wind forecasting using the wrf-awr modelbio-optics.uprm.edu/presentations/caricoos_2.pdf- assimilate...

24
Wind Forecasting Using the WRF-AWR Model Juan O. Gonzalez-Lopez Marine Sciences Department – Physical Oceanography University of Puerto Rico – Mayaguez Campus

Upload: others

Post on 26-Mar-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Wind Forecasting Using the WRF-AWR Modelbio-optics.uprm.edu/presentations/CarICOOS_2.pdf- Assimilate realAssimilate real-time observational data into the modeltime observational data

Wind Forecasting Using the WRF-AWR Model

Juan O. Gonzalez-Lopez

Marine Sciences Department – Physical Oceanography

University of Puerto Rico – Mayaguez Campus

Page 2: Wind Forecasting Using the WRF-AWR Modelbio-optics.uprm.edu/presentations/CarICOOS_2.pdf- Assimilate realAssimilate real-time observational data into the modeltime observational data

What is WRF?

- Weather Research and Forecasting Model

M l f t d l d d t i il ti t- Mesoscale forecast model and data assimilation system

Suitable for use in scales ranging from meters to thousands of kilometers- Suitable for use in scales ranging from meters to thousands of kilometers

• Operational

• Research• Research

- Two dynamics solvers:

• Advanced Research WRF (ARW)

• Nonhydrostatic Mesoscale Model (NMM)

Page 3: Wind Forecasting Using the WRF-AWR Modelbio-optics.uprm.edu/presentations/CarICOOS_2.pdf- Assimilate realAssimilate real-time observational data into the modeltime observational data

ARW System

- Consists of the ARW dynamics solver with other components:

• Initialization routines

Ph i h• Physics schemes

• Data assimilation packages

Major Features

- Fully compresible, Euler non-hydrostatic equations.

- Prognostic (time-varying) variables: • Velocity components u, v, and w in Cartesian coordinates

Perturbation potential temperature• Perturbation potential temperature• Perturbation geopotential• Perturbation surface pressure of dry air

- Terrain-following hydrostatic-pressure vertical coordinate.

Page 4: Wind Forecasting Using the WRF-AWR Modelbio-optics.uprm.edu/presentations/CarICOOS_2.pdf- Assimilate realAssimilate real-time observational data into the modeltime observational data

Terrain-following vertical coordinate

The lowest boundary geopotential (gz; z=height) specifies the terrain elevation, and we specify the lowest coordinate surface (Phs) to be the terrain.

Since the vertical coordinate η is proportional to this lowest coordinate surface, we have a terrain-following coordinate.g

The use of this coordinate system allows us to have a very realistic depiction of the topography in the model.

Page 5: Wind Forecasting Using the WRF-AWR Modelbio-optics.uprm.edu/presentations/CarICOOS_2.pdf- Assimilate realAssimilate real-time observational data into the modeltime observational data

Initialization of the Model

- ARW can be run using interpolated data from either large-scale analysis or

forecasts for real-data simulations.

- Initialization consists of two steps:

• Running the WRF Pre Processing System (WPS)• Running the WRF Pre-Processing System (WPS)

• Running the ARW Pre-Processor (real)

- WPS prepares input to ARW for real-data simulations:

• Defines simulation domain

• Interpolates time-invariant terrestrial data to simulation grid

• Interpolates time-varying meteorological fields from another

model into simulation domain

Page 6: Wind Forecasting Using the WRF-AWR Modelbio-optics.uprm.edu/presentations/CarICOOS_2.pdf- Assimilate realAssimilate real-time observational data into the modeltime observational data

Computational Domain

17.000° N – 19.000° N

64.000° W – 68.000° W

4 km spatial resolution

Page 7: Wind Forecasting Using the WRF-AWR Modelbio-optics.uprm.edu/presentations/CarICOOS_2.pdf- Assimilate realAssimilate real-time observational data into the modeltime observational data

Time-Invariant Terrestrial Data

• Terrain elevation

• Latitude/Longitude

M t ti l• Map rotation angle

• Annual mean temperature

• Coriolis parameters• Coriolis parameters

• Albedo

• Land/water mask• Land/water mask

• Vegetation/land-use type

• Vegetation greenness factorg g

• Soil texture category

Page 8: Wind Forecasting Using the WRF-AWR Modelbio-optics.uprm.edu/presentations/CarICOOS_2.pdf- Assimilate realAssimilate real-time observational data into the modeltime observational data

