wheel hoe 2kx final report · 2018. 9. 6. · ! 3!...

13
1 Wheel Hoe 2KX: Design for the 21 st Century Woman IE 547: Designing for Human Variability Kelly Sprehn Yang, Hui Executive Summary Given the increase in number of women involved with farming and gardening activities and the lack of womenoptimized tools in the market, this study examines the design of a wheel hoe for women. The following table demonstrates the static design and adjustable design measurements suggested by the study. Mean Range Handle Diameter 30.4 17.7 – 42.9 Handle Width 382 352 – 410 Height 831 723 – 939 A prototype was tested by 12 females. This preference data was correlated to various anthropometric measures and expanded in a hybrid model using both NHANES and ANSUR databases. Recommendations take into account the accommodation of the central 95% of the target population. While the study is limited in the number of participants, the tested posture, and the subsequent model correlation, it is believed that this study guides preliminary development of a wheel hoe designed specifically for women. Introduction Necessity According to the U.S. Census numbers, the number of women who own and operate farms has increased 46% from 1997 to 2007 (U.S. Statistics on Women and Minorities on Farms and in Rural Areas, 1997, 2002, 2007). That trend is continuing as the economy encourages more people to grow their own food and trends of purchasing organic food continue to rise. The popularity of the farmer’s market, a gathering of growers and foodconscious buyers, has increased significantly in the past few years. The growth of small farmers, market growers, and hobbyists leads to an emerging population needing tools to help in their tasks. A significant risk to this population of women is the differences in body types from that of men. In many design scenarios, anthropometric differences would not have a significant impact on the use or risk of the product. However, according to a study by Hsaio et al. (2002), women in agriculture differ significantly in 11 of 14 body measures (Table 1). Green Heron Tools, a womenowned, womenfocused gardening and farming company, conducted preliminary research in this area. Their anecdotal evidence suggests that many women find garden tools “too heavy”, “too long”, “too high”, “not well balanced”, among others (Green Heron Tools, 2010).

Upload: others

Post on 24-Jan-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Wheel Hoe 2KX Final Report · 2018. 9. 6. · ! 3! Thepopulationmodel!approach!creates!models!by!experimental!data!fromthe! representative!sample!population!performing!a!task!that!is!related!to!the!dimension

  1  

Wheel  Hoe  2KX:  Design  for  the  21st  Century  Woman  IE  547:  Designing  for  Human  Variability  

Kelly  Sprehn  Yang,  Hui  

 Executive  Summary  Given  the  increase  in  number  of  women  involved  with  farming  and  gardening  activities  and  the  lack  of  women-­‐optimized  tools  in  the  market,  this  study  examines  the  design  of  a  wheel  hoe  for  women.    The  following  table  demonstrates  the  static  design  and  adjustable  design  measurements  suggested  by  the  study.      

  Mean   Range  Handle  Diameter   30.4   17.7  –  42.9  Handle  Width   382   352  –  410  Height   831   723  –  939  

 A  prototype  was  tested  by  12  females.    This  preference  data  was  correlated  to  various  anthropometric  measures  and  expanded  in  a  hybrid  model  using  both  NHANES  and  ANSUR  databases.    Recommendations  take  into  account  the  accommodation  of  the  central  95%  of  the  target  population.    While  the  study  is  limited  in  the  number  of  participants,  the  tested  posture,  and  the  subsequent  model  correlation,  it  is  believed  that  this  study  guides  preliminary  development  of  a  wheel  hoe  designed  specifically  for  women.    Introduction  Necessity  According  to  the  U.S.  Census  numbers,  the  number  of  women  who  own  and  operate  farms  has  increased  46%  from  1997  to  2007  (U.S.  Statistics  on  Women  and  Minorities  on  Farms  and  in  Rural  Areas,  1997,  2002,  2007).    That  trend  is  continuing  as  the  economy  encourages  more  people  to  grow  their  own  food  and  trends  of  purchasing  organic  food  continue  to  rise.    The  popularity  of  the  farmer’s  market,  a  gathering  of  growers  and  food-­‐conscious  buyers,  has  increased  significantly  in  the  past  few  years.    The  growth  of  small  farmers,  market  growers,  and  hobbyists  leads  to  an  emerging  population  needing  tools  to  help  in  their  tasks.    A  significant  risk  to  this  population  of  women  is  the  differences  in  body  types  from  that  of  men.    In  many  design  scenarios,  anthropometric  differences  would  not  have  a  significant  impact  on  the  use  or  risk  of  the  product.    However,  according  to  a  study  by  Hsaio  et  al.  (2002),  women  in  agriculture  differ  significantly  in  11  of  14  body  measures  (Table  1).    Green  Heron  Tools,  a  women-­‐owned,  women-­‐focused  gardening  and  farming  company,  conducted  preliminary  research  in  this  area.    Their  anecdotal  evidence  suggests  that  many  women  find  garden  tools  “too  heavy”,  “too  long”,  “too  high”,  “not  well  balanced”,  among  others  (Green  Heron  Tools,  2010).  

