wipac monthly - july 2017

23
Page 1 WIPAC MONTHLY The Monthly Update from Water Industry Process Automation & Control www.wipac.org.uk Issue 7/2017 - July 2017

Upload: water-industry-process-automation-control

Post on 22-Jan-2018

1.449 views

Category:

Engineering


0 download

TRANSCRIPT

Page 1: WIPAC Monthly - July 2017

Page 1

WIPAC MONTHLY The Monthly Update from Water Industry Process Automation & Control

www.wipac.org.uk Issue 7/2017 - July 2017

Page 2: WIPAC Monthly - July 2017

Page 2

In this Issue

From the Editor.................................................................................................................... 3

Industry News..................................................................................................................... 4 - 10

Highlights of the news of the month from the global water industry centred around the successes of a few of the

companies in the global market.

Legal Issues in Big Data...................................................................................................... 11-12

As we adopt technology it is easy to forget the legal aspects of what the water industry does, the privacy of customers,

andtheirdata.InthisarticlebyFredGreguras,originallypublishedinWaterOnline,thelegalissuesaroundBigDatawith

special reference to the USA is discussed.

Focus on: Electro-magnetic flow meters in wastewater...................................................... 13-16

Inthismonth’sfeaturearticlewetakeafocusonelectro-magneticflowmeters.Thetechnologyhasbeeninexistence

fordecadesnowandthisarticlelooksatthebasicsfromthetheorybehindthetechnologytothepracticeofinstallation

andoperation

OFWAT’s PR19 Methodology: Implications for resilience, asset health & leakage.............. 17-18

InthisopinionpiecebyGeorgeHeywoodofServelecTechnologiestheimplicationsoftherecentpublicationoftheUK

financialregulator,OFWAT,andtheirmethodologyforthenextpricereviewhighlightstheimplicationsforresilience,

asset health & leakage

Dissolved Oxygen Measurement in Wastewater............................................................. 19-21

Themeasurementofdissolvedoxygeninwastewaterisoneofthefundamentalparametersthattheindustrymeasures.

InthiswhitepaperbyABBtheimportance,measurementprincipalsandperformanceofthecurrenttechnologyis

discussed

Workshops, Conferences & Seminars................................................................................... 22-23

Thehighlightsoftheconferencesandworkshopsinthecomingmonths

WIPACMonthlyisapublicationoftheWaterIndustryProcessAutomation&ControlGroup.Itisproducedbythegroup

managerandWIPACMonthlyEditor,OliverGrievson.ThisisafreepublicationforthebenefitoftheWaterIndustryandplease

feelfreetodistributetoanywhoyoumayfeelbenefit.

AllenquiresaboutWIPACMonthly,includingthosewhowanttopublishnewsorarticleswithinthesepages,shouldbedirected

tothepublicationseditor,OliverGrievson at [email protected]

Page 3: WIPAC Monthly - July 2017

Page 3

From the Editor

IntheUKwehavethePriceReviewProcess,forthoseofyouintheUKyouwillknowallaboutitandforthosewhoaren’tits where hundreds if not thousands of people around the country work for up to two years to make sure that everything thatneedstobedoneinafiveyearperiodisdone.Whatisimportantaboutthisparticulartimeisthatallofthethingsthatneedtobedonehastobethoughtof,ideasfloatedwithcustomersandthenithastobebudgetedfor.Itisanexhaustingtimeastheindustryhastohaveaverygoodideaofexactlywhattheyaregoingtodoandhowmuchitisgoingto cost.

Inthistimeeveryone isalsopublishingtheir ideasofthestrategicdirectionsandwehaveseenthis inrecentweeks.OFWAThavepublishedaplethoraofdocumentstalkingaboutthevariousdirectionstheywanttheindustrytotake.Inthe methodology that was published this month amongst other things we saw discussions around resilience, asset health andleakageamongstotherthings.Theyhavealsorecentlypublishedareportontheuseofdataandthevariousaspectsof it in the modern industry.

Readingthroughallofthesereportsoverthepastfewweeksandwithaslightlybiasedtechnologicalviewthereisavisionofahugepotential.TheOFWATreporttalkedaboututilisingdataforcustomerbenefitbutinanotherbreaththeytalk

aboutefficiencyandtheneedtokeepthecostofwatertosustainablelevels.Thisiswheredatareallycomestoitsforefront.Overthepastfewyearswehaveseenthebenefitsofdataandinnovationsinitsuse.ThesupplychainisdevelopingitanddevelopingtheproductsfortheWaterIndustrytouse.Therearebarrierstothisapproachandthisincludesdata&itsprotection.Theindustryasawholeisinstallingthousandsofsmartmetersthatarecollectingdataatanunprecedentedrate.Whatisgoingtobedonewiththisdata?Weseeinanarticleinthismonth’sissuethatithasahugepotentialsavingacustomer50,000litresofwaterthatwasbeinglostonthecustomersideofthemeter.Itsagreatsavingbutwhereisthenext50,000litres.Thisisinleakagewhichtobehonesthasadoptedsmarttechnologyandhasseenhugebenefitsandhavereachedagreatmaturitylevelbutwhat’snext?

Gamification-usingcustomersdatatomonitorandencourageneighbourhoodstosavewater.Again,inareasofwatershortageatechnologythathasbeenwell used

Electronic Billing and App Communication-Canacustomerpayabillviatheirsmartphone,canthecustomerbeinformedofproblemsorcanacustomeraskaquestionthroughthesameApp.Itssomethingthatiscertainlycoming

Thisisforcustomersbutwhataboutoperationalefficiencythereisalotthatcanbedoneinmanagingthedataandagainthereisahugeamountthatcanbedone.Aquickflickthroughallofthereportsoutthererevealthesystemsthatareoutthereformanagingassets,maintaininginstrumentswithCMMSsystemsaswellasthingslikeConditionBasedMonitoring.Allofthesetechnologieshavebeenaroundforawhileanditseemsthatthereisadrivefortheindustrytogointhisdirection.

Thereallyimportantthingisthatithastobeencouragedandfitinthepricereviewprocessasitallhastobethoughtofnowsothattheideascanbedeliveredinthefutureotherwisethingswaitforanotherfiveyearswhenweareengagedinpricingthingsupnexttime.

Asalwaysitisaninterestingtimeandifwecomeoutofthefieldofthewaterindustrythentherearealsothequestionshowthewaterindustryworkswiththeotherutilitiesandhowthiscanallbebroughtintotheconceptofsmartcities.AlloftheseprogrammescometogetherandreadinganotherreportthatwaspublishedrecentlyweseethesustainablecitiesreportbyArcadis.Waterisofcourseafundamentalpartofthecityconceptanditwillbeacaseofhoweverything is integrated and working together....

Oliver

Page 4: WIPAC Monthly - July 2017

New directors at the Sensors for Water Interest Group

Smart sensors for water: sensor design and performance

RichardBraggofUnitedUtilitiesandMichaelStrahandofAnalyticalTechnoligiesInchaverecentlyjoinedtheBoardofDirectorsattheSensorsforWaterInterestGroupfollowingtheretirementofAnthonyKyriacouofSevernTrentandJohnMarshofSiemensfromtheboardofdirectorsoftheUKnotforprofitorganisation.

RichardBraggiscurrentlyaPrincipalICAEngineeratUnitedUtilitiesoneoftheUKWaterIndustry’swater&seweragecompaniescoveringthenorthwestofEngland.RichardisaCharteredInstrumentation,controlandautomationspecialistwithover15yearsexperienceintheoil,gas,energyandutilitiesindustriesfromFEEDthroughtoprojectdelivery,commissioningandoptimisation.AmotivatedanddrivenBEngqualifiedengineerhehasworkedonlargescaleprojectsbothonandoff-shorewithmultinationalteams.

DrMichaelStrahandhas25yearsexperienceinbuildingbusinessesthatoperateinthewaterindustry,inboththecleanandthewastewatertreatmentmarket.HehasaPhDinchemistryandhastheabilitytoapplythatknowledgetosolvingprocessapplicationproblems.Hehashelpedthousandsofpeopleinhundredofcompaniestooptimisetheirprocesses.

He has worked at all stages of the business, design, manufacture and application of on line instrumentation to themonitoring and control of processes, especiallywaterprocesses. Through indepth knowledgeandapplicationof thatknowledgehehasearnedthenicknameDoctorChlorinefromhiscustomersandpeers.HeworkswithalltheUK’swaterutilityplc’sandhaveconnectionsatalllevelsintheseorganizations.Hespecializesinapplyingmyindepthknowledgeofchemistrytotheapplicationofsensorstothemonitoringandcontrolofwatertreatmentandwastewatertreatmentprocessesandbuildingsalesorganisationbusinessesbasedonthis.

Richard Bragg of UU

Michael Strahand of ATI

Professor Richard Luxton, Director at Institute of Bio-sensing Technology at the University of theWest of England, takes a look at some of the latestdevelopmentsinsensorandbiosensortechnologyforwateranalysisaheadofSWIG’smajorSensinginWaterconferenceinSeptember.

ProfessorRichardLuxton:Thedevelopmentofsensorandbiosensortechnologyforwateranalysishasmushroomed,seekingtoexploitthedevelopmentofnew materials and connected smart technologies.

Certainly,over the last fewyears therehavebeenmanysensing technologiesdeveloped inouruniversities thatdemonstrateexquisitesensitivity in thelaboratorybutareyettoshowthattransitionintoaviableproductforrealworldapplication.

Manynewsensingtechnologiesarebasedontheapplicationofnanomaterialssuchasgrapheneorcarbonnanotubesusingelectrochemicalorimpedimetricmeasurementtechnologies.Othersensorshavebeendevelopedthatrelyonnanoscalefeaturesinmaterialssuchasnano-poreswhichdetectthepresenceofmaterialtransitingthroughthestructure,oratomicdefectsinmaterialssuchasdiamond.

