why radiative transfer? introduction to solar...

7
Introduction to Solar Radiative Transfer I Basic Radiative Transfer Han Uitenbroek National Solar Observatory/Sacramento Peak Sunspot NM George Ellery Hale CGEP, CU Boulder Lecture 13, Mar 5 2013 Why Radiative Transfer? In general we cannot visit the astronomical objects we are interested in, and thus cannot take in-situ measurements Instead, to determine the object’s properties, we have to rely on the information carried to us by the electromagnetic radiation emitted and/or reflected by the object. Multi-wavelength (spectroscopic) observations and analysis are the only available means to determine the physical conditions of astronomical objects. To analyze spectroscopic data meaningfully we need to understand how physical information is encoded in the radiation (Radiative Transfer). We need to understand how the radiative signal is modified as it travels to our instruments and is detected with them. ◗ ◗❙ ❐ ✗ The Solar Spectrum and Surface Temperature 0 2000 4000 6000 8000 10000 Wavelength [nm] 0 1•10 -8 2•10 -8 3•10 -8 4•10 -8 5•10 -8 Intensity [J m -2 s -1 Hz -1 sr -1 ] 6300 [K] ◗ ◗❙ ❐ ✗ The Solar Spectrum and Surface Temperature 0 2000 4000 6000 8000 10000 Wavelength [nm] 0 1•10 -8 2•10 -8 3•10 -8 4•10 -8 5•10 -8 Intensity [J m -2 s -1 Hz -1 sr -1 ] 5770 [K] 6300 [K] ◗ ◗❙ ❐ ✗ The Solar Spectrum and Surface Temperature 0 2000 4000 6000 8000 10000 Wavelength [nm] 0 1•10 -8 2•10 -8 3•10 -8 4•10 -8 5•10 -8 Intensity [J m -2 s -1 Hz -1 sr -1 ] 5770 [K] 6000 [K] 6300 [K] ◗ ◗❙ ❐ ✗ Overview I Basic Radiative Transfer Intensity, emission, absorption, source function, optical depth, transfer equation, line formation II Detailed Radiative Processes Spectral lines, radiative transitions, collisions, polarization, Non-LTE radiative transfer III Observations of Solar Radiation Solar telescopes, spectroscopy, polarimetry Han Uitenbroek, NSO/SP Introduction to Solar Radiative Transfer I ◗ ◗❙ ❐ ✗

Upload: others

Post on 09-May-2020

9 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Why Radiative Transfer? Introduction to Solar …zeus.colorado.edu/astr7500-toomre/Lectures/SolStelMag...Basic Radiative Transfer: Emission Emission j λ: I λ(s+ds)=I λ(s)+dI λ

Introduction to Solar Radiative TransferI Basic Radiative Transfer

Han UitenbroekNational Solar Observatory/Sacramento Peak

Sunspot NM

George Ellery Hale CGEP, CU BoulderLecture 13, Mar 5 2013

Why Radiative Transfer?

• In general we cannot visit the astronomical objects we are interested in,and thus cannot take in-situ measurements

• Instead, to determine the object’s properties, we have to rely on theinformation carried to us by the electromagnetic radiation emittedand/or reflected by the object.

• Multi-wavelength (spectroscopic) observations and analysis are the onlyavailable means to determine the physical conditions of astronomicalobjects.

• To analyze spectroscopic data meaningfully we need to understand howphysical information is encoded in the radiation (Radiative Transfer).

• We need to understand how the radiative signal is modified as it travelsto our instruments and is detected with them.

