william h. green sustainable energy mit november 16, · pdf filewilliam h. green sustainable...

23
Biomass Part I: Resources and uses William H. Green Sustainable Energy MIT November 16, 2010

Upload: lamcong

Post on 08-Mar-2018

218 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: William H. Green Sustainable Energy MIT November 16,  · PDF fileWilliam H. Green Sustainable Energy MIT November 16, ... Biofuels (ethanol and biodiesel) ... liquids technology

Biomass Part I: Resources and uses

William H. Green

Sustainable Energy

MIT

November 16, 2010

Page 2: William H. Green Sustainable Energy MIT November 16,  · PDF fileWilliam H. Green Sustainable Energy MIT November 16, ... Biofuels (ethanol and biodiesel) ... liquids technology

Sustainable Energy: Big Picture

• People want electricity, transport, heat

• Now use: coal oil gas

• Major Challenges:

–CO2 to atmosphere: climate change

–Run short on oil? Security, price–Run short on oil? Security, price

–Price: most people in the world can’t afford the energy they want

Page 3: William H. Green Sustainable Energy MIT November 16,  · PDF fileWilliam H. Green Sustainable Energy MIT November 16, ... Biofuels (ethanol and biodiesel) ... liquids technology

Possible Solutions

• CO2: switch from conventional coal– Efficiency: lighting, cooling?

– Coal � gas combined cycle

– Non-emitting power sources

– CO2 underground sequestration

– Burn Biomass instead of coal– Burn Biomass instead of coal

• Oil running out: Efficiency, Alternatives– Vehicle efficiency, urban planning

– Batteries or natural gas for land transport

– Coal, tar, gas � synfuels with CO2 sequestration

– Biomass � liquid fuels

• Price?– Can Biomass energy be cheap??

Page 4: William H. Green Sustainable Energy MIT November 16,  · PDF fileWilliam H. Green Sustainable Energy MIT November 16, ... Biofuels (ethanol and biodiesel) ... liquids technology

History, overview of biomass

• Largest historical energy source

• Largest current renewable energy source

• Many historical examples of resource depletion– England, Easter Island deforestation– Sahel desertification– Sahel desertification– Whale oil

• Scalability and land use resources are a challenge

• Possible better ways:– Waste from agriculture, forestry– Energy crops / algae on waste land

Page 5: William H. Green Sustainable Energy MIT November 16,  · PDF fileWilliam H. Green Sustainable Energy MIT November 16, ... Biofuels (ethanol and biodiesel) ... liquids technology

Solar insolation

• Solar “constant”: 1366 W/m2

– Measured outside the earth’s atmosphere

– Varies with seasons

• On planet’s surface effected by geometry and filtering.

• Photosynthetically active region (PAR):~ 400-700 nm

Photosynthesis ~ 1% efficientEnergy stored <3 MW / (km)2 arable land

Maps of insolation at the top of the atmosphere and theEarth's surface removed due to copyright restrictions.

Image by Robert A. Rohde / Global Warming Art.

Page 6: William H. Green Sustainable Energy MIT November 16,  · PDF fileWilliam H. Green Sustainable Energy MIT November 16, ... Biofuels (ethanol and biodiesel) ... liquids technology

Biomass: The Source

• Photosynthesis stores ~300 EJ/yr as biomass energy– Human energy use ~400 EJ/yr– Carbon cycle: plants die, decay to CO2 – In fertile areas ~ 10-5 EJ/(km)2/yr

• Requires ~250 kg H2O to grow 1 kg biomass

– Earth’s total land surface ~108(km)2– Earth’s total land surface ~108(km)2

• For large scale biomass energy NEED LOTS OF LAND (even much more than solar) and WATER

• If you have spare land and fresh water, relatively inexpensive to grow and harvest (e.g. much less capital than solar!)