ForexampleborondopeddiamondisbeingusedtodevelopanewpHelectrodewiththepotentialforgreaterperformancespecificationsthanotherpHelectrodes. Although there has been a great focus on these nanomaterials many new sensors which are closer to the market or are being used in current productsarebasedontheapplicationofopticalmethodssuchasthemeasurementoffluorescence.

Forexample,theintegrationofflowcytometryandfluorescencemeasurementformsthebasisofatechnologyforthedetectionofbacteriainwaterwhichcanbeappliedtoonlinemonitoring.Inanotherapplicationrecordingboththeexcitationandemissionspectraofwatermultiplecompoundscanbedetectedsimultaneously.

Despitedevelopingultra-sensitivemeasurementtechnologiestherestillremainstheproblemofintegratingthesensingelementsintoarealworlddevicewherearepresentativesampleispresentedtothemeasurementsystem.

IntheeraoftheInternet-of-things,smartsensingandremotemonitoringwillbethefuture,integratingmultipletypesofsensingtechnologiestomonitorwater whether that be drinking water or wastewater.

Connectivity to thecloudand interoperabilityareparamount in thenewsmart, connectedworldof sensorsystems.Wehavesensornetworksbutnowconnectivitywiththecloudopensuptheopportunitytodevelopnewdataanalyticswhichwillgenerategreateropportunitiesfortheearlydetectionofimpendingproblems,reducingcostsofresponseandenhancingtheefficiencyoftheoperator.

Onlybyvalidatingnewtechnologieswillwehavereliable,costeffectivesensorsrequiredforsmartmonitoring.TheSensorsforWaterInterestGroup(SWIG)SensinginWatermajorupcomingconferenceon27SeptemberatNottinghamBelfrywillcovertheabovetopicsindepth.

Page 4

Industry News

Page 5: WIPAC Monthly - July 2017

Theuseof3DmapstoplotthepresenceofundergroundutilitynetworksandmaketheplanningofstreetworkseasierwasoneofthetopideastoemergefromNorthumbrianWaterGroup’sInnovationfestival.

NWG’sInnovationFestival,heldthismonthatNewcastleRacecourse,wasanuniqueweek-longeventthatbroughtpeopletotheregionfromaroundtheworldto tackle social and environmental challenges.

OneoftheorganisationstakingpartwasOrdnanceSurvey,whichislookingtoworkwithutilitiescompaniesonatrialof3Dmappingtoidentifytheexactlocationsofgasandwatermains,electricitycables,andmore,inoneplaceforthefirsttime.

Ifthetrialissuccessful,ithasthepotentialtoberolledoutacrossthecountry,makingmaintenanceandupgradestothesenetworkseasierandlesscostly.

OrdnanceSurveyworkedwithNorthumbrianWateronaweek-long“sprint”aspartofthefestival,lookingforinnovativewaysthatbusinessescancontributeto an improved environment.

RichardCrump,amanagingconsultantforOrdnanceSurvey,said:“Thetopicofwherethevariouscompanies’undergroundassetsare,suchaspipesandcables,comesupregularly.Therehavebeenvariousattemptstotackleitinthepast,butifwecanpullallofthisdatatogethertherearemanydifferentbenefits,forthepublicandforthebusinessesthatsupplytheseutilities.

“Improvingtheknowledgeofthevariousnetworksandtheareaswheretheycometogetherwillhelpmassivelywhenthereareproblemswithoneormoreoftheundergroundcablesorpipes,orwhentheyneedreplacing.Forexample,ithasthepotentialtoreducethechancesofaffectingothercompanies’services,making it quicker and easier to make repairs or upgrades, and much more.

“Wewouldliketogetallofthisdatainonedigitalspacethatshowswhereitis,howdeepitis,whatthecriticalnatureis,andthenwecanworkwiththecompaniestoseehowwecanimprovethingsforeveryone.”

NigelWatson,DirectorofInformationServicesatNorthumbrianWaterGroup,said:“ThisideaofimprovingtheknowledgethatweallhaveaboutthevariousnetworksofcablesandpipesbeneaththegroundhasreallycaughttheimaginationofpeopleattheNWGInnovationFestival.

“Wehavemapsthatshowwhereourroadnetworksandpavementsare,peoplecreatemapsoftheelectricalwiresinsidebuildings,sotheideathatwecandothe same beneath our streets is something that makes real sense.

“Manyolderpipesandwiresarenotrecordeddigitally,sosomeofthedataisincompleteorheldonlyinpaperformat,butthebenefitsofresolvingthatandcreatingacompletenetworkmaparehuge.

“Greaterknowledgeofwhatwearefacingwhenwegoouttoworkonournetworkmeanswecancompletejobsmorequickly,andthisisagreatnewideaforimprovingthatunderstanding.Likewise,ifweneedtodigaholeintheroadtorepairawaterburst,knowingwhatelseisinthegroundcanreducethechancesofcausingproblemsonanothercompany’snetwork,soweavoidunwanteddisruptionorlossofservicestocustomers.”

Theotherchallengesdiscussedatthefestival includedflooding, leakage,optimisingthemobileworkforce,upgradingageinginfrastructureandtheuseofartificialintelligenceintheworkplace.

Underground 3D maps touted to reduce streetworks disruption

TheWaterEnvironmentFederation(WEF)hassignedamemorandumofunderstandingwiththeSmartWaterNetworksForum(SWAN),agreeingtojointlypromotethedevelopmentofbestindustrypracticesformoreefficientandsustainablesmartwaternetworks.

Thewatersectorcontinuestopromoteandembraceinnovation,andsmartwaternetworkshaveemergedasapopularwaytousetechnologytooptimizesystemoperations.Smartwaternetworkshavearangeofapplications,fromdetectingsystemleakstomanagingenergy.Astechnologicaladvancementscontinuetochangethewatersector,thequalificationsforwatersectorjobschangetoo,presentinganopportunitytoequipwaterprofessionalswithnewskillsetsandknowledge.Throughthispartnership,WEFandSWANwillcontinuetoadvanceworkforcedevelopment.

“Supportinginnovationisessentialtothewatersector,andtofurtherdevelopmentofintelligentwatersystems”WEFExecutiveDirectorEileenO’Neillsaid.“ThememorandumofunderstandingbetweenWEFandSWANisthefirststeptocreatethekindofcollaborativeengagementneededforthefutureofthesector.”

SWAN’s focus on smart wastewater network management enables efficiencies and improvements in three categories: customer, environmental, andoperationalbenefits.ThiscomplementsWEF’sattentiononthevalueofintegratingintelligentwaterpracticesintothewatersector,determiningcommonbarriersofimplementingintelligentwaterpractices,technologytrends,andnewsolutions.ThisyearWEFpublished“IntelligentWaterSystems:ThePathtoaSmartUtility,”whichprovidesaglimpseintothepotentialbenefitsofimplementingintelligentwatersystemsandglobalexamplesfromwhichthewatersector can learn.

WEF Formalizes Commitment To Intelligent Water Systems, Smart Water Networks

Page 5

Page 6: WIPAC Monthly - July 2017

ATi Joins Forces with Langham and Caption Data using their NanoULTRA for Better Control of Water Networks

LanghamIndustrialControlsLtd(LIC),ATiandCaptionDatahavejoinedforcestoofferwatercompanies‘bettercontrol’whenmaintainingwaternetworks.Thisnewpartnershiphascreatedhugebenefitsasnowflow,pressure And turbidity can be used to control how much water is used duringamainsflush,whilstalsomeasuringwaterquality.

Since its 2014 launch, the NephNet has proven to be the industry’smost accurate and reliable portable turbidity monitor. Several water companies have used this new technology to improve their systems, provetheflushingiseffectiveandtospeeduptheprocess,whichsavesmoney,time,andofcoursewater.

Sometimeago, LIC took the step tomake their standpipes ‘NephNetready’, so now there is communication with the flow and pressureloggers on the standpipes, the turbidity reading can be shown with all three parameters being demonstrated.

ATi’s UK Sales Manager, Tristen Preger, said: “ATi strives to continuedeveloping what the market demands, which is has been proven with the NephNet.

“Our continualdevelopmentofourground-breakingnetworkmonitorsis born from our desire to work closely with our customers, providing solutionsthathelpimprovewaterquality,drivedowncomplaints,increasecredit ratingsand result inproactivenetworkmanagement tosafeguardwaterquality.”

EU funds development of integrated observing system for Atlantic OceanEU-fundedresearchersaredrivingthedevelopmentofanintegratedsystemtoapplyacommonstrategytoarangeofdataaboutthestateoftheAtlanticwhichiscollectedbyavarietyoforganizationsviaanumberofmeansincludingbuoys,floats,mooringsandresearchvessels.The€20m-plusEUAtlantOSprojectcurrentlyunderwayisdedicatedtothecreationofanintegratedAtlanticOceanobservingsystem.

Theconsortiumisalsoaimingatextendingthescopeof informationavailablefromobservationoftheAtlantic,Visbeckadded.“There isarapidlygrowingdesireamongdecision-makers–bothinthepublicandtheprivatesector–formoreandinparticularmoredatabasedinformationfromtheocean.”Workintheproject,whichistakenforwardbyaconsortiumof62partnersfrom18countriesfrombothsidesoftheAtlantic,beganinApril2015.ItisduetoendinJune2019,followingthedeliveryofablueprintforthedevelopmentoftheproposedsystem.MartinVisbeck,projectcoordinatorsaid:

“Whatwe have at themoment is different types of observing system,which are usually dedicated to one single question – climate, biodiversity, oceanchemistry,fisheries,orrapidresponsetohazardssuchasoilspills,forinstance.Bycombiningtheseapproachesandlookingatthemstrategically,asawholesystem,youcanboostefficiency.“Amongotherthings,wetrytopointoutopportunities.Whenyougoouttoassessfishstocks,youcaneasilytakesomeothermeasurementsalongside.Thiswouldsignificantlyenhancethecapabilityofthewholesystemandincreaseefficiency.”