! " "" "! # $

The Solar Spectrum and Surface Temperature

0 2000 4000 6000 8000 10000Wavelength [nm]

0

1•10!8

2•10!8

3•10!8

4•10!8

5•10!8

Inte

nsity

[J m

!2 s!1

Hz!1

sr!1

]

6300 [K]

! " "" "! # $

The Solar Spectrum and Surface Temperature

0 2000 4000 6000 8000 10000Wavelength [nm]

0

1•10!8

2•10!8

3•10!8

4•10!8

5•10!8

Inte

nsity

[J m

!2 s!1

Hz!1

sr!1

] 5770 [K]

6300 [K]

! " "" "! # $

The Solar Spectrum and Surface Temperature

0 2000 4000 6000 8000 10000Wavelength [nm]

0

1•10!8

2•10!8

3•10!8

4•10!8

5•10!8

Inte

nsity

[J m

!2 s!1

Hz!1

sr!1

] 5770 [K]6000 [K]6300 [K]

! " "" "! # $

Overview

• I Basic Radiative TransferIntensity, emission, absorption, source function, optical depth, transferequation, line formation

• II Detailed Radiative ProcessesSpectral lines, radiative transitions, collisions, polarization, Non-LTEradiative transfer

• III Observations of Solar RadiationSolar telescopes, spectroscopy, polarimetry

Han Uitenbroek, NSO/SP Introduction to Solar Radiative Transfer I ! " "" "! # $

Page 2: Why Radiative Transfer? Introduction to Solar …zeus.colorado.edu/astr7500-toomre/Lectures/SolStelMag...Basic Radiative Transfer: Emission Emission j λ: I λ(s+ds)=I λ(s)+dI λ

Bibliography

• Rutten: Radiative Transfer in Stellar Atmospheres(http://esoads.eso.org/abs/2003rtsa.book.....R)

• Rybicki and Lightman: Radiative Processes in Astrophysics

• Mihalas: Stellar Atmospheres

• Shu: The Physics of Astrophysics. I. Radiation

• Gray: Observation and Analysis of Stellar Photospheres

• del Toro Iniesta: Introduction to Spectropolarimetry

• Allen: Astrophysical Quantities

Han Uitenbroek, NSO/SP Introduction to Solar Radiative Transfer I ! " "" "! # $

Short History

• 1802 Wollaston First to observe dark gaps in spectrum: spectral lines

• 1814 Fraunhofer rediscovers lines. Assigns names e.g.,C (H!), D (Na i), G (CH molecules), F (H"), and H (Ca ii)

• 1823 Herschel realized spectra contain information on composition ofsource from flame spectra

• 1842 Becquerel photographs spectra, discovers lines in the UV, beyondthe visible

• 1858 Bunsen and Kirchho! discover wavelength correspondencebetween bright flame emission and dark solar absorption lines. Start ofquantitative spectroscopy.

Han Uitenbroek, NSO/SP Introduction to Solar Radiative Transfer I ! " "" "! # $

The Sun

Han Uitenbroek, NSO/SP Introduction to Solar Radiative Transfer I ! " "" "! # $

Solar atmosphere is also very strongly time dependent

Courtesy: Mats Carlsson

Han Uitenbroek, NSO/SP Introduction to Solar Radiative Transfer I ! " "" "! # $

A vertical cross section through a 3-D ConvectionSimulation

6

8

10

T [1

03 K]

0 2 4 6 8x [arcsec]

!200

0

200

400

z [km

]

0 2 4 6 8x [arcsec]

0

2

4

6

8

x [ar

csec

]

Han Uitenbroek, NSO/SP Introduction to Solar Radiative Transfer I ! " "" "! # $

The Visible Solar Spectrum

Han Uitenbroek, NSO/SP Introduction to Solar Radiative Transfer I ! " "" "! # $

Page 3: Why Radiative Transfer? Introduction to Solar …zeus.colorado.edu/astr7500-toomre/Lectures/SolStelMag...Basic Radiative Transfer: Emission Emission j λ: I λ(s+ds)=I λ(s)+dI λ

Solar Spectrum in the Blue and Red

391 392 393 394 395 396 397 398 399Wavelength [nm]

05.0•10!9

1.0•10!8

1.5•10!8

2.0•10!8

2.5•10!8

Inte

nsity

[J m

!2 s!1

Hz!1

sr!1

]

588 589 590 591 592 593 594 595 596Wavelength [nm]

0

1•10!8

2•10!8

3•10!8

4•10!8

Inte

nsity

[J m

!2 s!1

Hz!1

sr!1

]

Han Uitenbroek, NSO/SP Introduction to Solar Radiative Transfer I ! " "" "! # $

Spatially Resolved Spectral Lines

Intensity

0.5 0.6 0.7 0.8 0.9 1.0

Spectrum

0.2 0.4 0.6 0.8

Polarization

!1.0 !0.5 0.0 0.5

Han Uitenbroek, NSO/SP Introduction to Solar Radiative Transfer I ! " "" "! # $

Basic Radiative Transfer: Radiation Field

!"

