• Transient response

y (t) = L−1 G (s, t)U (s)

Page 67: WhatcanSystemIdentificationOfferto ImpedanceSpectroscopy? · 0 10 20 30 40-100-50 0 Frequency (kHz) Amplitude (dB) G BLTI (jw k) 0 10 20 30 40-8.5-8.4-8.3-8.2 Frequency (kHz) Amplitude

Nonparametric Impedance SpectroscopyLTV Framework: slowly time-varying

Series expansion time-variant FRF

G (jω, t) =∞∑

p=0

Gp (jω) fp (t)

with fp(t) a complete set of basis functions over [0,T ], for example,

• sines and cosines• polynomials

Constraints

f0(t) = 1 and 1T

´ T0 fp(t)dt = 0

Definition slowly time-varying

G (jω, t) =Nb∑p=0

Gp (jω) fp (t)

Page 68: WhatcanSystemIdentificationOfferto ImpedanceSpectroscopy? · 0 10 20 30 40-100-50 0 Frequency (kHz) Amplitude (dB) G BLTI (jw k) 0 10 20 30 40-8.5-8.4-8.3-8.2 Frequency (kHz) Amplitude

Nonparametric Impedance SpectroscopyLTV Framework: slowly time-varying

Series expansion time-variant FRF

G (jω, t) =∞∑

p=0

Gp (jω) fp (t)

with fp(t) a complete set of basis functions over [0,T ], for example,

• sines and cosines• polynomials

Constraints

f0(t) = 1 and 1T

´ T0 fp(t)dt = 0

Definition slowly time-varying

G (jω, t) =Nb∑p=0

Gp (jω) fp (t)

Page 69: WhatcanSystemIdentificationOfferto ImpedanceSpectroscopy? · 0 10 20 30 40-100-50 0 Frequency (kHz) Amplitude (dB) G BLTI (jw k) 0 10 20 30 40-8.5-8.4-8.3-8.2 Frequency (kHz) Amplitude

Nonparametric Impedance SpectroscopyLTV Framework: slowly time-varying

Series expansion time-variant FRF

G (jω, t) =∞∑

p=0

Gp (jω) fp (t)

with fp(t) a complete set of basis functions over [0,T ], for example,

• sines and cosines• polynomials

Constraints

f0(t) = 1 and 1T

´ T0 fp(t)dt = 0

Definition slowly time-varying

G (jω, t) =Nb∑p=0

Gp (jω) fp (t)

Page 70: WhatcanSystemIdentificationOfferto ImpedanceSpectroscopy? · 0 10 20 30 40-100-50 0 Frequency (kHz) Amplitude (dB) G BLTI (jw k) 0 10 20 30 40-8.5-8.4-8.3-8.2 Frequency (kHz) Amplitude

Nonparametric Impedance SpectroscopyLTV Framework: slowly time-varying

y (t) = L−1 G (s, t)U (s) =Nb∑p=0

L−1 Gp (s)U (s) fp (t)

... ...

Page 71: WhatcanSystemIdentificationOfferto ImpedanceSpectroscopy? · 0 10 20 30 40-100-50 0 Frequency (kHz) Amplitude (dB) G BLTI (jw k) 0 10 20 30 40-8.5-8.4-8.3-8.2 Frequency (kHz) Amplitude

Nonparametric Impedance SpectroscopyLTV Framework: slowly time-varying

y (t) = L−1 G (s, t)U (s) =Nb∑p=0

L−1 Gp (s)U (s) fp (t)

... ...

Page 72: WhatcanSystemIdentificationOfferto ImpedanceSpectroscopy? · 0 10 20 30 40-100-50 0 Frequency (kHz) Amplitude (dB) G BLTI (jw k) 0 10 20 30 40-8.5-8.4-8.3-8.2 Frequency (kHz) Amplitude

Nonparametric Impedance SpectroscopyLTV Framework: nonlinear slowly time-varying

... ...

linear slowly TV

... ...