Newpossibilitiesarealsoarisingwiththeemergenceofnewtechnologysuchas increasinglypowerful roboticsystemsandnewsensortechnology.Wideradoptionofsuchtechnologiescouldhelptoreducethecostofoceanobserving,ortomaketheinvestmentstretchfurther.Theprojectisalsostrivingtoestablishcommonprocedures,dataformatsandcalibrationfeatures,sothatitdoesn’tmatterwhereameasurementistakenandthedataareallconsistentwitheachother.Theimprovementswouldmakeiteasiertoassemblethevarioustypesofdataintoacomprehensiveoverviewofthestateoftheocean,bothasawayofdocumentingchangeandasastartingpointforpredictionofitslikelyevolution.

An evolutionary process

Oneof theproject’saims is toenhancethecontributionofAtlanticobservingtobroadercollectiveeffortssuchasGEO/BluePlanet,aswellasGOOS, theGlobalOceanObservingSystem.AnewpartnershipthatisabouttobeformalisedbetweenBrazil,SouthAfricaandtheEUwillmarkanothermilestoneforthecollaboration. Theplan,inAtlantOS,istogenerateawarenessofthecapabilitiesandpossibilitiesofthevarioussystemsthatarealreadyinoperation,inabidtoshowhowtheiractivitiesandfurtherdevelopmentcouldcontributetothecommongoalofanintegratedsystem.

MartinVisbeckconcluded:“ThekeypointistolookatAtlanticobservingasasystem,ratherthanarandomcollectionofindividualbits,andtoreallyunderstandthecapabilityofthissystem,ratherthantheindividualcapabilitiesofdiscretecomponentssuchasanetworkoffloatsorofafleetofresearchvessels.Thisisnew,becausethevariousgroupsinvolvedhavemostlybeenworkingintheirowncircles.”

Page 6

Page 7: WIPAC Monthly - July 2017

Irish Water invests in wastewater flow monitoringIrish Water has started work on a €10M (£9M) programme which will see flow monitoring and performance sampling equipment installed in 400 wastewater treatment plants across the country.

Treatment plants in Kildare,Meath,Offaly,Westmeath,Wicklow, Laois, Louth and Fingalwill be among thefirst to receive the equipment as part of anationwideprojectwhichwillprovideenhancedprotectionforIreland’sriversandcoastalwaters.TheFlowMonitoringandSamplingProgrammewillalsoallowtheutilitytoidentifywhereinvestmentisneededinthewastewaterinfrastructuretoaccommodatefuturepopulationgrowth.

Criticalwastewaterflowandloaddatawillbemadeavailableonaconsistentbasisforthefirsttimeever,helpingtoimprovetheperformanceofthetreatmentplants.Italsohelpsprotectthewaterwaysintowhichtreatedwastewaterisdischarged.Whentheroll-outoftheequipmentiscompleted,plantoperatorsandengineerswillhavethedataandtoolstoenablethemtobettermanagethetreatmentprocesses,measureperformanceandreactquickertoanysuddenchanges such as a storm event.

Instrumentationinstalledwillincludeflowmeasurementdevices,stormeventrecordersandsamplingequipment.ThisprojectwillalsoensurecompliancewiththemonitoringandsamplingrequirementsofEPAWastewaterDischargeAuthorisations.

TheprojectwillallowIrishWatertobuildflowandloadprofileswhichinturnwillhelpformstrategiesforupgrading,maintaining,improvingplantefficiency,andensuringitcanidentifyearlywhereinvestmentisrequiredtomeetfuturedemandsonwastewaterinfrastructure.

Smart meter reveals 50,000 litre-per-day leakA huge customer-side leak which was losing 50,000 litres of water a day has been repaired by Thames Water after being revealed by the installation of a smart meter.

Theleak–whichwaslosingtheequivalentof625bathtubseveryday–wasdiscoveredafterthemeterwasinstalledonacustomer’spropertyinGreenwich,southLondon,aspartofthewatersavingsmartmeterprogramme.Iftheleakhadnotbeenspottedandfixed,itwouldhavecostthehomeownerahuge£38,325peryear.

StephanieBaker,smartmeteringprogrammemanager,saidtherepairshowedoneofthemanybenefitsofsmartmeters.Shesaid:“We’realwayslookingatways to help our customers save, and reduce leakage.

“Thisjustgoestoshowthebenefitsofhavingasmartmeterinstalled.“It’sawin-win,we’vefixedahugeleakonourcustomer’ssupplypipeforfree,thatifallowedtoruncouldhavecostthecustomermorethan£38,000peryearinadditionalwaterconsumption.”

Theleak,whichisthelargestonediscoveredbyasmartmeter,wasspottedduringroutinemonitoringofhourlydatafromthedevice.Thecustomerwasinformedandateamofengineersweretaskedtorepairit.Twoleaksonthesamestretchofpipewereultimatelyidentified,oneinthegardenandoneinthebasement.Thecustomeriscurrentlyonatrialperiodforthesmartmeters,andthemoneysavingisthedifferencebetweenwhattheywouldhavepaidifthey hadn’t installed the device.

Theindustry-leadingprogramme,currentlybeingrolledoutacrossLondon,givescustomerstwoyearstotakecontroloftheirmeteredusage,beforeswitchingthemtoameteredbill.Theaimofthesmartmeteringprogrammeistoreduceoverallwateruseandimproveleakagedetection,owingtopopulationgrowthandclimatechangeputtingpressureonwaterresources.

Meterswillhelpachievethisaim,bygivingresidentsaccesstotheirwateruseinformation,onlineoroverthephone,allowingthemtoseehowefficienttheirhomeisandtrackhowsimplewater-savingefforts–likefourminuteshowersandturningthetapoffwhilebrushingyourteeth–canreducebills.ThamesWateralsooffersfree‘smarterhome’visits,checkinghowwaterefficientahouseisandinstallingwater-savinggadgets.Sincethelaunchofthemeteringprogrammein2015,ThamesWaterhascarriedoutmorethan60,000suchvisits,savingaround2.5millionlitreseveryday.

Page 7

Page 8: WIPAC Monthly - July 2017

Closer ties and AI could help tackle flooding

Theimpactandlikelihoodoffloodscouldbereducedthroughclosertiesbetweenpeoplelivinginareaspronetofloodingandrelevantagencies.TheideawasoneofseveraltoemergefromNorthumbrianWaterGroup’srecentNWGInnovationFestival.

Theweek-longeventbroughttogetherfloodexpertsandvictims,aswellasacademicsandpeoplefromawiderangeofbusinesses,withaseriesofnewideasdevelopedandthenpresentedtowaterindustryleaders.TheproposalswillnowbeworkedonbyNWGandpartnersfrombusinessandacademiathattookpartinthefestival,includingheadlinesponsorIBM,whichhelpedleadthesearchforideas.

Theseideasrangedfromcommunitychampionfigureswhowouldactasliaisonsbetweenrelevantagenciesandthecommunitytoanartificialintelligencesystemthatdeliversbespokeinformationtopeople,basedupontheirownspecificexperiences,locationsandneeds.

Duringtheweek,afive-day“sprint”sawaround80peoplefocusingontheissueofflooding,takingitfromanoutlineoftheproblemtoideasthatcanbedeveloped. Sprints apply leading design thinking techniques to real world issues.

Thesprint,entitled‘Rain,HailorShine’:Howcanwereduceflooding?wasoneofsixsuchactivitiescarriedoutatthesametimeattheNWGInnovationFestival,whichtookplaceatNewcastleRacecourse.Ideasthatcameoutofthesprint,andwhichwillbedevelopedbyNWGinpartnershipwitharangeofotherorganisations,include:

Membersofthepublicwouldworkcloselywithrelevantagenciesandhelptokeepcommunitiesinformedtohelpreducefloodriskandenablepeopletobebettersupportedwhentheyareaffected

Thecreationofanagencythatlinksdirectlywithcustomerstogiveandreceivebespokeinformationonflooding,helpingtoreducefloodrisk.Acollaborativeapproach to reducing the surface water that runs from the landscape into water courses

Asystemthatutilisesartificialintelligence(AI)technologytodeliverbespokefloodinformationtousers,sotheyarebetterinformedabouthowtorespondwhen problems occur.

ChrisJones,NWG’sresearchanddevelopmentmanager,said:“TheNWGInnovationFestivalhashelpedustoworktogetherwithawiderangeofindividualsandcompaniestotakeafreshviewontheverybroadsubjectofflooding.

“Weknowthatwhensomeoneexperiencesfloodingintheirhomesitcanbeoneofthemostdevastatingthingsthatcanhappentothem.Thisiswhyweplacesuchastrongfocusuponreducingthechancesofithappeningandalsothewaythatwe,andothers,cansupportpeoplewhenfloodingdoeshappen.SomeoftheideasthatcameoutoftheNWGInnovationFestivalcanmakeareallypositiveimpactintheseareasandwearealreadylookingathowwecanstartdevelopinganddeliveringthem.”