 

Page 2: Wheel Hoe 2KX Final Report · 2018. 9. 6. · ! 3! Thepopulationmodel!approach!creates!models!by!experimental!data!fromthe! representative!sample!population!performing!a!task!that!is!related!to!the!dimension

  2  

Table  1:  Anthropometric  Measurements  of  Agricultural  Workers  in  the  U.S.  

Sitting  Height*   Waist  Circumference*  Upper  Arm  Length*   Buttocks  Circumference*  Upper  Leg  Length*   Thigh  Circumference*  Biacromial  Breadth*   Wrist  Breadth*  Biiliac  Breadth*   Arm  Circumference*  Elbow  Breadth*   Weight  Stature   BMI  

*  Indicates  that  this  measure  differs  significantly  between  men  and  women.    Demographics  Based  on  this  necessity,  the  target  demographics  are  derived  from  the  U.S.  Census  Bureau  report  of  Women  and  Minorities  on  Farms  and  in  Rural  Areas.    In  combination  with  this  study,  Hsaio,  et  al.  (2002)  provides  more  insight  into  the  anthropometric  measurements  of  this  population  (Table  2).  

 Table  2:  Sample  of  Anthropometric  Measurements  of  U.S.  Female  Agriculture  Workers  

Variable   Mean   95%  CI  

Stature  (mm)   1592   1578  –  1607  

Weight  (kg)   68.7   65.9  –  71.6  

BMI   27.2   26.1  –  28.2  

Biacromial  Breadth  (cm)   36.2   35.9  –  36.6    Design  Process  Background  The  variability  in  anthropometry  indicates  the  adjustability  and  sizes  of  artifacts  to  accommodate  the  target  users.    In  the  design  of  artifacts  using  spatial  dimensions  of  the  user  population,  there  are  several  general  approaches  to  achieving  users’  accommodation:  manikins,  population  models,  and  the  hybrid  model  approach.    A  boundary  manikin  refers  to  a  body  measurement  according  to  the  limit  of  acceptability.    The  manikin  approach  typically  uses  two-­‐  or  three-­‐dimensional  to  represent  the  human  body  size  and  shape.    Drillis  et  al.  (1966)  highlighted  the  impact  of  this  approach  by  claiming  a  set  of  proportionality  constants  calculated  for  a  sample  population.    This  approach  intends  to  quantify  the  anthropometric  variability  expected  within  the  target  population  of  users.    It  is  often  used  in  the  absence  of  actual  data  for  the  target  user  population.  However,  the  main  limitation  of  this  approach  is  that  it  is  only  works  in  extremely  constrained  cases,  because  only  boundary  anthropometries  are  utilized  and  that  might  produce  misleading  results.    

Page 3: Wheel Hoe 2KX Final Report · 2018. 9. 6. · ! 3! Thepopulationmodel!approach!creates!models!by!experimental!data!fromthe! representative!sample!population!performing!a!task!that!is!related!to!the!dimension