Time-Varying Meteorological Fields2D2D

• U, V wind components rotated to WRF grid

• U, V wind components interpolated into WRF gridU, V wind components interpolated into WRF grid

• Skin temperature

• Layers of soil temperaturey p

• Soil Moisture

3D

• Potential temperaturep

• Mixing ratio

Page 9: Wind Forecasting Using the WRF-AWR Modelbio-optics.uprm.edu/presentations/CarICOOS_2.pdf- Assimilate realAssimilate real-time observational data into the modeltime observational data

What do we do?

GFS Model

WPS real ARW

Terrestrial Model OutputTerrestrial Data

10” topography NCL

GRAPHICAL FORECASTFORECAST

Page 10: Wind Forecasting Using the WRF-AWR Modelbio-optics.uprm.edu/presentations/CarICOOS_2.pdf- Assimilate realAssimilate real-time observational data into the modeltime observational data

Graphical Forecast

- A forecast map is produced for the next 48 hours, at 3 hour intervals.

Th f t h th i d fi ld i t- The forecast map shows the wind field in two ways:

• Contours: the colors indicate the wind speed (knots) according to the legend.g

• Wind Barbs: the inclination on the wind barb indicates the direction from where the wind is coming.

h f h b b d h d d h ll b bThe size of the barbs indicate the wind speed: the small barb is 5 knots and the large barb is 10 knots.

- The daily forecast map can be accessed at:

www.caricoos.org

Page 11: Wind Forecasting Using the WRF-AWR Modelbio-optics.uprm.edu/presentations/CarICOOS_2.pdf- Assimilate realAssimilate real-time observational data into the modeltime observational data

Regions

- There are forecast maps available for the following areas:

• Puerto Rico

S n J n• San Juan

• Arecibo

• Mayaguez y g

• Humacao

• Vieques and Culebra

• La Parguera, Lajas

• South

• South East• South East

• South West

• Virgin Islands

Page 12: Wind Forecasting Using the WRF-AWR Modelbio-optics.uprm.edu/presentations/CarICOOS_2.pdf- Assimilate realAssimilate real-time observational data into the modeltime observational data

www.caricoos.org

Page 13: Wind Forecasting Using the WRF-AWR Modelbio-optics.uprm.edu/presentations/CarICOOS_2.pdf- Assimilate realAssimilate real-time observational data into the modeltime observational data

Validation

- Validation of the ARW is being done following the statistical analysis recommended by Wilmott, 1982.

• Root Mean Square Error (RMSE)Root Mean Square Error (RMSE)

• Index of Agreement (IOA)

Th RMSE i th diff b t th f t d th- The RMSE summarizes the mean differences between the forecast and the in-situ observations.

- The IOA is a measurement of the accuracy of a model in forecasting a given parameter.

Page 14: Wind Forecasting Using the WRF-AWR Modelbio-optics.uprm.edu/presentations/CarICOOS_2.pdf- Assimilate realAssimilate real-time observational data into the modeltime observational data

Validation Technique

In-Situ St.

4 kmIn-Situ St.

- For this presentation we use two in-situ stations:For this presentation we use two in situ stations:

• ICON/CREWS buoy at Media Luna Reef, La Parguera

• SJNP4 NOAA NOS buoy at San Juany

Page 15: Wind Forecasting Using the WRF-AWR Modelbio-optics.uprm.edu/presentations/CarICOOS_2.pdf- Assimilate realAssimilate real-time observational data into the modeltime observational data

La Parguera

25

La Parguera, Lajas PR17.939° N , 67.052° W

RMS 403

La Parguera, Lajas PR17.939° N , 67.052° W

20

25 ICON WRF2.2

RMS = 4.03IOA = 0.63

20

25RMS = 7.17IOA = 0.35

10

15

ind

Spe

ed (k

ts)

10

15

ind

Spe

ed (k

ts)