TheNWGInnovationFestivalwassupportedbyIBM,Microsoft,OrdnanceSurvey,BT,CGIGroupandReeceInnovation.ItwasalsodeliveredinassociationwithNewcastleUniversity,DurhamUniversity,Genesys,InterserveinpartnershipwithAmecFosterWheeler,CostainResources,PC1,TechMahindra,MottMacDonaldBentley,Wipro,VirginMediaBusiness,Schneider,WheatleySolutions,SopraSteria,Accenture,1Spatial,Infosys,Unify,ITPS,Esh-MWH,andPenTestPartners.

s::can System Effectively Controls Aeration Blowers and Reduces Operating Costs in Wastewater Treatment Plant

ColoradoSpringsUtilities(USA)uses::can’sammo::lysertomonitorandcontrolaerationblowersusingNH4-N,improvingtheplant’senergyefficiencyandloweringoperatingcosts.

TheJ.DPhillipsWaterResourceRecoveryPlantcameonlinein2007tohelpthecityofColoradoSpringsmeetincreasingservicedemands.Thestateoftheartfacilityisenclosedtohelpodourcontrol.Theplantdecidedtoreplacetheiroldanalyzerswiths::cansensors.

Sincetheentireplantiscovered,traditionalanalyzerinstallationscalledforconduitpipingtobeinstalledundereachbasincovertoprovidepoweranddatacommunications.Inadditiontothis,theplantrequiredadynamicinstallationasthesensorswouldbemovedbetweentwoseparatebasinseveryyearformaintenance purposes.

Installingnewconduitwasextremelycostly,timeconsuming,andpreventedtheplantoperatorsfrommovingtheanalyzersbetweenthetwoaerationbasinswithintheirplant.Inanefforttoreducecost,preventtheneedforconstruction,andcreatetransportableanalyzingstations,s::canprovidedtheplantwithalow-cost,low-maintenance,dynamicsolution.

Asanalternativetoinstallingnewconduitundereachbasincover,RS485Modbusradioswereusedtotransmitdatabacktoacon::cubecontrollerinrealtime.Usingthissystemdesign,s::canwasabletoinstalltheequipmentatafractionofthecostandtime,andalsoprovidedtheplantwithadynamicinstallation.

Inordertoeffectivelycontroltheblowersusingammonia-basedDOcontrol,thekeyparametersNH4-N,pH,DissolvedOxygen,TSS,NO3-Nweremeasured.Simultaneouslymeasuringtheseparameters,ColoradoSpringsUtilitiesisabletoeffectivelycontroltheiraerationblowersandreduceoveralloperatingcostsfortheplant.Moreover,thestaffnowhasaneasilyadaptablesystemallowingthemtomovethestationsthroughouttheplant.

Page 8

Page 9: WIPAC Monthly - July 2017

3D-printed water quality sensors set to revolutionize water industry

ResearchersattheUniversityofBritishColumbiainCanadahavebuiltinexpensiveandtinydevicesusinga3Dprintertoinspectwaterqualityinthedistributionsystemwhichcouldrevolutionizethewaterindustry.

TheresearchersatUBC’sOkanagancampushavedesignedatinydevicethatcanmonitordrinkingwaterqualityinrealtimeandhelpprotectagainstwater-bourne illness.

ProfessorMinaHoorfar,DirectoroftheSchoolofEngineering,saysnewresearchprovestheirminiaturizedwaterqualitysensorsarecheaptomake,canoperatecontinuouslyandcanbedeployedanywhereinthewaterdistributionsystem.

Onlinewater qualitymonitoring is becoming an essential part of largewaterdistribution systems (WDS) to ensure that contamination,whether throughaccidentalordeliberatemeans,donotaffectconsumers.

However,whilemosturbanpurificationplantshavereal-timemonitoringsensorsintheupstreamofWDS,theplacementofonlinewaterqualitymonitoringsensorsthroughoutWDShasnotyetbeenfeasible,primarilyduetothehighcostandlowreliabilityofthesensors.

Prof.Hoorfarcommented:

“Currentwatersafetypracticeinvolvesonlyperiodichandtesting,whichlimitssamplingfrequencyandleadstoahigherprobabilityofdiseaseoutbreak.

“Traditionalwaterqualitysensorshavebeentooexpensiveandunreliabletouseacrossanentirewatersystem.”

Untilnow–thetinydevicescreated inherAdvancedThermo-Fluidic labatUBC’sOkanagancampus,areproving reliable and sturdy enough to provide accurate readings regardless of water pressure or temperature.

Thesensorsarewireless,reportingbacktothetestingstations,andworkindependently—meaningthatifonestopsworking,itdoesnotbringdownthewholesystem.Andsincethey’remadeusing3Dprinters,theyarefast,inexpensiveandeasytoproduce.

“Uniqueandeffectivetechnologythatcanrevolutionizethewaterindustry”

“Thishighlyportablesensorsystemiscapableofconstantlymeasuringseveralwaterqualityparameterssuchasturbidity,pH,conductivity,temperature,andresidualchlorine,andsendingthedatatoacentralsystemwirelessly,”sheadded.“Itisauniqueandeffectivetechnologythatcanrevolutionizethewaterindustry.”

While many urban purification plants have real-time monitoring sensors, they are upstream of thedistribution system.According to Prof.Hoorfar, the pressure atwhichwater is supplied to the customerismuchhigher thanwhatmost sensorscan tolerate.Thenewsensorscanbeplaced rightatorwithinacustomer’shome,providingadirectandpreciselayerofprotectionagainstunsafewater.

“Althoughthemajorityofwater-relateddiseasesoccurin lower-ormiddle-incomecountries,waterqualityevents inWalkerton,forexample,raiseseriousquestionsaboutconsistentwatersafetyinevendevelopedcountrieslikeCanada,”Prof.Hoorfarcontinued.“Manyofthesetragediescouldbepreventedwithfrequentmonitoringandearlydetectionofpathogenscausingtheoutbreak.”

Acommerciallyavailabledesktop3Ddesignprinterwasusedtocreatethedevices–theMojo3DPrinterfromUSfirmTRIMECHwhichusesFusedDepositionModelling™technologydevelopedbyStratasysInc.intheUSA.

Theresearch,recentlypublishedinSensorsjournal,waspartlyfundedbytheNaturalScienceandEngineeringResearchCouncilofCanadaStrategicProjectGrantandPostgraduateScholarshipfunding.

WRc launch new ‘One Stop Shop’ for water meter testingWRchascommissionedanewwatermetertestrigtoenhancetheirestablishedmetertestingcapabilities.Thenewrigprovidesadditionalcapacityforaccuracyandperformancetestingofsmallmeters, i.e. those sized15mm to30mmwhich areused tomeasurewater supplied tohouseholdcustomersandalargeproportionofcommercialpremises.

Thenewrigcomplementstheexistinglargemeterrigwhichisprimarilyusedformetersfrom40mmupto150mm.BothrigsarefullyinstrumentedandwillprovidetestresultstoNationalStandards.ThisenablesWRctooffera“onestopshop”formetertestingthatcoversmorethan99%ofthemetersused inthewater industry.Alltestrigsarefurthersupportedbyspecialistfacilitiesforinvestigatingtheeffectsoflong-termwearonmeters.

Page 9

Figure 1: Fabrication of the interface using 3D. (a) Comsol simulation of the interface; (b) CAD model of the interface; (c) fabricated interface; and (d) pH sensor fitted into the interface.

Page 10: WIPAC Monthly - July 2017

The2014WaterActspecificallyaddedafifthclausetothewaterindustryregulatorOfwat’spurpose,namelytosecure:

(a)thelong-termresilienceof[water&sewerage]systemsasregardsenvironmentalpressures,populationgrowthandchangesinconsumerbehaviour,and(b)thatundertakerstakesteps…tomeet,inthelongterm,theneedforthesupplyofwaterandtheprovisionofsewerageservicestoconsumers,”

Followingthe2014WaterAct,OfwatspenttimeinterpretingitsimplicationsandinitsTowardsResiliencedocument(December2015),itprovidedadefinition:“Resilienceistheabilitytocopewith,andrecoverfrom,disruption,andanticipatetrendsandvariabilityinordertomaintainservicesforpeopleandprotectthenaturalenvironment,nowandinthefuture.”

Giventhatavoiding“disruption”isprettymuchthesameasprovidingreliability,thissignalsthatOfwatwantstoensurereliabilitynowandinthefuture.Todothisweneedtheabilitytofirstlyassessourreliability,andsecondlypredictthefuture.

ForthelegislatorsoftheWaterAct,therewasperhapsanassumptionthatwewereontopofreliabilitynow,andtheywantedtomakesureweweretakingalong-termviewofit.Thetruthisthatthereisstillworktodotoensurewearetopofourreliabilitynow.

InTowardsResilience,Ofwatalsomakesthepointthatmeasuringresilience(orreliability)wouldbeagoodidea,andrecommendsthatthewatercompaniesconsiderhowbesttodothis.Butguidanceonmeasuringresilienceisscarce.

ThereisarelevantBritishStandard(BS65000:2014,GuidanceonOrganisationalResilience)whichismainlyfocusedonthecycleoflearningfromyourmistakes.However,estimatingreliabilityisanareaofengineeringroughlyacenturyold.

Safety

Reliability engineeringwas first used shortly after the FirstWorldWar in the context of aeroplane safety. Engineersworking on theGermanV-1missileprogrammeworkedoutthebasictheoryduringWorldWar2.

Spaceresearchinthe1950sand‘60spushedthetheoryfurtherforwardandthefirstjournalemergedin1963(InstituteofElectricalandElectronicsEngineersTransactions). In1965RichardBarlowandFrankProschanwrotetheseminaltextentitledMathematicalTheoryofReliability.Oilandgasandthenuclearindustryemploythetechniquesofreliabilityroutinelybutinourindustry,itisrarelyspotted,withthenotableexceptionsofitscloserelativetheHAZOPWorkshop,andtheoddSafetyIntegrityLevel(SIL)assessmentforsafetysystems.