#

!$

%

&

Specific intensity I! is the radiative energy that flows, at the location #r,per second, per wavelength interval, and per solid angle, in the direction #lthrough the surface area dA! perpendicular to #l. Intensity is conserved withdistance in the absence of emission and absorption or scattering processes.

Specific Intensity:

dErad" ! I"(#r,#l, t) dt dA

! d$ d! = I"(#r,#l, t) dt cos % dA d$ d!

Units: J s"1 m"2 nm"1 ster"1

Han Uitenbroek, NSO/SP Introduction to Solar Radiative Transfer I ! " "" "! # $

Basic Radiative Transfer: Mean Intensity

Angle-averaged Mean intensity:

J!(#r, t) !1

4&

!I" d! =

1

4&

! 2#

0

! #

0I" sin % d% d'

Units: J s"1 m"2 nm"1 ster"1

Unlike the Specific Intensity theAngle-averaged Mean Intensity is notconserved with distance

! "#

r "!

r sin

#

z

y

x

!

Han Uitenbroek, NSO/SP Introduction to Solar Radiative Transfer I ! " "" "! # $

Basic Radiative Transfer: Flux

Flow of radiative energy through a surface.Flux:

F"(#r,#n, t) !!

I" cos % d! =

! 2#

0

! #

0I" cos % sin % d% d' (1)

Units: J s"1 m"2 nm"1

Flux in radial direction:

F"(z) =

! 2#

0

! #2

0I" cos % sin % d% d'+

! 2#

0

! #

#2

I" cos % sin % d% d' (2)

=

! 2#

0

! #2

0I" cos % sin % d% d'"

! 2#

0

! #2

0I"(& " %) cos % sin % d% d'

! F+" (z)" F"

" (z)

Han Uitenbroek, NSO/SP Introduction to Solar Radiative Transfer I ! " "" "! # $

Basic Radiative Transfer: Absorption

Absorption !":

I"(s+ ds) = I"(s) + dI" = I" " !"I"ds

Units: m"1

! !"#"$!

$%

$&

$'

(

Han Uitenbroek, NSO/SP Introduction to Solar Radiative Transfer I ! " "" "! # $

Page 4: Why Radiative Transfer? Introduction to Solar …zeus.colorado.edu/astr7500-toomre/Lectures/SolStelMag...Basic Radiative Transfer: Emission Emission j λ: I λ(s+ds)=I λ(s)+dI λ

Basic Radiative Transfer: Emission

Emission j":

I"(s+ ds) = I"(s) + dI" = I" + j"(s)ds

Units: J m"3 s"1 nm"1 ster"1

! !"#"$!

$%

$&

$'

(

Han Uitenbroek, NSO/SP Introduction to Solar Radiative Transfer I ! " "" "! # $

Basic Radiative Transfer: Source Function

Source function:

S" ! j"/!"

Units: J s"1 m"2 nm"1 ster"1

For multiple proceses active at the same wavelength:

Stot" =

"j"/

"!"

Stot" =

jc" + jl"!c" + !l

"

=Sc" + ("Sl

"

1 + (", (" ! !l

"/!c"

Han Uitenbroek, NSO/SP Introduction to Solar Radiative Transfer I ! " "" "! # $

Basic Radiative Transfer: Transport Equation

Transport along a ray:

dI"(s) = I"(s+ ds)" I"(s) = j"(s)ds" !"(s)I"(s)ds (3)

dI"ds

= j" " !"I"

dI"!"ds

=dI"d)"

= S" " I"

Optical length and thickness:

d)" ! !"(s)ds (4)