NL Slowly TV

Page 73: WhatcanSystemIdentificationOfferto ImpedanceSpectroscopy? · 0 10 20 30 40-100-50 0 Frequency (kHz) Amplitude (dB) G BLTI (jw k) 0 10 20 30 40-8.5-8.4-8.3-8.2 Frequency (kHz) Amplitude

Nonparametric Impedance SpectroscopyLTV Framework: nonlinear slowly time-varying

... ... ... ...

• ys(t) has the same periodicity as u(t)• yTV(t) depends linearly on u(t)

Page 74: WhatcanSystemIdentificationOfferto ImpedanceSpectroscopy? · 0 10 20 30 40-100-50 0 Frequency (kHz) Amplitude (dB) G BLTI (jw k) 0 10 20 30 40-8.5-8.4-8.3-8.2 Frequency (kHz) Amplitude

Nonparametric Impedance SpectroscopyLTV Framework: nonlinear slowly time-varying

... ... ... ...

• ys(t) has the same periodicity as u(t)• yTV(t) depends linearly on u(t)

Page 75: WhatcanSystemIdentificationOfferto ImpedanceSpectroscopy? · 0 10 20 30 40-100-50 0 Frequency (kHz) Amplitude (dB) G BLTI (jw k) 0 10 20 30 40-8.5-8.4-8.3-8.2 Frequency (kHz) Amplitude

Nonparametric Impedance SpectroscopyLTV Framework: nonlinear slowly time-varying

... ... ... ...• ys(t) has the same periodicity as u(t)• yTV(t) depends linearly on u(t)

Page 76: WhatcanSystemIdentificationOfferto ImpedanceSpectroscopy? · 0 10 20 30 40-100-50 0 Frequency (kHz) Amplitude (dB) G BLTI (jw k) 0 10 20 30 40-8.5-8.4-8.3-8.2 Frequency (kHz) Amplitude

Nonparametric Impedance SpectroscopyLTV Framework: estimating the time-variant FRF

... ... ... ...

u (t)→ y (t)

u (t)u1 (t)

...uNb (t)

→ y (t)

SISO LTV MISO LTI

Page 77: WhatcanSystemIdentificationOfferto ImpedanceSpectroscopy? · 0 10 20 30 40-100-50 0 Frequency (kHz) Amplitude (dB) G BLTI (jw k) 0 10 20 30 40-8.5-8.4-8.3-8.2 Frequency (kHz) Amplitude

Nonparametric Impedance SpectroscopyLTV Framework: estimating the time-variant FRF

... ... ... ...

u (t)→ y (t)

u (t)u1 (t)

...uNb (t)

→ y (t)

SISO LTV MISO LTI

Page 78: WhatcanSystemIdentificationOfferto ImpedanceSpectroscopy? · 0 10 20 30 40-100-50 0 Frequency (kHz) Amplitude (dB) G BLTI (jw k) 0 10 20 30 40-8.5-8.4-8.3-8.2 Frequency (kHz) Amplitude

Nonparametric Impedance SpectroscopyLTV Framework: measurement electrical circuit

Measurement time: 0.7 sSampling frequency: 156 kHzBandwidth excitation: [200 Hz, 40 kHz]Frequency resolution: 1.36 Hz

Page 79: WhatcanSystemIdentificationOfferto ImpedanceSpectroscopy? · 0 10 20 30 40-100-50 0 Frequency (kHz) Amplitude (dB) G BLTI (jw k) 0 10 20 30 40-8.5-8.4-8.3-8.2 Frequency (kHz) Amplitude

Nonparametric Impedance SpectroscopyLTV Framework: measurement electrical circuit

Measurement time: 0.7 sSampling frequency: 156 kHzBandwidth excitation: [200 Hz, 40 kHz]Frequency resolution: 1.36 Hz

Page 80: WhatcanSystemIdentificationOfferto ImpedanceSpectroscopy? · 0 10 20 30 40-100-50 0 Frequency (kHz) Amplitude (dB) G BLTI (jw k) 0 10 20 30 40-8.5-8.4-8.3-8.2 Frequency (kHz) Amplitude

Nonparametric Impedance SpectroscopyLTV Framework: measurement electrical circuit

Estimate time-variant FRF with Nb = 9

... ... ... ...