Sowhatisreliabilityengineering?Reliabilityengineeringisawholecollectionoftechniquesintendedtohelpusdeterminewhetheranitemorasystemisgoingtofunctionornot.Itcansplitbetweentwoapproaches:thephysicalandtheactuarial.

Thephysicalapproachistodowithvariationin“load”–ifweunderstandthevariationinloadandweunderstandtheloadatwhichthesystemfails,thenweunderstandthereliability.Thisisfairlycomfortableterrainforengineersandfitswellwiththe“variability”partoftheresiliencedefinition.Loadsmightbeinterpreted as water demand, wastewater load, weather and so on.

The actuarial approach is more to do with lifetimes and deterioration and captures the asset performance in terms of its “time to failure” or “failureprobability”.Failureshappen,especiallywhenyouhavehugenumbersofthings.Predictingwhichonesaregoingtofailisreallydifficultbutpredictinghowmanyaregoingtofailissurprisinglyeasy–justlookatagraphofthemonthlypipeburstsforawatercompany.

Calculation

Thelaststepisunderstandinghowandwhetherindividualassetfailuresescalatetosystemfailures.Whendoestheassetfailureleadtoanimpactonthecustomerandwhendoesthestandbyjustkickinsothecustomerneverknowsithappened?Howresilientareoursystemsandournetworkstotheinevitablebreakdowns?Havewegotenoughstandby,enoughcross-connectiontobeabletocope?Havewegottoomuch?

TechniquesandsoftwaresuchasReliabilityBlockDiagramsandFaultTreeAnalysisaredesignedtomakepreciselythiscalculation,turninganassetfailureratetoasystemfailurerate–aquantityrepresentingthereliabilityinfailuresperunittime.Thesetechniquesareavailableandsoftwareisalsoavailabletohelpus.Thefailurerateestimatesatassetlevelarenotsocommonlyavailable.Thebigdatabanksthatstoredataandregularlyre-assessfailureratesaremostlymaintained by the oil industry.

Waterdataisscarceandwegenerallyhavetoassumetheequivalentsintheoilindustryhavesimilarfailurerates–aweakassumption.Wemaygetsomesupportingevidencefromcompanyfailurerecordsbutthereisnotenoughofthisdata.

ReliabilityisameanswithwhichtomeasureourresiliencebothnowandinthefutureasrequiredbyOfwat.Usingstandardisedorobservedratesoffailureandcalculatingthechancesoftheraresimultaneousfailuresneededtocausesystemfailure,wecanarriveatanobjectivemeasure.Thishelpswithmanydecisionsincludingthosedifficultcallsinvolvingsafeguardedsystems.

Ifthepumpfails,thestandbykicksinandthereisnoconsequence,sothereisnorisk,sohowcanwejustifyreplacingthepumps?Well,thereisstillsystemriskwhichwillincreaseasthepumpsage–andreliabilityengineeringcanquantifyit.

Sonotonlydoesreliabilityallowustosatisfytherequirementsofthelawbutitmayhelpusseewherewehaveenoughstandbyandwhereweneedmore.Andthatisabenefitworthchasing.

ThisarticlewaswrittenbyAlecErskine,whoisseniorprincipalconsultantatMWH,nowpartofStantec.

Reliability engineering key to resilience

Page 10

Page 11: WIPAC Monthly - July 2017

BigDataisoftencharacterizedbythelargevolumeofdata,thewidevarietyofdatatypesandthevelocityatwhichthedatamustbeprocessed.Datacancomefrommanydifferentsources,suchassocialmediause,onlinepurchases,licensedtwitterdatastreamsorsensorsusedintheInternetofThings(IoT).BigDataisgeneratedbyeverythingaroundusatalltimes.Everyinteractioninecommerceandsocialmediaproducesit.Computersystems,sensorsandmobiledevicestransmitit.BigDatacomesfrommultiplesourcesatahighvelocity,volume,varietyandcomplexity.OptimalprocessingpowerandanalyticscapabilitiesareneededtoextractactionableinformationfromBigData.

Businessesneedanalyticstoconvertthelargeandcomplexdatasetsintoactionableinformationinordertomakebetterdecisionsandprovideabusinessadvantageovercompetitors.BigDataanalytics is theprocessofcollecting,organizingandanalyzing largedatasets todiscoverpatternsandotherusefulinformation.BigDataanalyticsexamineslargeamountsofdatafromvarioussourcestofindpatterns,correlations,trendsandotherinsights.BigDataanalyticscanhelpbusinessesbetterunderstandtheinformationwithinthedataandidentifywhichdatacanhelpimprovetheeffectivenessofbusinessdecisions.

Analyticsaredevelopedbybuildingmodelsbasedonavailabledata,andthenrunningsimulations,iteratingthevalueofdatapointsandmonitoringhowitimpactsresults.Currentcomputingpowercanrunmillionsofthesesimulations,iteratingallthepossiblevariablesuntilitfindsapattern,correlationorinsightthat helps solve the problem.

Dataanalyticsareusedextensively inconsumermarketing.Asmostofuswhocarrymobiledeviceshaveexperienced,analyticsenableconsumers tobetargetedwithspecificallytailoredadvertisingforproductsandservicesbasedonourindividualpreferences.Dataanalyticsarealsousedtooptimizesupplychainandotherlogisticsforbusinesses.UPS,forexample,analyzesdatafromalargenumberofsourcestooptimizevehicleroutestosavetime,lowerfuelcostsandforpredictivemaintenanceonvehicles.

Legal Issues in Big Data

Privacy.ThelegalrisksofBigDatabeginwithconsumerprivacy.Lawsandregulationshavefocusedontheprivacyandsecurityofpersonalinformation.Inaddition,mostwebsites,onlineservicesandmobileappshaveaprivacypolicyagreementandtermsofserviceagreement(alsocalledtermsofuse,useragreement, etc.) that users accept by clicking or continuing to use. Clickwrap type agreements are generallymore enforceable than browsewrap typeagreements.Havingaprivacypolicyisagoodbusinesspracticebutitmayalsoberequiredbylaworbythirdpartyservicesthatcollectinformationthroughawebsite.Bothprivacypoliciesandtermsofservice(TOS)shouldbeperiodicallyreviewedtobecertaintheyaccuratelyreflectbusinesspractices,particularlywithrespecttothecollection,useandsharingofpersonalinformation.

ThereisnosinglenationallawintheU.S.regulatingthecollection,useandsharingofpersonalinformation.7Therearefederalandstatelawsandregulationsthatapplytocertaintypesofpersonalinformation,suchasfinancialorhealthinformation.Therearealsoconsumerprotectionlawsthathavebeenusedtoprohibitunfairordeceptivepracticesinvolvingthedisclosureof,andsecurityproceduresforprotectingpersonalinformation.

AnexampleofpersonalinformationthatraiseslegalconcernsishealthinformationprotectedbytheHealthInsurancePortabilityandAccountabilityActof1996,asamended(HIPAA).Dataanalytics isbeingappliedtoelectronicmedicalrecords(EMR)to identifytrends inpatientcare,epidemiology,treatmenteffectiveness,operationaleffectivenessandforotherpurposes.PredictivemodellingusingdatafromEMRsisbeingusedforearlydiagnosisandtotriggerwarningsorreminderssuchaswhenapatientshouldgetanewlabtestortakeotheractions.

TheFederal TradeCommissionAct is a consumerprotection law thatprohibits unfairordeceptivepractices andhasbeenapplied tooff-line andonlineprivacyanddatasecuritypolicies.Theonlinecollectionofpersonalinformationofchildrenunder13maytriggertheChildren’sOnlinePrivacyProtectionAct.TheGramm-Leach-BlileyAct(GLBA)isafederallawthatregulateshowfinancialinstitutionsmusthandlepersonalinformation.

TheFTC issuedareportonBigDatatoprovideguidancetocompaniesabouttheirBigDatapractices.TheFTC limited its focustothecommercialuseofconsumerinformation,anditsimpactonlow-incomeandunderservedpopulations.TheFTCurgedcompaniestoapplyBigDataanalyticsinwaystoprovidebenefitsandopportunitiestoconsumers,whileavoidingactionsthatmayviolateconsumerprotectionorequalopportunitylaws,ordetractfromcorevaluesof inclusion and fairness.

Californiaistheleaderinstateprivacylaws.TheCaliforniaOnlinePrivacyProtectionActappliestoanypersonorcompanywhosewebsite,onlineserviceormobileappcollectspersonalinformationfromCaliforniaconsumers.Thislawhasbroadgeographicaleffectbecauseofthewidelyaccessiblenatureofonlinebusinesses.ExcludingaCaliforniaaudiencefromaccessisnotgenerallyfeasible.Thelawrequirestheoperatortohaveaconspicuousprivacypolicycontainingthefollowing:

• Alistofthecategoriesofpersonallyidentifiableinformationtheoperatorcollects;• Alistofthecategoriesofthirdpartieswithwhomtheoperatormaysharesuchinformation;• Adescriptionoftheprocess(ifany)bywhichtheconsumercanreviewandrequestchangestohisorherpersonally identifiableinformationas

collectedbytheoperator;• Adescriptionoftheprocessbywhichtheoperatornotifiesconsumersofmaterialchangestotheoperator’sprivacypolicy;• Whetherornota“donottrack”signalishonored;and• Theeffectivedateoftheprivacypolicy.

Thelawalsorequirestheoperatortocomplywiththeprivacypolicy.