5

W

5

10

W ICONWRF2

1/2/20081/3/2008

1/5/20081/6/2008

1/7/20081/11/2008

1/13/2008

1/14/2008

1/28/2008

02/8/2008

2/13/2008

2/15/2008

2/16/2008

2/17/2008

2/19/2008

2/20/2008

2/22/2008

2/23/2008

2/24/2008

2/25/2008

2/27/2008

2/28/2008

0

Page 16: Wind Forecasting Using the WRF-AWR Modelbio-optics.uprm.edu/presentations/CarICOOS_2.pdf- Assimilate realAssimilate real-time observational data into the modeltime observational data

25 RMS = 3.40

La Parguera, Lajas PR17.939° N , 67.052° W

RMS=322

La Parguera, Lajas PR17.939° N , 67.052° W

15

20

IOA = 0.83

ts)

20

25RMS = 3.22IOA = 0.84

10

Win

d S

peed

(kt

10

15

ICO

N (k

ts)

0

5

ICON WRF2

0

5

ICON WRF2

3/5/20083/7/2008

3/12/2008

3/13/2008

3/15/2008

3/17/2008

3/19/2008

3/21/2008

3/25/2008

3/27/2008

3/29/2008

4/5/20084/6/2008

4/8/20084/13/2008

4/16/2008

4/17/2008

4/19/2008

4/20/2008

4/21/2008

4/22/2008

4/24/2008

4/25/2008

4/26/2008

4/27/2008

Page 17: Wind Forecasting Using the WRF-AWR Modelbio-optics.uprm.edu/presentations/CarICOOS_2.pdf- Assimilate realAssimilate real-time observational data into the modeltime observational data

22

La Parguera, Lajas PR17.939° N , 67.052° W

RMS = 3.23IOA=062

16

18

20

kts)

IOA = 0.62

8

10

12

14

Win

d S

peed

(k

2

4

6

8

ICON WRF2

5/2/20085/3/2008

5/5/20085/6/2008

5/7/20085/11/2008

5/13/2008

5/14/2008

5/15/2008

5/16/2008

5/18/2008

5/19/2008

5/20/2008

5/21/2008

5/23/2008

5/24/2008

Page 18: Wind Forecasting Using the WRF-AWR Modelbio-optics.uprm.edu/presentations/CarICOOS_2.pdf- Assimilate realAssimilate real-time observational data into the modeltime observational data

San Juan

San Juan Sation 01/2008 (18.458N, 65.115W)RMSE = 3.5721; Index of Agreement = 0.7439

I it

San Juan Station 02/2008 (18.458N, 65.115W)RMSE = 3.8422; Index of Agreement = 0.6604

16

s)

Insitu WRF 16

s)

Insitu WRF

8

Win

d Sp

eed

(kts

8

Win

d Sp

eed

(kts

0

W

0

W

02-Jan-2008 15:0

03-Jan-2008 21:0

05-Jan-2008 03:0

06-Jan-2008 09:0

07-Jan-2008 15:0

11-Jan-2008 21:0

13-Jan-2008 03:0

14-Jan-2008 09:0

15-Jan-2008 15:0

18-Jan-2008 21:0

20-Jan-2008 03:0

21-Jan-2008 09:0

22-Jan-2008 15:0

23-Jan-2008 21:0

25-Jan-2008 06:0

26-Jan-2008 12:0

27-Jan-2008 18:0

29-Jan-2008 00:0

30-Jan-2008 09:0

"02-Feb-2008'"

"04-Feb-2008'"

"05-Feb-2008'"

"11-Feb-2008'"

"12-Feb-2008'"

"14-Feb-2008'"

"15-Feb-2008'"

"16-Feb-2008'"

"17-Feb-2008'"

"19-Feb-2008'"

"20-Feb-2008'"

"21-Feb-2008'"

"22-Feb-2008'"

"24-Feb-2008'"

"25-Feb-2008'"

"26-Feb-2008'"

"27-Feb-2008'"

Page 19: Wind Forecasting Using the WRF-AWR Modelbio-optics.uprm.edu/presentations/CarICOOS_2.pdf- Assimilate realAssimilate real-time observational data into the modeltime observational data

San Juan Station 03/2008 (18.458N, 65.115W)RMSE = 3.3199; Index of Agreement = 0.8008