)"(D) =

! D

0!"(s)ds

Han Uitenbroek, NSO/SP Introduction to Solar Radiative Transfer I ! " "" "! # $

Basic Radiative Transfer: Transport Equation

Transport along a ray:

dI"d)"

= S" " I" (5)

I"()") = I"(0)e"$" +

! $"

0S"(t)e

"($""t)dt

Homogeneous medium:

I"(D) = I"(0)e"$"(D) + S"

#1" e"$"(D)

$(6)

Optically thick: I"(D) # S"

Optically thin: I"(D) # I"(0) + [S" " I"(0)] )"(D)

Han Uitenbroek, NSO/SP Introduction to Solar Radiative Transfer I ! " "" "! # $

Basic Radiative Transfer: Through an Atmosphere

Optical path:

d)µ" = !"ds ! "!"dz

µ

Standard plane parallel transport equation:

dI"d)µ"

= µdI"d)"

= I""S"

!

"#$%!%&%'

(

Han Uitenbroek, NSO/SP Introduction to Solar Radiative Transfer I ! " "" "! # $

Basic Radiative Transfer: Eddington–Barbier

Emergent intensity at the surface:

I+" ()" = 0, µ) =

! #

0S"(t)e

"t/µdt/µ

Substitute power series:

S"()") =N"

n=0

an)n" (using :

! #

0e"ttndt =!n)

I+" ()" = 0, µ) = a0 + a1µ+2a2µ2 + . . .+ n!aNµN

Eddington–Barbier relation:

I+" ()" = 0, µ) # S"()" = µ)

Han Uitenbroek, NSO/SP Introduction to Solar Radiative Transfer I ! " "" "! # $

Page 5: Why Radiative Transfer? Introduction to Solar …zeus.colorado.edu/astr7500-toomre/Lectures/SolStelMag...Basic Radiative Transfer: Emission Emission j λ: I λ(s+ds)=I λ(s)+dI λ

Eddingtomn-Barbier approximation

!"# !"$

%& '%()('&

'("(*+!"$,

Han Uitenbroek, NSO/SP Introduction to Solar Radiative Transfer I ! " "" "! # $

Basic Radiative Transfer: Limb Darkening

S$ a

b

h0

I $

0

a

b

10 sin !

!

ab

r/R = sin %

Han Uitenbroek, NSO/SP Introduction to Solar Radiative Transfer I ! " "" "! # $

Absorption lines in the solar spectrum

429.0 429.5 430.0 430.5 431.0 431.5 432.0wavelength [nm]

0.0

0.2

0.4

0.6

0.8

1.0

Inte

nsity

Han Uitenbroek, NSO/SP Introduction to Solar Radiative Transfer I ! " "" "! # $

Why do we get spectral lines in absoption?

!1 !0

!1 !0

I! !

S

"!

total

!0

!1

0 0

01

h

h0

!

!

!#

Han Uitenbroek, NSO/SP Introduction to Solar Radiative Transfer I ! " "" "! # $

Optical depth unity in the Na i D2 line

10!9

10!8

10!7

Sou

rce

Func

tion

[J m

!2 s

!1 H

z!1 s

r!1 ]

0 1000 2000 3000 4000 5000x [km]

!200

0

200

400

600

800

z [k

m]

589.002 [nm]

588.80 588.90 589.00 589.10 589.20 589.30$[nm]

Han Uitenbroek, NSO/SP Introduction to Solar Radiative Transfer I ! " "" "! # $

In the UltraViolet the Spectral Lines are in Emission

126 128 130 132 134Wavelength [nm]

0.0

0.2

0.4

0.6

0.8

1.0

Inte

nsity

Han Uitenbroek, NSO/SP Introduction to Solar Radiative Transfer I ! " "" "! # $

Page 6: Why Radiative Transfer? Introduction to Solar …zeus.colorado.edu/astr7500-toomre/Lectures/SolStelMag...Basic Radiative Transfer: Emission Emission j λ: I λ(s+ds)=I λ(s)+dI λ

Why do we get spectral lines in emission?

!1 !0

!1 !0

I! !

S

"!

!0

!1

0 0

01

h

h

total

0!

!

#!