Therearealso lawsandregulations inothercountriesrelatingtodataprotectionandprivacy.Europe’sGeneralDataProtectionRegulation(GDPR)whichbecomeseffectiveinMay2018isaprimaryfocusforbusinessplanningin2017.14ThisnewEUdataprotectionregulationwillimposeagreatercomplianceburdenonbusinessesthatoffergoodsandservicestoEUresidents.AprivacypolicyalsoneedstocontaintheprovisionsrequiredbytheGDPR.TheGDPRwillapplyunlessthebusinessdoesnotoffergoodsorservicesto,ortrackorcreateprofilesof,EUresidentsanddoesnothavean“establishment”intheEU.

Security. The Security Standards for the Protection of Electronic Protected Health Information (HIPAA Security Rule)15 provide standards for protectingpersonalhealth information.TheHIPAASecurityRule requiresappropriateadministrative,physicaland technical safeguards toensure theconfidentiality,integrity,andsecurityofelectronicprotectedhealthinformation.16TheGDPRalsohasasecuritystandardrequirement.

Californiawasthefirststatetoenactasecuritybreachnotificationlaw.17ThelawrequiresanypersonorbusinessthatownsorlicensescomputerizeddatathatincludespersonalinformationtodiscloseanybreachofthesecurityofthedatatoallCaliforniaresidentswhoseunencryptedpersonalinformationwas

Article:

Legal issues in Big Data 2017

Page 11

Page 12: WIPAC Monthly - July 2017

acquiredbyanunauthorizedperson.

MostoftheearlystatesecuritybreachnotificationlawsfollowedCalifornia’slawandestablishedrequirementsfornotificationofasecuritybreachratherthandefiningsecuritystandards.AsofJune2017,48states,aswellastheDistrictofColumbia,Guam,PuertoRicoandtheUSVirginIslandshaveenactedlawsrequiringnotificationofsecuritybreachesinvolvingpersonalinformation.18Recently,somestateshaveestablishedrequirementstoavoidasecuritybreachsuch as theMassachusetts regulation which specifies a detailed list of technical, physical and administrative security standards for protecting personalinformationthatmustbeimplemented.19HIPAAandtheGLBAalsohavesecuritybreachnotificationrequirements.

Whilemostattentionhasbeenonsecurity threats topersonal information, therealsoaresecurity issues fornon-personal information.Hackerschangedchemicalsettingsinawatertreatmentplantinarecentlyreportedincident.20TheanalystfirmForresterpredictedtherewillbealargescaleIoTsecuritybreachin2017.

ControloverData.OwnershiprightstoBigDatacanprovideacompetitiveadvantagesincethedataownercontrolshowthedatamaybeusedandshared.Forexample,Twitter’sdatalicensingbusinessisitsfastestgrowingrevenue.Twittersellsits“firehose”ofover500milliondailytweetstovariouscompaniesthattrytoturnthetweetsintoactionableinformation.MostofthebusinessvalueinBigDataisincombiningdatafromdifferentsources.Ownershipofdataresultingfromtheanalyticsisalsoimportant.RightstodataareusuallyallocatedintheprivacypolicyandTOSforwebsites,onlineservicesandmobileapps.Traditionalsignedagreementsmaybeusedinbusinesstobusinesstransactions.Forexample,asignedagreementmightbeusedbetweenanIoTprovideranditsfarmcustomersinasmartagricultureapplication.22Jointownershipisamiddlegroundforownershipallocationsinsomebusinesstobusinesstransactions.

IntellectualPropertyProtection.SomedataanalyticssoftwareappearstoremainpatentableaftertheAlicecourtdecision23butpatentholdersandapplicantswillfacechallengesiftheyrelyoncomputerexecutionofnothingmorethanroutinealgorithms.InventivestepswillbeneededtomakeBigDataanalyticssoftwarepatentable.24Suchapatentmayloseitsvalueovertimesincethealgorithmmayimproveovertheonedescribedinthepatentandadditionalpatentapplicationsmaybeneeded.IBMprobablyhasthelargestpatentportfoliointheBigDatasector.

OnlysomeoftheBigDataitselfmaybeprotectedbycopyright.Copyrightappliestotheformofexpressionnotthemeaningoftextwrittenbyhumanauthors.Ifthereisonlyonewaytoexpresscontentthenthereisnocopyrightprotectionbecausethereisnooriginality.Anydatageneratedbymachinesorsensorswillnotbecoveredbycopyright.25ThatmeansalargeamountofBigDatawillfalloutsideofcopyrightprotection.Usergenerateddatasuchasaphoto,videoorotherworkpostedtoasocialmediasitemaybeprotectedbycopyrightbuttheTOSwilllikelyprovidethatownershipisassignedtothesiteoperator.

TermsofServiceAgreement.ATOSisthelegalagreementthatestablishestheobligationsandrestrictionsforusingawebsite,mobileapporonlineservice.TheTOSincludesprovisionsthatreducetheriskofclaimsfromusersandothers.Theremaybeliabilityexposureifthedataanalyticssoftwareprovideserroneousornoactionableinformation.SuchliabilityislimitedintheTOSprimarilybylimitedwarranty,disclaimersofwarrantiesandlimitationofliabilityprovisionsinthesamewayasforothercontracts.TheTOSmayalsocoverscopeofpermitteduse,restrictionsonactivities,disclaimersregardingcontent,indemnification,termandtermination,copyrightandotherintellectualpropertyrights,governinglaw,jurisdiction,disputeresolutionandotherissues.

Conclusion

Big Data is generated by everything around us at all times and includes both personal information and non-personal information. There are laws andregulationsonprivacyandsecurityforpersonalinformationintheU.S.andelsewherearoundtheworld.Collection,useandsharingofpersonalinformationmustbeconsistentwithaprivacypolicyandapplicablelawsandregulations.TOSandotheragreementsareusedtoestablishtherulesforotherBigDataownershipandcontrolandtomitigaterisk.DataanalyticsisusedtoconvertBigDataintoactionableinformationthatcanprovidevalueinawiderangeofbothconsumerandbusinesstobusinesstransactions.

Acknowledgements

ThisarticlewasoriginallyprintedinWaterOnlineandwaswrittenbyFredGreguras,Attorney,RoyseLaw

Leak finding robot inspects pipes from the insideAnewsystemdevelopedbyresearchersatMITcouldprovideafast,inexpensivesolutionthatcanfindeventinyleakswithpinpointprecision,nomatterwhatthepipesaremadeof.Thesystem,whichhasbeenunderdevelopmentandtestingfornineyearsbyprofessorofmechanicalengineeringKamalYoucef-Toumi,graduatestudentYouWu,andtwoothers,willbedescribedindetailattheupcomingIEEE/RSJInternationalConferenceonIntelligentRobotsandSystems(IROS)inSeptember.Meanwhile,theteamiscarryingoutteststhissummeron12-inchconcretewater-distributionpipesunderthecityofMonterrey,Mexico.

Thesystemusesasmall,rubberyroboticdevicethatlookssomethinglikeanoversizedbadmintonbirdie.Thedevicecanbeinsertedintothewatersystemthroughanyfirehydrant.Itthenmovespassivelywiththeflow,loggingitspositionasitgoes.Itdetectsevensmallvariationsinpressurebysensingthepullattheedgesofitssoftrubberskirt,whichfillsthediameterofthepipe.

Thedeviceisthenretrievedusinganetthroughanotherhydrant,anditsdataisuploaded.Nodiggingisrequired,andthereisnoneedforanyinterruptionofthewaterservice.Inadditiontothepassivedevicethatispushedbythewaterflow,theteamalsoproducedanactiveversionthatcancontrolitsmotion.Monterreyitselfhasastrongincentivetotakepartinthisstudy,sinceitlosesanestimated40percentofitswatersupplytoleakseveryyear,costingthecityabout$80millioninlostrevenue.Leakscanalsoleadtocontaminationofthewatersupplywhenpollutedwaterbacksupintothedistributionpipes.

TheMITteam,calledPipeGuard,intendstocommercializeitsroboticdetectionsystemtohelpalleviatesuchlosses.InSaudiArabia,wheremostdrinkingwaterisprovidedthroughexpensivedesalinationplants,some33percentislostthroughleakage.That’swhythatdesertnation’sKingFahdUniversityofPetroleumandMineralshassponsoredandcollaboratedonmuchoftheMITteam’swork,includingsuccessfulfieldteststhereearlierthisyearthatresultedinsomefurtherdesignimprovementstothesystem,Youcef-Toumisays.

Thosetests,inamile-longsectionof2-inchrustypipeprovidedbyPipetechLLC,apipelineservicecompanyinAlKhobar,SaudiArabia,thatfrequentlyusesthesamepipesystemforvalidatingandcertifyingpipelinetechnologies.Thetests,inpipeswithmanybends,T-joints,andconnections,involvedcreatinganartificialleakfortherobottofind.Therobotdidsosuccessfully,distinguishingthecharacteristicsoftheleakfromfalsealarmscausedbypressurevariationsorchangesinpipesize,roughness,ororientation.

“Weputtherobotinfromonejoint,andtookitoutfromtheother.Wetriedit14timesoverthreedays,anditcompletedtheinspectioneverytime,”

Page 12

Page 13: WIPAC Monthly - July 2017

Focus on:

Electro-magnetic flow meters

ArguablyintheWaterIndustryasawholetheelectro-magneticflowmeterisoneofthemostpopularwaysofmeasuringflow,inwastewateritisprobablyjustbehindopenchannelflowmeasurement.Inthisarticlewewillfocusonelectro-magneticflowmetersandbrieflycovertheprincipleofhowtheywork,theirapplicationandsomeofthethingsthathavetobedonetokeepthemworkingattheirbest.

The principles of electro-magnetic flow measurement

TheworkingprincipleofanelectromagneticflowmeterisbaseduponFaraday’slawsofinduction.