  3  

The  population  model  approach  creates  models  by  experimental  data  from  the  representative  sample  population  performing  a  task  that  is  related  to  the  dimension  under  study  (Roe,  1993).    It  models  the  specific  target  measurement  and  thus  greatly  improves  the  results  compared  with  the  manikins  approach.    However,  the  only  factor  in  this  method  is  the  body  dimension.    It  is  known  that  two  users  with  similar  body  dimensions  might  have  different  preference  on  the  target  measurements.    Without  considering  the  preference  of  the  sample  population,  using  this  approach  can  produce  inaccurate  results.    Hybrids  models  overcome  the  limitations  of  the  above  two  approaches  by  importing  a  stochastic  component  based  on  the  residual  variance  in  the  regression  analysis  (Garneau  et  al,  2009).    The  anthropometry-­‐driven  preference  model  contains  the  variability  of  body  and  also  includes  the  remaining  variability,  thus  provides  more  accuracy  to  the  predictions  (Nadadur  et  al.,  2008).    This  approach  has  been  shown  to  integrate  consideration  of  variability  that  is  not  correlated  with  the  predictors  in  several  applications  such  as  predicting  automobile  driving  posture  (Reed  et  al.,  2002),  optimizing  vehicle  occupant  packaging  (Parkinson  et  al.,  2006).    Parkinson  et  al.  (2010)  present  a  statistical  method  for  applying  the  available  anthropometric  data  to  estimate  distributions  of  the  anthropometric  data  for  a  target  population.    The  virtual  population  that  generated  by  the  anthropometric  data  via  this  method  can  be  used  to  represent  the  target  user  population.      The  hybrid  method  and  use  of  virtual  populations  will  be  utilized  in  this  project  to  optimize  the  wheel  hoe,  as  described  below,  for  a  target  user  population.  The  virtual  population  in  this  project  will  be  obtained  by  random  sampling  in  the  data  from  the  representative  databases  NHANES  and  ANSUR.    Prototype  By  developing  tools  for  women,  the  increased  risks  of  back  injuries,  work-­‐related  musculoskeletal  injuries,  and  discomfort  can  be  mitigated.    While  this  call  reaches  every  tool  in  the  garden  shed,  this  study  will  focus  on  the  wheel  hoe  (Figure  1).    This  implement  was  chosen  for  the  availability  of  parts,  the  ability  to  modify  certain  areas  of  the  tool,  and  its  use  by  women  in  the  gardening  and  farming  scenarios  mentioned  earlier.    A  3-­‐D  CAD  model  was  created  to  generate  a  better  understanding  of  the  parts  to  be  modified  (Figure  1  –  4).    This  model  will  also  serve  for  future  testing,  design  ideas,  and  prototype  generation.  

Page 4: Wheel Hoe 2KX Final Report · 2018. 9. 6. · ! 3! Thepopulationmodel!approach!creates!models!by!experimental!data!fromthe! representative!sample!population!performing!a!task!that!is!related!to!the!dimension

  4  

                               Figure  1:  Wheel  Hoe                                      Figure  2:  3D  Model  of  Wheel  Hoe  

 

                                     

width

                               Figure  3:  Adjustability  of  Wheel  Hoe   Figure  4:  Adjustability  of  Wheel  Hoe  

 The  purchase  of  a  Whiz  Bang  Wheel  Hoe  kit  provided  the  basic  parts  for  a  testable  prototype.    These  rough  metal  parts  were  assembled  with  adjustable  shafts  and  handles  along  with  different  handle  diameters  (Figure  5,  Table  3).  

   

Table  3:  Dowel  Diameters  (mm)  

Dowel  Number   Dowel  Diameter  1   36.75  2   30.63  3   24.50  4   18.38  5   15.33  6   12.25  

       

  Figure  5:  Prototype  of  Wheel  Hoe  

Page 5: Wheel Hoe 2KX Final Report · 2018. 9. 6. · ! 3! Thepopulationmodel!approach!creates!models!by!experimental!data!fromthe! representative!sample!population!performing!a!task!that!is!related!to!the!dimension

  5  

Testing  In  order  to  find  the  preference  of  use  for  various  people,  tests  were  run.    First,  anthropometric  measurements  were  collected.    These  included  Stature  (mm),  Weight  (kg),  Wrist-­‐Hand  Length  (Figure  6),  Biacromial  Breadth  (Number  10,  Figure  7),  and  Forearm-­‐Forearm  Width  (Number  53,  Figure  7).    After  this,  subjects  were  asked  to  choose  between  the  six  handle  diameter  sizes.    They  were  allowed  to  try  different  sizes  without  being  attached  to  the  tool  in  order  to  find  a  grip  that  was  most  comfortable.    This  handle  was  then  attached  to  the  wheel  hoe  and  subjects  were  asked  to  identify  the  most  comfortable  position  for  the  bottom  and  handle  angles  (Figures  8  –  11).    These  were  moved  by  the  experimenters  to  avoid  injury  of  the  participants.    Overall,  12  participants’  data  were  used  in  this  study  (Appendix  A).    