Page 81: WhatcanSystemIdentificationOfferto ImpedanceSpectroscopy? · 0 10 20 30 40-100-50 0 Frequency (kHz) Amplitude (dB) G BLTI (jw k) 0 10 20 30 40-8.5-8.4-8.3-8.2 Frequency (kHz) Amplitude

Nonparametric Impedance SpectroscopyLTV Framework: measurement electrical circuit

Time-variant FRF G (jωk , t)

Page 82: WhatcanSystemIdentificationOfferto ImpedanceSpectroscopy? · 0 10 20 30 40-100-50 0 Frequency (kHz) Amplitude (dB) G BLTI (jw k) 0 10 20 30 40-8.5-8.4-8.3-8.2 Frequency (kHz) Amplitude

Nonparametric Impedance SpectroscopyLTV Framework: measurement electrical circuit

Top view time-variant FRF

0 0.2 0.4 0.6 0.8−2.2

−2.0

−1.8

−1.6

−1.4

Time (s)G

ate

volta

ge (

V)

p(t)

Page 83: WhatcanSystemIdentificationOfferto ImpedanceSpectroscopy? · 0 10 20 30 40-100-50 0 Frequency (kHz) Amplitude (dB) G BLTI (jw k) 0 10 20 30 40-8.5-8.4-8.3-8.2 Frequency (kHz) Amplitude

Nonparametric Impedance SpectroscopyLTV Framework: myocardial electrical impedance measurements

Random phase multisine current with 26 harmonics logarithmicallydistributed in the band [1 kHz, 939 kHz]

i t( )

i t( )

v t( )Z jw t,( )

Electrodes

Page 84: WhatcanSystemIdentificationOfferto ImpedanceSpectroscopy? · 0 10 20 30 40-100-50 0 Frequency (kHz) Amplitude (dB) G BLTI (jw k) 0 10 20 30 40-8.5-8.4-8.3-8.2 Frequency (kHz) Amplitude

Nonparametric Impedance SpectroscopyLTV Framework: myocardial electrical impedance measurements

Zoom voltage and current spectra

Page 85: WhatcanSystemIdentificationOfferto ImpedanceSpectroscopy? · 0 10 20 30 40-100-50 0 Frequency (kHz) Amplitude (dB) G BLTI (jw k) 0 10 20 30 40-8.5-8.4-8.3-8.2 Frequency (kHz) Amplitude

Nonparametric Impedance SpectroscopyLTV Framework: myocardial electrical impedance measurements

Nonparametric estimate time-variant impedance

34

56

0

5

1036

38

40

42

44

log10

(frequency (Hz))

Z(jωk, t)

time (s)

Am

plitu

de (

dBΩ

)

Page 86: WhatcanSystemIdentificationOfferto ImpedanceSpectroscopy? · 0 10 20 30 40-100-50 0 Frequency (kHz) Amplitude (dB) G BLTI (jw k) 0 10 20 30 40-8.5-8.4-8.3-8.2 Frequency (kHz) Amplitude

Outline

I Motivating ExamplesI System Identification in a NutshellI Nonparametric Impedance Spectroscopy

• Linear Time-Invariant• Linear Time-Variant• Summary

I Parametric Impedance SpectroscopyI Take Home Message

Page 87: WhatcanSystemIdentificationOfferto ImpedanceSpectroscopy? · 0 10 20 30 40-100-50 0 Frequency (kHz) Amplitude (dB) G BLTI (jw k) 0 10 20 30 40-8.5-8.4-8.3-8.2 Frequency (kHz) Amplitude

Nonparametric Impedance SpectroscopySummary

Using 2 periods of the (transient) response to a random phasemultisine excitation

I BLTI approximation impedance• noise variance• variance nonlinear distortions• time-variant effects

I time-variant impedance• noise variance• variance nonlinear distortions

and this for periodic and arbitrary time-variations

Page 88: WhatcanSystemIdentificationOfferto ImpedanceSpectroscopy? · 0 10 20 30 40-100-50 0 Frequency (kHz) Amplitude (dB) G BLTI (jw k) 0 10 20 30 40-8.5-8.4-8.3-8.2 Frequency (kHz) Amplitude