Han Uitenbroek, NSO/SP Introduction to Solar Radiative Transfer I ! " "" "! # $

Why do we get spectral lines in emission and absorption?

!

!!

"!

"!

#!

#!$ %

!!

&!

&!

&!

!'(!

!

)*)+,

!

!

!!

,*- )*)+,

!

#

#

#!,*-

Han Uitenbroek, NSO/SP Introduction to Solar Radiative Transfer I ! " "" "! # $

Eddington–Barbier is an approximation!!

T [103 K]

6 8 10

!0.2

0.0

0.2

0.4

y [M

m]

0 1 2 3 4 5x [Mm]

µ = 0.93

Han Uitenbroek, NSO/SP Introduction to Solar Radiative Transfer I ! " "" "! # $

Eddington–Barbier is an approximation!!

6

8

10

12

T [1

03 K

]

0 1 2 3 4 5x [Mm]

!0.4

!0.2

0.0

0.2

0.4

z [M

m]

0 1 2 3 4 5x [Mm]

5.8

6.0

6.2

6.4

6.6

6.8

7.0

radi

atio

n te

mpe

ratu

re [1

03 K

]

Trad Tform

Han Uitenbroek, NSO/SP Introduction to Solar Radiative Transfer I ! " "" "! # $

Continuum processes

Outside spectral lines the solar plasma has significant opacity in so calledcontinuum processes. They are called this way because their opacity variesvery slowly with wavelength.

• Atomic Bound–free and free–free transitions

• H" bound–free and free-free

• Thomson scattering

!Te = Ne*e = Ne

8&

3m4ec

2

q4e(4&+0)2

• Rayleigh scattering

!R(,) = *efij,4/(,2

ij " ,2)2

Han Uitenbroek, NSO/SP Introduction to Solar Radiative Transfer I ! " "" "! # $

There is a lot of information in spectral lines

Uitenbroek & Tritschler, IBIS DST

Han Uitenbroek, NSO/SP Introduction to Solar Radiative Transfer I ! " "" "! # $

Page 7: Why Radiative Transfer? Introduction to Solar …zeus.colorado.edu/astr7500-toomre/Lectures/SolStelMag...Basic Radiative Transfer: Emission Emission j λ: I λ(s+ds)=I λ(s)+dI λ

End Part I

Han Uitenbroek, NSO/SP Introduction to Solar Radiative Transfer I ! " "" "! # $

Molecular Oxygen in the Earth Atmosphere

Intensity

0.4 0.6 0.8

630.0 630.1 630.2 630.3 630.4Wavelength [nm]

Fe IFe I

O2 O2

Back

Han Uitenbroek, NSO/SP Introduction to Solar Radiative Transfer I ! " "" "! # $

Di!erences in spectral lines

393.0 393.2 393.4 393.6 393.8 394.0Wavelength [nm]

0

2.0•10!9

4.0•10!9

6.0•10!9

8.0•10!9

1.0•10!8

1.2•10!8

Inte

nsity

[J m

!2 s!1

Hz!1

sr!1

]

Back

Han Uitenbroek, NSO/SP Introduction to Solar Radiative Transfer I ! " "" "! # $

Invariance of Specific Intensity along Rays

Specific Intensity has been defined in such a way as to be independent ofthe source and the observer.

dE" = I" cos % dt dA d$ d! = I !" cos %! dt dA! d$ d!!

d! = dA! cos %!/R2

d!! = dA cos %/R2

I" = I !"

Back

Han Uitenbroek, NSO/SP Introduction to Solar Radiative Transfer I ! " "" "! # $

H" Opacity

0 1 2 3 4Wavelength [µm]

0

2•10!29

4•10!29

6•10!29

8•10!29

1•10!28

% & [m

5 /J]

Hydrogen H! opacity T = 6000

H! b ! fH! f ! f

"Ebf = 0.754 eV Back

Han Uitenbroek, NSO/SP Introduction to Solar Radiative Transfer I ! " "" "! # $

Bound–Free Cross Sections of Hydrogen

Back

Han Uitenbroek, NSO/SP Introduction to Solar Radiative Transfer I ! " "" "! # $