                                                                       Figure  6:  Hand  Length(mpt,2009)     Figure  7:  Anthropometric  Measurements(ANSUR)  

 

 Figures  8-­‐11:  Adjustability  shown  on  Prototype  (top)  and  CAD  models  (bottom)  

01

2

43

Handle  Angle

-165

55

45

351

234

Bottom  Angle

Page 6: Wheel Hoe 2KX Final Report · 2018. 9. 6. · ! 3! Thepopulationmodel!approach!creates!models!by!experimental!data!fromthe! representative!sample!population!performing!a!task!that!is!related!to!the!dimension

  6  

Modeling  In  order  to  find  the  most  appropriate  design  recommendations  for  the  wheel  hoe,  grip  diameter,  height,  and  handle  width  are  the  factors  that  need  to  be  considered.    The  anthropometry  of  the  12  collected  data  points  was  compared  to  the  anthropometric  measurements  of  female  agricultural  workers  as  described  by  Hsaio,  et  al.  (2002).    This  comparison  can  be  seen  in  Table  4.      

Table  4:  Comparison  of  Target  Population  and  Sample  Data  

  Sample   Population  

Variable   Mean   95%  CI   Mean   95%  CI  

Age   54     26    

Stature  (mm)   1641   1603  -­‐  1680   1592   1578  –  1607  

Weight  (kg)   65.2   57.0  –  73.3   68.7   65.9  –  71.6  

BMI   24.1   21.4  –  26.9   27.2   26.1  –  28.2  

Biacromial  Breadth  (cm)   37.2   35.6  –  38.7   36.2   35.9  –  36.6  

 By  examination,  the  sample  does  not  accurately  represent  the  population.    There  are  several  ways  to  account  for  these  differences  to  achieve  an  accurate  prediction  model.    The  hybrid  modeling  approach  allows  researchers  to  use  a  small  sample  data,  find  correlation  between  factors,  and  apply  that  correlation  and  variation  to  a  larger  sample  size,  typically  generated  from  a  population  database  such  as  ANSUR  (Army  ANthropometric  SURvey)  or  NHANES  (National  Health  and  Nutrition  Examination  Survey).    In  generating  this  hybrid  model,  there  were  several  options.    To  find  the  best  representative  model,  the  sample  itself  was  considered.    ANSUR  and  NHANES  databases  were  also  compared.      ANSUR  provides  very  detailed  and  precise  measurements  over  many  parts  of  the  human  body.    Specific  measurements  can  be  used,  however,  the  population  is  limited  to  the  Army  personnel  of  1987-­‐1988.    Comparing  this  to  the  target  population,  the  ANSUR  population  would  match  well  with  a  full-­‐time  agricultural  worker,  but  not  represent  the  small  gardener  or  hobbyist.    NHANES  provides  a  better  representative  sample  due  to  the  demographics  of  the  study.    However,  NHANES  is  limited  to  providing  measures  only  about  gender,  age,  stature,  and  weight.        In  order  to  predict  grip  diameter,  hand  length,  stature,  and  the  natural  log  of  the  body  mass  index  were  correlated  to  grip  diameter  preference.    The  prediction  of  wheel  hoe  height,  as  calculated  from  the  chosen  bottom  angle  and  shaft  length,  was  correlated  to  stature  and  the  natural  logarithm  of  BMI.    To  predict  handle  width,  biacromial  breadth,  forearm-­‐forearm  width,  natural  logarithm  of  BMI,  and  stature  were  individually  correlated  to  preference.    These  correlations  were  measured  through  R2  and  served  to  find  the  best  predictor  for  each  factor.    These  values  can  be  seen  in  Table  5.    