Nonparametric Impedance SpectroscopySummary

Using 2 periods of the (transient) response to a random phasemultisine excitation

I BLTI approximation impedance• noise variance• variance nonlinear distortions• time-variant effects

I time-variant impedance• noise variance• variance nonlinear distortions

and this for periodic and arbitrary time-variations

Page 89: WhatcanSystemIdentificationOfferto ImpedanceSpectroscopy? · 0 10 20 30 40-100-50 0 Frequency (kHz) Amplitude (dB) G BLTI (jw k) 0 10 20 30 40-8.5-8.4-8.3-8.2 Frequency (kHz) Amplitude

Nonparametric Impedance SpectroscopySummary

Using 2 periods of the (transient) response to a random phasemultisine excitation

I BLTI approximation impedance• noise variance• variance nonlinear distortions• time-variant effects

I time-variant impedance• noise variance• variance nonlinear distortions

and this for periodic and arbitrary time-variations

Page 90: WhatcanSystemIdentificationOfferto ImpedanceSpectroscopy? · 0 10 20 30 40-100-50 0 Frequency (kHz) Amplitude (dB) G BLTI (jw k) 0 10 20 30 40-8.5-8.4-8.3-8.2 Frequency (kHz) Amplitude

Nonparametric Impedance SpectroscopySummary

Using 2 periods of the (transient) response to a random phasemultisine excitation

I BLTI approximation impedance• noise variance• variance nonlinear distortions• time-variant effects

I time-variant impedance• noise variance• variance nonlinear distortions

and this for periodic and arbitrary time-variations

Page 91: WhatcanSystemIdentificationOfferto ImpedanceSpectroscopy? · 0 10 20 30 40-100-50 0 Frequency (kHz) Amplitude (dB) G BLTI (jw k) 0 10 20 30 40-8.5-8.4-8.3-8.2 Frequency (kHz) Amplitude

Outline

I Motivating ExamplesI System Identification in a NutshellI Nonparametric Impedance SpectroscopyI Parametric Impedance SpectroscopyI Take Home Message

Page 92: WhatcanSystemIdentificationOfferto ImpedanceSpectroscopy? · 0 10 20 30 40-100-50 0 Frequency (kHz) Amplitude (dB) G BLTI (jw k) 0 10 20 30 40-8.5-8.4-8.3-8.2 Frequency (kHz) Amplitude

Outline

I Motivating ExamplesI System Identification in a NutshellI Nonparametric Impedance SpectroscopyI Parametric Impedance Spectroscopy

• Linear Time-Invariant• Linear Time-Variant

I Take Home Message

Page 93: WhatcanSystemIdentificationOfferto ImpedanceSpectroscopy? · 0 10 20 30 40-100-50 0 Frequency (kHz) Amplitude (dB) G BLTI (jw k) 0 10 20 30 40-8.5-8.4-8.3-8.2 Frequency (kHz) Amplitude

Outline

I Motivating ExamplesI System Identification in a NutshellI Nonparametric Impedance SpectroscopyI Parametric Impedance Spectroscopy

• Linear Time-Invariant• Linear Time-Variant

I Take Home Message

Page 94: WhatcanSystemIdentificationOfferto ImpedanceSpectroscopy? · 0 10 20 30 40-100-50 0 Frequency (kHz) Amplitude (dB) G BLTI (jw k) 0 10 20 30 40-8.5-8.4-8.3-8.2 Frequency (kHz) Amplitude

Parametric Impedance SpectroscopyLTI Framework: cost functions

I Current controlled (galvanostatic) ⇒ impedance modeling∑k

|Z (jωk)− Z (jωk , θ)|2

var (Z (jωk))

I Voltage controlled (potentiostatic) ⇒ admittance modeling∑k

|Y (jωk)− Y (jωk , θ)|2

var (Y (jωk))