Page 7: William H. Green Sustainable Energy MIT November 16,  · PDF fileWilliam H. Green Sustainable Energy MIT November 16, ... Biofuels (ethanol and biodiesel) ... liquids technology

What is biomass? Properties

• Solid carbon-based fuel (like coal)– H:C ~1.5 , O:C ~1

– Significant metals, S, N

– Minor elements come from soil• Nitrogen fertilizers often required

• Wet: about 50% water before drying• Wet: about 50% water before drying– Low energy density ~9 MJ/kg wet

• Diffuse, relatively low energy density: expensive to harvest, ship.

• Annual cycle: biomass available only at harvest time, may need to be stored.

Page 8: William H. Green Sustainable Energy MIT November 16,  · PDF fileWilliam H. Green Sustainable Energy MIT November 16, ... Biofuels (ethanol and biodiesel) ... liquids technology

The main components of biomass are

carbohydrates & lignin (+proteins, lipids)

O

H

HO

H

HO

H

H

OHHOH

OH

D-glucose

Carbohydrates

Cellulose

Lignin

Mostly cellulose & hemicellulose

O

O

O

O

O

O

Lignin and Protein images, public domain from Wikimedia Commons.

Fats

Proteins

Page 9: William H. Green Sustainable Energy MIT November 16,  · PDF fileWilliam H. Green Sustainable Energy MIT November 16, ... Biofuels (ethanol and biodiesel) ... liquids technology

Uses of biomass

• Energy uses

– Heat

– Electricity (including co-firing)

– Liquid Fuels for Transportation

• Many important non-energy uses

– Food for humans

– Animal feed (a major and growing use)

– Lumber & other construction materials

– Clothing (cotton, wool, linen, leather)

– Paper, packaging, etc.

Page 10: William H. Green Sustainable Energy MIT November 16,  · PDF fileWilliam H. Green Sustainable Energy MIT November 16, ... Biofuels (ethanol and biodiesel) ... liquids technology

Biomass energy use is currently dominated by wood, but government regulations driving rapid expansion of ethanol and biodiesel production.

1.5

2.0

2.5quadrilli

on b

tuWood and derived fuels

0.0

0.5

1.0

2002 2003 2004 2005 2006 2007 2008

year

quadrilli

on b

tu

Biofuels (ethanol and biodiesel)

Waste

Page 11: William H. Green Sustainable Energy MIT November 16,  · PDF fileWilliam H. Green Sustainable Energy MIT November 16, ... Biofuels (ethanol and biodiesel) ... liquids technology

Using biomass for energy: options

• Burn it for electricity or heat–US Paper/Wood industry: 6 GWe

–Coal is usually cheaper for large-scale

–Good option with carbon cap: mix biomass with coal.

• Convert to Gas (CH4 or CO/H2)–Practiced on small-scale using waste

–Coal-to-syngas and natural gas are cheaper, but maybe with carbon cap…

• Convert to Liquid Fuels

Page 12: William H. Green Sustainable Energy MIT November 16,  · PDF fileWilliam H. Green Sustainable Energy MIT November 16, ... Biofuels (ethanol and biodiesel) ... liquids technology

Syngas is a mixture of CO/H2 used for many purposes. Usually made from natural gas, but can also be made from biomass.

CH1.5O0.67 + 0.33 H2O → CO + 1.08 H2

Syngas:COH2

Gasifier800°C

Biomass

Steam or oxygen

Electricity,CH4, H2,Gasoline/diesel,Ethanol

CH1.5O0.67 + 0.33 H2O → CO + 1.08 H2

Source: National Renewable Energy Lab; F. Vogel, Paul Scherrer Institut, Switzerland.Image source: Güssing Burgenland (Austria) gasifier, via wikimedia commons.

∆Hr = +101 kJ/mol700-900°C, 1 atm

wood steam syngas

Depending on biomass

composition, desired

stoichiometry, mix in some

O2 (partial combustion) to

provide the heat of reaction

Image by Gerfriedc on Wikimedia Commons.

Page 13: William H. Green Sustainable Energy MIT November 16,  · PDF fileWilliam H. Green Sustainable Energy MIT November 16, ... Biofuels (ethanol and biodiesel) ... liquids technology

Syngas → electricity.