Page 7: Wheel Hoe 2KX Final Report · 2018. 9. 6. · ! 3! Thepopulationmodel!approach!creates!models!by!experimental!data!fromthe! representative!sample!population!performing!a!task!that!is!related!to!the!dimension

  7  

Table  5:  R2  Values  

R2  Values  

Biacromial  

Breadth  

Forearm  

Breadth   Hand  Length   Stature   Ln(BMI)  

Grip  Diameter       0.28   0.302   0.1534  

Handle  Width   0.2059   0.0056     0.0217   0.1392  

Height         0.1003   0.0877  

 Due  to  the  low  values  of  these  correlations,  multivariate  regressions  were  compared  to  find  the  best  possible  preference  predictor.    These  will  be  shown  and  discussed  later.    Once  a  prediction  equation  was  chosen,  the  equation  plus  a  residual  variance  measure  was  applied  to  a  sample  population  derived  from  the  NHANES  database.    At  a  target  accommodation  level  of  95%  of  the  target  population,  recommendations  were  generated  and  compared  to  measurements  of  current  and  available  wheel  hoe  models.    Results  The  experimental  data  was  collected  from  12  subjects  using  a  prototype  of  the  wheel  hoe.    Preference  models  for  each  target  measure  are  created  by  the  regression  equation  after  comparison  with  the  added  preference  term.      

Y  =  a  X  +  b  +  N  (0,  RMSE)    The  N  (0,  RMSE)  comes  from  the  random  sampling  from  a  normal  distribution  with  standard  deviation  equal  to  the  root  mean  squared  error  (RMSE)  of  the  corresponding  regression.    Grip  Diameter  Due  to  the  similar  R2  values  indicating  the  correlation  between  grip  diameter  and  anthropometric  measures,  combinations  of  these  measures  were  analyzed  for  the  best  fit.    

Handle  diameter  =  5.05  *  Hand  Length  –  56.38,         R2  =  0.2799         (1)    Handle  diameter  =  -­‐13.01  *  ln  (BMI)  +  72.42,           R2  =  0.1534     (2)    Handle  diameter  =  0.051  *  Stature  –  52.57,         R2  =  0.3022     (3)  

 The  relatively  large  R2  value  in  regression  model  (3)  reflects  that  the  stature  and  handle  diameter  have  relatively  strong  correlation  compared  with  the  other  two  models.    Thus,  the  handle  diameter  is  modeled  only  in  terms  of  stature.  

Handle  diameter  =  0.051  *  Stature  –  52.57  +  N  (0,  5.54)                    (4)  

Page 8: Wheel Hoe 2KX Final Report · 2018. 9. 6. · ! 3! Thepopulationmodel!approach!creates!models!by!experimental!data!fromthe! representative!sample!population!performing!a!task!that!is!related!to!the!dimension

  8  

1000  female  statures  were  then  sampled  using  weights  to  represent  the  relative  presence  of  a  particular  data  point  over  eight  years  of  the  NHANES  database  (1999-­‐2007).    This  constitutes  the  virtual  population  for  the  handle  diameter.    This  equation  (4)  is  applied  to  each  member  of  the  virtual  population.  Using  the  linear  regression  modal  developed  from  the  preference  study,  a  plot  of  handle  diameter  versus  stature  of  the  virtual  population  is  given  in  the  following  figures  (12  –  13).  

   Figure  12:  Sample  Data  and  Regression       Figure  13:  Regression  applied  to  NHANES  data  

The  following  table  summarizes  percentile  data  from  the  result  (Table  6).  Dimensions  are  given  in  millimeters.    

Table  6:  Handle  Diameter  in  Virtual  Population  

0%   2.5%                  5%       10%    25%                50%   75%                90%                95%   97.5%              100%    9.9   17.7   19.7     22.1     26.5   30.4   34.9   38.9   41.6   42.9   56.5  

 For  a  desired  level  of  accommodation  95%,  the  central  95%  percentile  values  of  the  virtual  population  are  selected  to  determine  the  minimum  handle  diameter  of  17.7mm  and  the  maximum  diameter  of  42.9mm.  Users  above  and  below  these  cutoffs  would  be  disaccommodated.    Wheel  Hoe  Height  The  same  method  is  used  to  determine  the  accommodation  of  the  height  of  the  wheel  hoe.    The  measurement  are  obtained  by  the  following  equation:

Wheel  Hoe  Height  =  length  *  sin  (bottom  angle)  +  bottom  height        (5)    The  length  is  the  distance  from  the  bottom  of  the  shaft  of  the  control  pole  to  the  upper  terminal  endpoint  of  the  handle.    The  bottom  height  refers  to  the  height  of  the  fixed  rotating  shaft  of  the  control  pole  in  bottom  disc  with  respect  to  the  ground,  which  is  35mm  in  the  experiment.    The  comparison  of  several  outcomes  of  

Page 9: Wheel Hoe 2KX Final Report · 2018. 9. 6. · ! 3! Thepopulationmodel!approach!creates!models!by!experimental!data!fromthe! representative!sample!population!performing!a!task!that!is!related!to!the!dimension

  9  

preference  models  for  handle  diameters  against  three  measures  of  anthropometry  are  as  follows.    

Height  =  75.382  *  ln(BMI)  +  586.82,         R2  =  0.0877     (6)    

Height  =  0.2254  *  Stature  +  455.6,         R2  =  0.1003     (7)    

Height  =  0.2166  *  Stature  +  72.00  *  ln(BMI)  +  242.00,     R2  =  0.1803     (8)    

Compared  with  the  low  R2  values  obtained  from  the  regression  models  using  single  predictor,  the  relatively  higher  R2  value  in  the  multi-­‐regression  model  (8)  reflects  that  the  height  of  Wheel  Hoe  the  stature  and  natural  logarithm  of  BMI  has  relatively  strong  correlation  compared  with  the  other  two  models.    Thus,  the  handle  diameter  is  modeled  in  terms  of  stature  and  natural  logarithm  of  BMI.    These  two  predictors  are  available  in  the  NHANES  data,  which  is  preferred  to  ANSUR  due  to  the  better  representation  of  the  target  population.    The  preference  model  is  given  as  follows.  

 Height  =  0.2166  *  Stature  +  72.00  *  ln(BMI)  +  242.00  +  N(0,48.5)        (9)  

 Equation  (9)  is  applied  to  the  same  virtual  population  from  NHANES  that  contains  the  randomly  sampled  1000  female  data  in  stature  and  Ln(BMI).    The  following  table  summarizes  percentile  data  from  the  result  (Table  7).    Dimensions  are  given  in  millimeters.  

 Table  7:  Wheel  Hoe  Height  

0%   2.5%   5%   10%   25%   50%   75%   90%   95%   97.5%   100%  608   723   743   763   795   831   870   900   922   939   1034  

 For  a  desired  level  of  accommodation  95%,  the  central  95%  percentile  values  of  the  virtual  population  are  selected  to  determine  the  minimum  height  of  723  mm  and  the  maximum  height  of  939  mm.    Handle  Width  The  same  method  is  used  to  determine  the  accommodation  of  the  handle  width.    The  comparison  of  several  outcomes  of  preference  regression  models  for  handle  width  against  three  measures  of  anthropometry  are  as  follows.    Biacromial  Breadth  is  abbreviated  as  BAB.    Handle  Width  =  101.45  *  ln(BMI)  +  69.476  ,         R2  =  0.1392   (10)  

 Handle  Width  =  0.8467*  BAB  +  75.981  ,             R2  =  0.2059     (11)  

 Handle  Width  =  57.95  *  ln(BMI)  +  0.669  *  BAB  –  41.58  ,       R2  =  0.2423     (12)    

Page 10: Wheel Hoe 2KX Final Report · 2018. 9. 6. · ! 3! Thepopulationmodel!approach!creates!models!by!experimental!data!fromthe! representative!sample!population!performing!a!task!that!is!related!to!the!dimension

  10  

Compared  with  the  linear  model  (10)  and  (11),  there  is  no  significant  increase  for  R2  value  in  the  multi-­‐regression  model.    In  addition,  the  representative  data  of  BMI  and  Biacromial  Breadth  for  U.S.  female  are  located  in  ANSUR  and  NHANES  respectively.  The  multi-­‐regression  model  increases  the  effect  of  the  error  compared  to  the  linear  regression  model.    Thus,  the  handle  width  is  modeled  in  terms  of  biacromial  breadth  as  the  following  equation.    