I Other ⇒ use the current and voltage spectra∑k

|V (k)− Z (jωk , θ) I (k)|2

var (V (k)− Z (jωk , θ) I (k))

Page 95: WhatcanSystemIdentificationOfferto ImpedanceSpectroscopy? · 0 10 20 30 40-100-50 0 Frequency (kHz) Amplitude (dB) G BLTI (jw k) 0 10 20 30 40-8.5-8.4-8.3-8.2 Frequency (kHz) Amplitude

Parametric Impedance SpectroscopyLTI Framework: cost functions

I Current controlled (galvanostatic) ⇒ impedance modeling∑k

|Z (jωk)− Z (jωk , θ)|2

var (Z (jωk))

I Voltage controlled (potentiostatic) ⇒ admittance modeling∑k

|Y (jωk)− Y (jωk , θ)|2

var (Y (jωk))

I Other ⇒ use the current and voltage spectra∑k

|V (k)− Z (jωk , θ) I (k)|2

var (V (k)− Z (jωk , θ) I (k))

Page 96: WhatcanSystemIdentificationOfferto ImpedanceSpectroscopy? · 0 10 20 30 40-100-50 0 Frequency (kHz) Amplitude (dB) G BLTI (jw k) 0 10 20 30 40-8.5-8.4-8.3-8.2 Frequency (kHz) Amplitude

Parametric Impedance SpectroscopyLTI Framework: cost functions

I Current controlled (galvanostatic) ⇒ impedance modeling∑k

|Z (jωk)− Z (jωk , θ)|2

var (Z (jωk))

I Voltage controlled (potentiostatic) ⇒ admittance modeling∑k

|Y (jωk)− Y (jωk , θ)|2

var (Y (jωk))

I Other ⇒ use the current and voltage spectra∑k

|V (k)− Z (jωk , θ) I (k)|2

var (V (k)− Z (jωk , θ) I (k))

Page 97: WhatcanSystemIdentificationOfferto ImpedanceSpectroscopy? · 0 10 20 30 40-100-50 0 Frequency (kHz) Amplitude (dB) G BLTI (jw k) 0 10 20 30 40-8.5-8.4-8.3-8.2 Frequency (kHz) Amplitude

Outline

I Motivating ExamplesI System Identification in a NutshellI Nonparametric Impedance SpectroscopyI Parametric Impedance Spectroscopy

• Linear Time-Invariant• Linear Time-Variant

I Take Home Message

Page 98: WhatcanSystemIdentificationOfferto ImpedanceSpectroscopy? · 0 10 20 30 40-100-50 0 Frequency (kHz) Amplitude (dB) G BLTI (jw k) 0 10 20 30 40-8.5-8.4-8.3-8.2 Frequency (kHz) Amplitude

Parametric Impedance SpectroscopyLTV Framework: cost function

Differential equation with time-varying coefficientsI piecewise polynomialI sum of sines and cosines

Cost function

∑k

|e (k , θ)|2

var (e (k , θ))

with e (k , θ) the DFT of the equation errorof the differential equation

Page 99: WhatcanSystemIdentificationOfferto ImpedanceSpectroscopy? · 0 10 20 30 40-100-50 0 Frequency (kHz) Amplitude (dB) G BLTI (jw k) 0 10 20 30 40-8.5-8.4-8.3-8.2 Frequency (kHz) Amplitude

Parametric Impedance SpectroscopyLTV Framework: cost function

Differential equation with time-varying coefficientsI piecewise polynomialI sum of sines and cosines

Cost function

∑k

|e (k , θ)|2

var (e (k , θ))

with e (k , θ) the DFT of the equation errorof the differential equation

Page 100: WhatcanSystemIdentificationOfferto ImpedanceSpectroscopy? · 0 10 20 30 40-100-50 0 Frequency (kHz) Amplitude (dB) G BLTI (jw k) 0 10 20 30 40-8.5-8.4-8.3-8.2 Frequency (kHz) Amplitude

Parametric Impedance SpectroscopyLTV Framework: myocardial electrical impedance measurements

i t( )

i t( )

v t( )Z jw t,( )