San Juan Station 04/2008 (18.458N; 65.115W)RMSE = 3.2968; Index of Agreement = 0.7901

16

s)

Insitu WRF

18

s)

Insitu WRF

8

Win

d Sp

eed

(kts

9

Win

d Sp

eed

(kts

0

W

0

W

"02-Mar-2008'"

"03-Mar-2008'"

"05-Mar-2008'"

"06-Mar-2008'"

"07-Mar-2008'"

"11-Mar-2008'"

"13-Mar-2008'"

"14-Mar-2008'"

"15-Mar-2008'"

"16-Mar-2008'"

"18-Mar-2008'"

"19-Mar-2008'"

"20-Mar-2008'"

"23-Mar-2008'"

"25-Mar-2008'"

"26-Mar-2008'"

"27-Mar-2008'"

"29-Mar-2008'"

"30-Mar-2008'"

"05-Apr-2008'"

"06-Apr-2008'"

"08-Apr-2008'"

"13-Apr-2008'"

"16-Apr-2008'"

"17-Apr-2008'"

"19-Apr-2008'"

"20-Apr-2008'"

"21-Apr-2008'"

"22-Apr-2008'"

"24-Apr-2008'"

"25-Apr-2008'"

"26-Apr-2008'"

"27-Apr-2008'"

Page 20: Wind Forecasting Using the WRF-AWR Modelbio-optics.uprm.edu/presentations/CarICOOS_2.pdf- Assimilate realAssimilate real-time observational data into the modeltime observational data

20 InsituWRF

San Juan Station 05/2008 (18.458N, 65.115W)RMSE = 3.2968; Index of Agreement = 0.7407

12

16ts

)

WRF

8

12

Win

d S

peed

(kt

4

W

5/2/20085/3/20085/5/20085/6/20085/7/20085/11/20085/13/20085/14/20085/15/20085/17/20085/18/20085/19/20085/20/20085/22/20085/23/20085/29/2008

0

Page 21: Wind Forecasting Using the WRF-AWR Modelbio-optics.uprm.edu/presentations/CarICOOS_2.pdf- Assimilate realAssimilate real-time observational data into the modeltime observational data

Preliminary Conclusions

Th i d f t ll f ll th tt th i it i d- The wind forecast generally follows the same pattern as the in-situ wind observations BUT:

• Most peaks and lows are not well forecasted

• ARW tends to underestimate peaks and overestimate lows- Possible reasons:

• Sub-grid processes

• Lack of real-time observational data being fed into the model

h h d b• Topographic shadowing, sea breeze

- Possible solutions:

d l h h l l (2k k )• Run model at higher spatial resolution (2km, 1km)

• Use different parametrization and micro-physics schemes

• Future implementation of WRF3 which includes shadowing• Future implementation of WRF3 which includes shadowing effects

Page 22: Wind Forecasting Using the WRF-AWR Modelbio-optics.uprm.edu/presentations/CarICOOS_2.pdf- Assimilate realAssimilate real-time observational data into the modeltime observational data

Future Work

I ti l l ti f th d l- Increase spatial resolution of the model

• Increase whole domain resolution to 2km, 1km

Very computation time intensiveVery computation time intensive

• Use nested grids

Keep whole domain at 4km resolution and run an areap

at 2km, 1km resolution

- Assimilate real-time observational data into the modelAssimilate real time observational data into the model

• Ability to run an analysis on the ARW output, based on real-time observations and past model results.

• After this analysis is done, an improved forecast is available.

Page 23: Wind Forecasting Using the WRF-AWR Modelbio-optics.uprm.edu/presentations/CarICOOS_2.pdf- Assimilate realAssimilate real-time observational data into the modeltime observational data

Acknowledgements

S tt St i li N ti l W th S i S J• Scott Strippling – National Weather Service, San Juan

• Carlos M Anselmi Marine Sciences Department• Carlos M. Anselmi – Marine Sciences Department

Page 24: Wind Forecasting Using the WRF-AWR Modelbio-optics.uprm.edu/presentations/CarICOOS_2.pdf- Assimilate realAssimilate real-time observational data into the modeltime observational data

Questions?