Handle  Width  =  0.8467*  BAB  +  75.981  +  N(0,4.84)                            (13)    500  female  statures  are  then  sampled  at  random  from  ANSUR  women  data  and  constitute  the  virtual  population  for  the  handle  width.    This  equation  (13)  is  applied  to  each  member  of  the  virtual  population.  Using  the  model  developed  from  the  preference  study,  a  plot  of  handle  width  versus  biacromial  breath  of  the  virtual  population  is  given  in  the  following  figures.    (Figures  14  –  15).    

   Figure  14:  Sample  Data  Regression                                  Figure  15:  Regression  applied  to  ANSUR  Sample  Data  

The  following  table  summarizes  percentile  data  from  the  result  (Table  8).    Dimensions  are  given  in  millimeters.  

 Table  8:  Handle  Width  

0%   2.5%   5%   10%   25%   50%   75%   90%   95%   97.5%   100%  332   352   357   364   373   382   391   400   406   410   425  

 For  a  desired  level  of  accommodation  95%,  the  central  95%  percentile  values  of  the  virtual  population  are  selected  to  determine  the  minimum  handle  width  of  352  mm  and  the  maximum  handle  width  of  410  mm.    

250  

300  

350  

400  

450  

500  

300   350   400   450  

Page 11: Wheel Hoe 2KX Final Report · 2018. 9. 6. · ! 3! Thepopulationmodel!approach!creates!models!by!experimental!data!fromthe! representative!sample!population!performing!a!task!that!is!related!to!the!dimension

  11  

Discussion  Design  Recommendations    Based  on  the  previous  analysis,  the  recommendations  for  Handle  Diameter,  Handle  Width,  and  Wheel  Hoe  Height  are  given  in  Table  9.    All  dimensions  are  given  in  millimeters.    

Table  9:  Recommendations  

  Mean   Range  

Handle  Diameter   30.4   17.7  –  42.9  

Handle  Width   382   352  –  410  

Height   831   723  –  939  

 Generally,  wheel  hoes  are  designed  to  be  static,  without  much  adjustability.    The  mean  measurements  would  provide  guidance  to  development  of  a  static  tool  but  would  reduce  accommodation  to  a  just-­‐noticeable-­‐difference  population.    While  this  concept  was  not  tested,  it  is  posited  that  while  incorporating  adjustability  to  the  design,  a  static  design  to  the  mean  would  increase  the  comfort  level  for  a  female  user  population.    Market  Comparison  Given  in  Table  10  is  a  brief  comparison  of  market  offerings  of  wheel  hoes.    When  the  dimensions  were  listed  in  the  product  description,  they  have  been  put  into  the  table.    When  compared  to  the  mean  and  ranges  recommended  by  the  previous  study,  it  is  obvious  that  the  handle  length,  which  contributes  to  the  height,  is  much  longer  for  market  offerings.    Handle  width  is  also  larger.    The  weight  was  not  tested  in  the  previous  experiment  due  to  the  extra  components  added  to  the  prototype  to  create  the  adjustability.    Cost,  also  was  not  considered,  but  was  included  in  the  table  to  guide  future  designs.    

Table  10:  Market  Comparison  

  Tool  Name   Handle  Length  (mm)  

Handle  Width  (mm)  

Weight  (kg)  

Cost  

1.   Deluxe  Hoss  Wheel  Garden  Hoe  

1384   419     8.85   $250.00  

2.   Glaser  Professional  Wheel  Hoe  

1448   Unknown  but  set  width  

11.3   $350.00  

   Limitations  

These  recommendations  do  have  their  limitations.    First,  the  correlation  of  the  preferences  does  not  correspond  well  with  anthropometry.    This  could  be  due  to  

Page 12: Wheel Hoe 2KX Final Report · 2018. 9. 6. · ! 3! Thepopulationmodel!approach!creates!models!by!experimental!data!fromthe! representative!sample!population!performing!a!task!that!is!related!to!the!dimension