Electrodes

Intracellular liquid

R R

2C

e i

m

2Cm

R R

C

e i

Extracellular

liquid

m

Page 101: WhatcanSystemIdentificationOfferto ImpedanceSpectroscopy? · 0 10 20 30 40-100-50 0 Frequency (kHz) Amplitude (dB) G BLTI (jw k) 0 10 20 30 40-8.5-8.4-8.3-8.2 Frequency (kHz) Amplitude

Parametric Impedance SpectroscopyLTV Framework: myocardial electrical impedance measurements

i t( )

i t( )

v t( )Z jw t,( )

Electrodes

Intracellular liquid

R R

2C

e i

m

2Cm

R R

C

e i

Extracellular

liquid

m

Page 102: WhatcanSystemIdentificationOfferto ImpedanceSpectroscopy? · 0 10 20 30 40-100-50 0 Frequency (kHz) Amplitude (dB) G BLTI (jw k) 0 10 20 30 40-8.5-8.4-8.3-8.2 Frequency (kHz) Amplitude

Parametric Impedance SpectroscopyLTV Framework: myocardial electrical impedance measurements

34

56

0

5

1036

38

40

42

44

log10

(frequency (Hz))

Z(jωk, t)

time (s)

Am

plitu

de (

dBΩ

)

Synthesize for each t the RC -network

Page 103: WhatcanSystemIdentificationOfferto ImpedanceSpectroscopy? · 0 10 20 30 40-100-50 0 Frequency (kHz) Amplitude (dB) G BLTI (jw k) 0 10 20 30 40-8.5-8.4-8.3-8.2 Frequency (kHz) Amplitude

Parametric Impedance SpectroscopyLTV Framework: myocardial electrical impedance measurements

Black: actual circuit parameters; Red: periodic reconstruction

0 5 10105

110

115

time (s)

Re (

Ω)

0 5 10

450

500

550

time (s)

Ri (

Ω)

0 5 106

8

10

12

time (s)

Cm

(nF

)

Page 104: WhatcanSystemIdentificationOfferto ImpedanceSpectroscopy? · 0 10 20 30 40-100-50 0 Frequency (kHz) Amplitude (dB) G BLTI (jw k) 0 10 20 30 40-8.5-8.4-8.3-8.2 Frequency (kHz) Amplitude

Outline

I Motivating ExamplesI System Identification in a NutshellI Nonparametric Impedance SpectroscopyI Parametric Impedance SpectroscopyI Take Home Message

Page 105: WhatcanSystemIdentificationOfferto ImpedanceSpectroscopy? · 0 10 20 30 40-100-50 0 Frequency (kHz) Amplitude (dB) G BLTI (jw k) 0 10 20 30 40-8.5-8.4-8.3-8.2 Frequency (kHz) Amplitude

Take Home Message

Use random phase multisine excitations

I detect and quantify• the noise• the nonlinear behaviour• the time-variation

in impedance measurements

I measure the time-variant impedance for• periodic• arbitrary

time-variation and quantify• the noise• the nonlinear behaviour

Page 106: WhatcanSystemIdentificationOfferto ImpedanceSpectroscopy? · 0 10 20 30 40-100-50 0 Frequency (kHz) Amplitude (dB) G BLTI (jw k) 0 10 20 30 40-8.5-8.4-8.3-8.2 Frequency (kHz) Amplitude

Take Home Message

Use random phase multisine excitations

I detect and quantify• the noise• the nonlinear behaviour• the time-variation

in impedance measurements

I measure the time-variant impedance for• periodic• arbitrary

time-variation and quantify• the noise• the nonlinear behaviour

Page 107: WhatcanSystemIdentificationOfferto ImpedanceSpectroscopy? · 0 10 20 30 40-100-50 0 Frequency (kHz) Amplitude (dB) G BLTI (jw k) 0 10 20 30 40-8.5-8.4-8.3-8.2 Frequency (kHz) Amplitude

Take Home Message

Use random phase multisine excitations

I detect and quantify• the noise• the nonlinear behaviour• the time-variation

in impedance measurements

I measure the time-variant impedance for• periodic• arbitrary

time-variation and quantify• the noise• the nonlinear behaviour

Page 108: WhatcanSystemIdentificationOfferto ImpedanceSpectroscopy? · 0 10 20 30 40-100-50 0 Frequency (kHz) Amplitude (dB) G BLTI (jw k) 0 10 20 30 40-8.5-8.4-8.3-8.2 Frequency (kHz) Amplitude

What can System Identification Offer toImpedance Spectroscopy?