Electromagnetic induction was discovered independently by Michael Faraday in 1831 and Joseph Henry in 1832. Faraday was the first to publish the results of his experiments. In Faraday’s first experimental demonstration of electromagnetic induction (August 29, 1831), he wrapped two wires around opposite sides of an iron ring (torus) (an arrangement similar to a modern toroidal transformer). Based on his assessment of recently discovered properties of electromagnets, he expected that when current started to flow in one wire, a sort of wave would travel through the ring and cause some electrical effect on the opposite side. He plugged one wire into a galvanometer, and watched it as he connected the other wire to a battery. Indeed, he saw a transient current (which he called a “wave of electricity”) when he connected the wire to the battery, and another when he disconnected it. This induction was due to the change in magnetic flux that occurred when the battery was connected and disconnected

Bringingthisconceptforwardtoanelectro-magneticflowmeterifanelectricalconductorismovedinamagneticfieldwhichisperpendiculartothedirectionofmotionandtotheconductor,anelectricalvoltageisinducedintheconductorwhosemagnitudeisproportionaltothemagneticfieldstrengthandthevelocityofthemovement.Fromthiswecanseethatthetwowiresandtheironringbasicallyactinasimilarfashiontothefirstelectro-magneticflowmetersastheelectro-magneticwavethatFaradaycreatedisaltereddependinguponthevelocityofthefluidthroughthepipe.Thisischaracterisedbyusingthefollowingequations:

Uo~B.V.D

WiththeinductionB,theflowvelocityvandthepipediameterD

TheflowrateqvthroughthecrosssectionAunderconsiderationis

q_v=A.V=(D2π)/4.V

Andputtingthetwoequationstogetheryouget

Uo ~ q_v

Toputthis intoaworkingpracticerequiresthatamagneticfieldexistwithinapipeandthattheinducedvoltagescanbemeasuredwithoutinterference.Twocoilsgeneratethemagneticfieldthatextendsthroughthepipeonly.TypicallytoachievethisAusteniticsteelisusedasitdoesnothinderthemagneticfield.TopreventshortingoutofthemeasuringsignalUEthemetertubeisprovidedwithaninsulatinginternallining.ThemeasuringvoltageUEismeasuredbymeansoftwometallicelectrodesthatareinelectricalcontactwiththefluidinthepipe.Thisfluidmustbeabletoactasanelectrical conductorwhichnormally in thewater industry isn’t aproblembutasanexampledistilledwater,whichdoesn’tactasanelectricalconductorcouldn’tbemeasuredthroughanelectro-magneticflowmeter.Thisisillustratedindiagram1.

Putting it into practice – what makes up an electro-magnetic flow meter

Inpractice,anelectro-magneticflowmeterismadeupofanumberofdifferentparts.Inshortthesedifferentpartsare:

Aflowmetersensor;whichincludes:• A steel tube• Outerhousing• Acoppercoilwhichcreatesyourmagneticfield• Measurementelectrodes(whichcreatethecontactwiththefluid)• Alinermaterial(liningtheinsideofthesteeltube• Aninsulatingmaterial(whichactsastheinsulator)• Some electronics

Atransmitter• Some electronics• Methodofcommunication(ananalogueoutput)• A display

Figure 1: The basic principles of an EM flow meter

Figure 2: A cutaway model of an electro-magnetic flow meter

Page 13

Page 14: WIPAC Monthly - July 2017

Thesensor itself isbasically there tomeasure thevelocityof theflowthrough thesteel tubewhich ismeasuredby theelecto-magnetic forcecreatingavoltagethatisrelatedtothevelocityofthefluidpassingthroughthepipe.Asthepipeisfixedthenthiscanbeusedtoworkouttheflowrate.Whatcanchangeinatypicalsensoristhemeasurementelectrodesandthelinermaterialwhichwillvarydependinguponwhatisbeingmeasured.Typicallyinthewastewaterindustrythelinerwillbeahardrubbermaterialandtheelectrodesmadefromstainlesssteel.HoweverformorechallengingapplicationstheelectrodescanbemadeoutofothermetalsincludingHasteloyC,TantalumorPlatinumwithlinermaterialsrangingfromdifferingtypesofrubbertoPTFEorceramics.

Application & Installation of electro-magnetic flow meters in practice

Electro-magneticflowmeters are very versatileflowmeterand in thewastewater industryarearguablyprobably the secondmostpopular typeofflowmeasurementafteropenchannelflowmeasurementwithflumes&weirs.Theirapplicationinwastewaterisprobablyonalmostanyfullysubmergedclosedpipewithwastewateroruptothickenedsludgesflowthroughit.So,whatarethebasicparametersthatelectro-magneticflowmeterswillmeasure?

• Itmustbeaconductiveliquid/semi-liquid(i.e.itmustbeabletoflow)• Itmustbeinafullysubmergedpipe(althoughtechnologydoesexistforpartfillpipes–theapplicationbecomesmoredifficult)• Itmusthaveaminimumvelocity–thisisdependentuponthesensordiameterbutanindicationofminimumvelocityisthata100mm

magmeterrequiresaminimumvelocityof0.002m/sandamaximumvelocityof2.5m/sgivingaverylargeoperationalrange.

Depending upon the layout of the pipework and depending what is in the pipework an electro-magnetic flow meter should be at least 5 upstreamdiametersand2downstreamdiameters fromanypipedisturbance. In the caseofmajordisturbances suchaspumpsor valves thismeasurement spaceincreasesdramatically.

Ofcourse,therearealsoexceptionstotheruleandsomeoftheserulescanbe“bent”althoughthereisanimplicationtothis.Whatcannotbechangedisthattheliquidmustbeconductiveandmustbeabletoflow.Whenafluidbecomesnon-newtonianthereareoptionsuptoapoint.Thepipemustalsobefullysubmerged(unlessusingapartialflowmagmeter).Thesearetherulesthatcannotbebroken.Theothers,perhapsbuttheaccuracyofthemeasurementtechniquewillbeaffected.

Velocity

Aswe’ve seenabove thevelocityoperating rangeof anelectro-magneticflow meter(dependinguponsupplier,model,etc)isroughlybetween0.002m/sand2.5m/s(thisistakenfromasupplierspublishedrecommendations)butthemorethattheflowmeter is operated at the lower end of the velocity spectrum so that the accuracy of the measurementwillbeaffected.

Fromthegraphfromoneoftheleadingsuppliersofmagmeterswecanseethatbelow0.2m/stheaccuracyoftheflowmeterisaffectedmarkedlygoingfroma1%accuracyat0.2m/sanddoublingto2%accuracyat0.1m/s.Althoughelectro-magneticflowmetersareoneofthemostaccuratetechniquesforflowmeasurementitisnecessarytosizethemappropriatelyfortheflowratethatisexpected.Theaccuracydependentuponvelocityisofcourseonlyonepartofthestoryandtheexternalinfluencesontheelectro-magneticflowmetercanbemuchmoreserious.

Installationeffects

Historically, therehas alwaysbeenadviceon the installationof electro-magneticflowmeters that they must be installed five upstream diameters and two downstreamdiametersfromanypipedisturbance.Peopletakethisasahardfactandaslongasyouinstallitlikethattheneverythingisgoingtobeok.Itsrightanditswrong….letmeexplainwhy.

Firstly,peopletendtomissoutanimportantcoupleofwordsherewhichare“atleast”andinfactsomeworkdonebyTUV-NELafewyearsagocameupwiththefollowingadvice:

This type of meter generally requires over 10 diameters of straight pipe upstream for its installation and there can be problems with large bore meters. On the plus side, electromagnetic meters are not as affected by swirl as much as other types of meters are. However, that is not to say that they aren’t affected by swirl at all. Particles or bubbles present in a fluid can affect an electromagnetic flow meter as they tend to either rise to the top of the pipe or fall to the bottom. One way to reduce the effect would be to install the electrodes horizontally on the pipe wall.

Althoughexperienceinthisareashowsthatinsomeapplicationsthisadviceneedstochange.Totakeanexamplewhereaflowmeterisdownstreamofalargepumpsetitismoreprudentforthenumberofpipediametersupstreamtoincreasetosomethingakinto15upstreampipediameters.AnotherexampleiswhereaButterflyvalvewhichcancreateaseriousdisturbanceinthenatureoftheflowthenatotalof20diametersismoreprudenttoprotecttheaccuracyoftheflowmeter.

Ofcourse,therearealwaysexceptionstotheruleandmostoftheelectro-magneticflowmetermanufacturershavedevicesthatwillmeasurewithnoupstreamofdownstreamstraightlengths.Itisthe“ideal”worldfortheengineerwhowillalwayshaveanapplication.Mostpeoplewillhaveseenthephotographofanelectro-magneticflowmeterbetweentwopipebends.Thequestiontoaskis–althoughitsavailablewouldyouactuallyfititthatwayandwouldyourelyon

Figure 3: Accuracy at a variety of flow meter velocities

Page 14

Page 15: WIPAC Monthly - July 2017

theflowmeter?Mostpeoplewouldsayno.