  12  

a  number  of  reasons,  not  least  of  which  is  the  small  sample  size  used  when  obtaining  the  preference  measurements.    The  age  distribution  of  the  12  people  sampled  did  not  match  up  with  that  of  either  the  population  or  of  the  NHANES  data.    This  would  be  an  issue  because  the  more  experienced  and  developed  the  subject;  their  preferences  may  correlate  better  and  provide  better  and  different  predictions  of  the  appropriate  tool  size.    Another  factor  was  the  testing  not  being  representative  of  the  use  of  the  wheel  hoe.    In  typical  farming  and  gardening  conditions,  the  wheel  hoe  is  meant  to  be  used  in  soil  and  at  a  walking  pace.    This  situation  was  not  replicated  as  the  subjects  adjusted  the  tool  to  their  preference.    Given  these  shortcomings,  future  studies  should  be  completed  with  larger,  more  representative  samples,  and  in  a  similar  situation  to  which  the  wheel  hoe  can  be  applied.    Conclusion  The  increase  in  women  participating  in  farming  and  gardening  activities  provides  the  motivation  to  develop  tools  specifically  for  women.    This  opens  up  a  niche  market  and  if  used,  will  reduce  the  risk  for  injury.    Through  the  use  of  hybrid  models,  this  study  has  provided  guidelines  for  the  development  of  a  wheel  hoe  fit  for  women’s  anthropometry.    While  these  measurements  offer  a  good  starting  point  and  open  up  discussion  of  developing  tools  for  women,  the  limitations  of  this  study  imbue  a  sense  of  caution  when  implementing  these  recommendations.    Future  studies  should  focus  on  accurate  population  representation  and  consistent  posture  testing  when  examining  the  preference  of  using  the  tool.    Combined  with  the  methodology  and  preliminary  results  presented  here,  these  recommendations  can  make  for  a  very  strong  case  to  develop  tools  appropriate  for  the  comfortable  use  by  women.    

Page 13: Wheel Hoe 2KX Final Report · 2018. 9. 6. · ! 3! Thepopulationmodel!approach!creates!models!by!experimental!data!fromthe! representative!sample!population!performing!a!task!that!is!related!to!the!dimension

  13  

References  Drillis,  R.,  and  Contini,  R.,  (1966),  Body  Segment  Parameters,  Office  of  Vocational  Rehabilitation  Engineering  &  Science,  New  York,  NY.    Garneau,  C.  and  Parkinson,  M.  (2009).  Including  preference  in  anthropometry-­‐driven  models  for  design.  ASME  Journal  of  Mechanical  Design,  131(10):6.    Hsiao,  H.,  Long,  D.,  and  Snyder,  K.  (2002).  “Anthropometric  differences  among  occupational  groups,”  Ergonomics,  45(2),  pp.  136-­‐152.    Nadadur,  G.,  and  Parkinson,  M.  B.,  (2008),  “Extrapolation  of  Anthropometric  Measures  to  New  Populations,”  SAE  International  Journal  of  Passenger  Cars  Electronic  Systems,  1(1),  pp.  567–573.    Parkinson,  M.  B.  and  Reed,  M.  P.  (2010)  “Creating  virtual  user  populations  by  analysis  of  anthropometric  data”,  International  Journal  of  Industrial  Ergonomics,  40(1),  pp.  106-­‐111    Parkinson,  M.,  and  Reed,  M.,  (2006),  “Optimizing  Vehicle  Occupant  Packaging,”  SAE  Transactions:  Journal  of  Passenger  Cars–Mechanical  Systems,  115(6),  pp.  890–901.    Parkinson,  M.  B.  and  Reed,  M.  P.  (2009).  “Creating  virtual  user  populations  by  analysis  of  anthropometric  data.”  International  Journal  of  Industrial  Ergonomics,  preprint  submitted  2009.    Reed,  M.  P.,  Manary,  M.  A.,  Flannagan,  C.  A.  C.,  and  Schneider,  L.  W.,  (2002),  “A  Statistical  Method  for  Predicting  Automobile  Driving  Posture,”  Human  Factors,  44(4),  pp.  557–568.    Roe,  R.  (1993).  “Occupant  packaging,”  Automotive  Ergonomics,  pp.  11–42.  Taylor  &  Francis,  London,  UK