Page 109: WhatcanSystemIdentificationOfferto ImpedanceSpectroscopy? · 0 10 20 30 40-100-50 0 Frequency (kHz) Amplitude (dB) G BLTI (jw k) 0 10 20 30 40-8.5-8.4-8.3-8.2 Frequency (kHz) Amplitude

References

Papers on the Properties of Linear Time-Variant SystemsL. A. Zadeh, “The determination of the impulsive response of variable networks,”Journal of Applied Physics, vol. 21, pp. 642-645, 1950.L. A. Zadeh, “Frequency analysis of variable networks,” Proceedings of the I.R.E., vol.38, pp. 291-299, 1950.L. A. Zadeh, “On stability of linear varying-parameter systems,” Journal of AppliedPhysics, vol. 22, no. 4, pp. 402-405, 1951.

Papers on the Nonparametric Estimation of the BLTI ApproximationJ. Lataire, E. Louarroudi, and R. Pintelon, “Detecting a time-varying behavior infrequency response function measurements,” IEEE Trans. Instrum. and Meas., vol.61, no. 8, pp. 2132-2143, 2012.R. Pintelon, E. Louarroudi, and J. Lataire, “Detection and quantification of theinfluence of time variation in frequency response function measurements using arbitraryexcitations,” IEEE Trans. Instrum. and Meas., vol. 61, no. 12, pp. 3387-3395, 2012.R. Pintelon, E. Louarroudi, and J. Lataire, “Detection and quantification of theinfluence of time-variation in closed loop frequency response function measurements,”IEEE Trans. Instrum. and Meas., vol. 62, no. 4, pp. 853-863, 2013.R. Pintelon, E. Louarroudi, and J. Lataire, “Detecting and quantifying the nonlinearand time-variant effects in FRF measurements using periodic excitations,” IEEE Trans.Instrum. and Meas., vol. 62, no. 12, pp. 3361-3373, 2013.

Page 110: WhatcanSystemIdentificationOfferto ImpedanceSpectroscopy? · 0 10 20 30 40-100-50 0 Frequency (kHz) Amplitude (dB) G BLTI (jw k) 0 10 20 30 40-8.5-8.4-8.3-8.2 Frequency (kHz) Amplitude

References

Paper on the Parametric Estimation of the BLTI ApproximationL. Ljung, “Estimating linear time-invariant models of nonlinear time-varying systems,”European Journal of Control , vol. 7, no. 2-3, pp. 203-219, 2001.

Papers on the Nonparametric Estimation of the Time-Variant FRFJ. Lataire, E. Louarroudi, and R. Pintelon, “Non-parametric estimate of the systemfunction of a time-varying system,” Automatica, vol. 48, no. 4, pp. 666-672, 2012.E. Louarroudi, R. Pintelon, and J. Lataire, “Nonparametric tracking of the time-varyingdynamics of weakly nonlinear periodically time-varying systems using periodic inputs,”IEEE Trans. Instrum. and Meas., vol. 61, no. 5, pp. 1384-1394, 2012.

Papers on the Parametric Estimation of the Time-Variant Transfer FunctionJ. Lataire, and R. Pintelon, “Frequency domain weighted nonlinear least squaresestimation of continuous-time, time-varying systems,” IET Control Theory &Applications, vol. 5, no. 7, pp. 923-933, 2011.E. Louarroudi et al., “Frequency domain, parametric estimation of the evolution of thetime-varying dynamics of periodically time-varying systems from noisy input–outputobservations ,” Mech. Systems and Sign. Proc., doi 10.1016/j.ymssp.2013.03.013.