• Large-scale electricity generation

– IGCC: Integrated-gasification combined cycle (clean coal)

– Easier to capture CO2 and more efficient than direct combustion, but more capital intensive

– Proposed integration with Fischer-Tropsch to – Proposed integration with Fischer-Tropsch to make synfuels.

• Small-scale cogeneration

– combined heat and power

– 5 kW to 5 MW

– waste streams, off-grid operationSource: DOE EERE.

Page 14: William H. Green Sustainable Energy MIT November 16,  · PDF fileWilliam H. Green Sustainable Energy MIT November 16, ... Biofuels (ethanol and biodiesel) ... liquids technology

Syngas → CH4 or H2

COH2

Methanationreactor

CO + 1.08 H2 → 0.52 CH4 + 0.48 CO2 + 0.04 H2O∆Hr = -127 kJ/mol

400°C, 10-20 atm

Ni catalyst

Methanation

CH4

CO2

H2O

Source: F. Vogel, Paul Scherrer Institut, Switzerland; & Cat Comm 4 215-221 (2003).

COH2 WGS

reactorH2

CO2

CO + H2O → CO2 + H2

∆Hr = -41 kJ/mol

400-500°C, 1 atm

Iron oxide catalyst

Water gas shift

H2O

Page 15: William H. Green Sustainable Energy MIT November 16,  · PDF fileWilliam H. Green Sustainable Energy MIT November 16, ... Biofuels (ethanol and biodiesel) ... liquids technology

Syngas: Diesel and alcohols can be made via Fischer-Tropsch process.

• Coal-to-liquids and gas-to-liquids technology

– Germany; South Africa

• “Ideal” reaction:

(2n+1) H2 + n CO → CnH2n+2 + n H2O

COH2

F-Treactor

200-350°CExothermic

• Many simultaneous reactions

– alcohols, alkenes, etc.

• Selectivity

– Catalyst, temperatures, pressures, H2/CO ratio

reactor

Alkanes (gasoline, diesel)Alcohols

Exothermic

Page 16: William H. Green Sustainable Energy MIT November 16,  · PDF fileWilliam H. Green Sustainable Energy MIT November 16, ... Biofuels (ethanol and biodiesel) ... liquids technology

Syngas can be used as a biological feedstock.

• Hybrid thermochemical / biological process

• Syngas produced from biomass

• Syngas fermented into ethanolethanol

• Ethanol from the whole plant, rather than only sugars– Both cellulose &

lignin gasified; most other cellulosic ethanol doesn’t use lignin

Source: BRI company website, http://www.brienergy.com/pages/process01.html

Image removed due to copyright restrictions.Please see descriptions of the INEOS Bio Ethanol process.

Page 17: William H. Green Sustainable Energy MIT November 16,  · PDF fileWilliam H. Green Sustainable Energy MIT November 16, ... Biofuels (ethanol and biodiesel) ... liquids technology

BIOGAS: Anaerobic digestion is a simple, robust method for mixed wet waste streams.

Natural bacterial process degrades most organic material (cellulose, hemicellulose, starches, sugars, proteins, fats)

– Exception: lignin

CH4, CO2cellulose,protein, etc.

Methanogenicbacteria

Acetogenicbacteria

Acidogenicbacteria

Bacterialhydrolysis

acetic acid,NH4

sugars,amino acids, etc.

organic acidsCO2, NH4, H2

CH4 50-75%

CO2 25-50%

N2 0-10%

H2 0-1%

H2S 0-3

O2 0-2

Figure removed for copyright reasons. See Figure 10.7 inTester, J. W., et al. Sustainable Energy: Choosing AmongOptions. Cambridge MA: The MIT Press, 2005.

Page 18: William H. Green Sustainable Energy MIT November 16,  · PDF fileWilliam H. Green Sustainable Energy MIT November 16, ... Biofuels (ethanol and biodiesel) ... liquids technology

Bioenergy as Goal or Bioenergy as Byproduct

• Historically, biomass products (food, lumber) have been considered more valuable than biomass energy…

• …So existing policies and practices focus on agriculture, lumber, & land use.

• Usually waste or surplus biomass used as energy– Usually more economic to use fossil fuels than biomass for

energy.– There is a lot of waste biomass, but often inconvenient to – There is a lot of waste biomass, but often inconvenient to

collect, use.

• If biomass-to-energy were economically competitive with fossil fuels, could see rapid large shifts in land use (e.g. deforestation, conversion of arable land to energy crops) and jumps in food prices…

• …but if it is not economically competitive, will biomass ever be used on a large scale for energy?

• Food price shocks and food riots a few years ago have raised awareness of the issues…

Page 19: William H. Green Sustainable Energy MIT November 16,  · PDF fileWilliam H. Green Sustainable Energy MIT November 16, ... Biofuels (ethanol and biodiesel) ... liquids technology

Using biomass for energy: options

• Burn it for electricity or heat

– US Paper/Wood industry: 6 GWe

– Coal is usually cheaper for large-scale

– Good option with carbon cap: mix biomass with coal.

• Convert to Gas (CH or CO/H )• Convert to Gas (CH4 or CO/H2)

– Practiced on small-scale using waste

– Coal-to-syngas and natural gas are cheaper

• Convert to Liquid Fuels

– Looks to be most profitable on large scale:

not many good competing alternatives to oil!

Page 20: William H. Green Sustainable Energy MIT November 16,  · PDF fileWilliam H. Green Sustainable Energy MIT November 16, ... Biofuels (ethanol and biodiesel) ... liquids technology

Biomass is the only major renewable source of liquid and gaseous fuels.

1.5

2

3

4

5

6

7

10

15 b

tu

Solar

Wind

Geothermal

Hydroelectric

Biomass

hydroelectric

lithium ion

40

gasoline

diesel

Liquid fuels offer superior energy storage and transportability.

compressed air

0.0

0.5

1.0

0 0.2 0.4 0.6

MJ/kg

MJ/L

0

1

1949

1954

1959

1964

1969

1974

1979

1984

1989

1994

1999

2004

biomass

Biomass is currently the largest source of

renewable energy in the US and the world,

and the only renewable source capable of

producing fuels with current technology.

vanadium redox

lead acid

vanadium bromide

NiCd

NiMH

lithium ion

0

10

20

30

0 10 20 30 40 50

MJ/kg

MJ/L

batteries

ethanol

gasoline

propane

Page 21: William H. Green Sustainable Energy MIT November 16,  · PDF fileWilliam H. Green Sustainable Energy MIT November 16, ... Biofuels (ethanol and biodiesel) ... liquids technology

Biomass contains more oxygen and is structurally different from fuels.

O

H

HO

H

HO

H

H

OHHOH

OH

D-glucose

O

O

O

O

O

O

Carbohydrates Fats Proteins Cellulose Lignin

H2 CH4

Hydrogen Natural GasMethane

PropaneLPG / NGLAutogas

GasolinePetrolNaptha

Diesel

Lignin and Protein images, public domain from Wikimedia Commons.

Page 22: William H. Green Sustainable Energy MIT November 16,  · PDF fileWilliam H. Green Sustainable Energy MIT November 16, ... Biofuels (ethanol and biodiesel) ... liquids technology

End of Biofuels lecture #1

Part 2 is about how to make biomass into biofuels…

• Break time!• Break time!

Page 23: William H. Green Sustainable Energy MIT November 16,  · PDF fileWilliam H. Green Sustainable Energy MIT November 16, ... Biofuels (ethanol and biodiesel) ... liquids technology

MIT OpenCourseWare http://ocw.mit.edu

22.081J / 2.650J / 10.291J / 1.818J / 2.65J / 10.391J / 11.371J / 22.811J / ESD.166J Introduction to Sustainable Energy Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.