Thebestwaytothinkoftheaffectscausedbypipedisturbancesistogobacktotheprincipleofelectro-magneticflowmetersandhowtheywork.Theyaremeasuringthevelocityoftheflowthroughastraightlengthofpipe.Takingintoaccountfrictionfromtheedgesofthepipethemeterexpectstoseethepeakvelocitythoughthecentreofthepipe. Whenyouhaveapipedisturbancesuchasa90°elbowtheareaofpeak velocity changes temporarily and so rather that the area of peak velocitybeinginthecentreofthepipeitisinfactoff-setandbendstowardstheinnerbendofthepipe.ForaButterflyValvethiseffectiseven worse The disturbance is not what the electro-magnetic flow meter isexpectingandsothevelocityreadingthatitreadsisaffectedcreatingerrorsintheflowmeasurementifthemeterisinstalledtoclosetothedisturbanceinthepipe.Whatofcourseistheworsesituationisifthedisturbance is not stable and changes as then certain techniques like off-settingthemetertomitigatetheerrorisnotanoption

Withinstallationeffectsitisofcoursebesttoaskthesupplieroftheflow meter. They will have experts within their business that willadviseaboutparticularapplicationsandhowtoovercomeparticularproblemswithincertainapplicationssuchasoff-settingofthemetertocorrectforaparticular

Maintenance of electro-magnetic flow meters

So,anelectro-magneticflowmeterisinposition,it’sbeensizedcorrectly,therearenopipedisturbancesandithasbeenrecordingcorrectly.Surely,thejobisdoneandwedon’thavetoworryaboutituntilweunburyitin20years’timewhenitsapproachingtheendofitsassetlife?Notquite….itdoesneedtobechecked&verifiedandinsomecasescleaned.Forthisaccessisnecessarysoiftheflowmeterisburiedthenyoumayhaveaproblem.

Calibration&Verification

Nowthereissomemisconceptionastothedifferencesbetweencalibration&verification.Forelectro-magneticflowmetersitssimple.Ifyouaredoingitinthefield,unlessyouhavehiredaspecificexpertservicetofieldcalibrateyourflowmeter(itdoesexistbyonemanufacturer)youaren’tcalibratingit.Youareverifying it.

Insideofeverysingleelectro-magneticflowmeterisacalibration.Theyarefactorsthattendtobehard-codedintotheelectro-magneticflowmeterfromthefactoryandwhateveryoudodon’talterthem.Theyarethereforareasonandchangingthemwillirreparablychangethewaythatyourflowmetermeasures.Theyarefartoocomplicatedtoredointhefieldunlessyouareanexpert.Theyarenormallyonthemanufacturer’scertificatewhichisproducedwheneveryelectro-magneticflowmeter is made.

In the factoryeachandeveryflowmeter isputonto thecalibration rigand thecalibrationfactorsaremeasuredinthetiniestofdetail.Thesearethencodedintoeachflowmeter.Therigsareusuallyhugeandinvolveenoughwatertofillaswimmingpool.Thepictureshowspartoftheelectro-magneticflowmetercalibrationrig(theoutsidebit)atStonehouseinEngland.

Each of the rigs are calibrated regularly to ensure the accuracy of the flowmeasurement.Generallyastherigcan’tmovetoeachcustomerthenforanelectro-magneticflowmetertobe“calibrated”ithastobetakenout,sentbacktothe manufacturer, be put on the rig, calibrated and sent back. Although each and every supplier works as fast as they can all of the new meters also have to go on the rig and so the process is not instantaneous.

Aftereachcalibrationacertificateisproduced.Thisisthemanufacturer’scertificate(Figure5A)

Thisiscalibrationtoatraceablestandard.

Thealternativeisverificationwherethereistwoseparateanddistinctmethodswhichcomplementeachother.Thefirstiselectronicor“dry”verificationwhichissimplytestingthatallofthedifferentelementsoftheflowmeterareworkingandwithintoleranceoftheoriginalmanufacturerscertificate.Thisisusuallyundertakenbyinstrumentationtechniciansonsiteandinvolvesconnectingtotheflowmetereitherwithadedicatedinstrumentorwithasoftwareprogrammedependingwherethecalibrationisundertaken.Thisrunstheflowmeterthroughanumberofdifferentchecktoseeiftheflowmeteritselfiswithintolerances.Thisproducesverificationcertificate(Figure5B)andisnotacalibrationjustacheck. Thesecondmethodofverificationiswetcalibrationandthisisverifyingthattheflowmeterisactuallyrecordingflowstowithintolerancewhencomparedtoanalternativetraceableflowmeter.Althoughthisusestheprinciplesofacalibrationitissomethinginbetweenasthecalibrationfactorsthatarewithintheflow

Figure 4: CFD through a straight pipe, a 90 degree bend and a Butterfly Valve

Figure 5: The EM calibration rig at Stonehouse in England

Page 15

Page 16: WIPAC Monthly - July 2017

meterarenotadjusted.Thistypicallyisundertakenusinganultrasonictimeofflightflowmeasurementdevicewhichistraceablebacktonationalstandards. Cleaning of electro-magnetic flow meters

Whenelectro-magneticflowmetersfirstcameoutitwasthoughtthattheycouldbeinstalledandbasicallyleftuntiltheendoftheirassetlife.Morerecentlystudieshaveshownthatinsomecasesthisistruebutinothersitisnot.Inrealitythecleaningofelectro-magneticflowmetersisstillnotfullyunderstoodwherethehighestriskfactorsthatwillnecessitateacleaningprogrammeliebutworkthathasbeenundertakenbytheWater&SewerageCompaniesintheUKisstartingtouncoverwheretheriskfactorsarehighandwheretheyarenotandthuswhereanelectro-magneticflowmetercanbelefttorecorduntiltheendofitsassetlifeandwhereitneedsmoreoperationalmanagement.

Thefirstfactoriswhereanelectro-magneticflowmeteriswithintheprocess.Ifitisonthenetworkorisontheinlettoawastewatertreatmentworkstheriskfactorsaremuchhigher.Thisseemsanobviouspointbutitisnotalwayssoobvious.Taketheexamplepicturesinfigurexx.Bothare300mmelectro-magneticflowmetersandbothareontheinlettowastewatertreatmentworks.Bothofthemetershavebeeninforfiveyearsofservice.

Intheexampleinfigure6thepipeworkandsensorareheavilyfouledandonthefarright,itisasifthemeterhadbeenfreshlyinstalled.Bothmetersarethesamesize,whereinstalledatthesametimeandbothareontheinlettoaworks.Inthisparticularcaseoneofthesitesutilisesironsaltsforphosphorusremovalandtheotherdidnot.Sotheimmediateconclusionisthatinletflowmeterswhichdoseironsaltsupstreamoftheflowmeterareatahigherriskofneedingcleaningmoreoften.Ingeneralifaflowmeterisontheinletthecleansingoftheflowmeterandsurroundingpipeshouldbeconsideredeveryfiveyears

Whereaflowmeterisontheoutlettotheworksthenthequestionastowhethertocleantheelectro-magneticflowmeterornotismoretrickyandthestudiessofarshowthatthelargerflowmetersaremoresusceptibletobuildupofdebriswithinthepipework.Thenaturalthoughtwouldbedowntoaself-cleansingvelocitynotbeingachievedwithinthepipeworkofthemeter.Howevernoneoftheflowmetersinthestudyachievedself-cleansingvelocitiesandflowmeterswithsimilaroperatingvelocitiesbutdifferentsizeshaddifferinglevelsoffouling.Inshortthestudy,althoughhasprovidedindicationsofwheremetercleansingisrequiredandwhereitisnotthereisstillinsufficientevidencetoprovideacertainrecommendation.

Summary

Theuseofelectro-magneticflowmetersiswidespreadwithinthewaterindustryandhasbeenformanyyears.Itisausefulmeasurementtechniquethathasbeenusedformanyyears.Originallyitwasthoughttobea“fit&forget”technologyandyet,likeanymeasurementtechnique,carehastobetakeninthewayitisselected,usedandoperated.This“care”involvestheattentiontodetailthatanymeasurementtechniquerequiresinselecting,installing,operating&maintainingitintherightway.Thisinvolvesthethoughtofhowitisgoingtobeoperatedandmaintained.Withelectro-magneticflowmetersthisinvolves:

• Selectingthemostappropriateboresizesothatitoperateswithinthecorrectvelocityranges.• Installingitsothatanypipedisturbancefromexternalfactorsisminimisedoreliminatedandensuringthatitispipefull• Installingitsothatitisaccessiblesothatitcanbeverified(bothwet&dryverification),cleanedandreplaced

Ifallofthisisdonethenthepotentialisthatanelectro-magneticflowmetercanbeusedwithconfidenceinitsaccuracyformanyyears.

Figure 5: Methods of Electromagnetic Flow Meter Calibration & Verification (L-R) A - A manufacturers certificate B - A site electronic verification C - Onsite wet verifcation against a meter that has been calibrated against a reference meter

Figure6:Fouledandcleanmagmeters-(L-R)A-Upstreampipe-workfoulingB-TheelectrodeinthesensorfouledC-Acleanmagmeter

Page 16

Page 17: WIPAC Monthly - July 2017

Opinion:

Ofwat’s PR19 methodology: Implications for resilience,

asset health and leakage

In2014,Ofwatintroducedoutcome-basedregulationintotheirmethodologyforsettingwaterpricesforthecurrentAMP6period.Lastweek,Ofwatpublishedtheirdraftmethodologyforsettingpricesforthenextfive-yearAMPcycle,whichwillbeginin2020.Asanticipated,thewaterindustryregulatorwillaimtoensurethatcompaniesarefocusedondeliveringtheimprovementsthatmattermosttocustomers,whilesharpeningaccountabilityforperformance.

Focus on resilience

As expected, building resilience ‘in the round’ is a key theme of the draftmethodology. Therewill be significant rewards and penalties throughOfwat’sfinancialoutcomedeliveryincentives(ODIs)forwatercompanieswhooutperformorfailtodeliveracrossawiderangeofKPIs,andthesearelikelytoincludebothcommonandcompany-specificmeasuresofresilience.

ThemethodologyadoptsthedefinitionproposedbytheOfwatResilienceTaskandFinishGroup,asfollows:

“Resilienceistheabilitytocopewith,andrecoverfrom,disruption,andanticipatetrendsandvariabilityinordertomaintainservicesforpeopleandprotectthenaturalenvironmentnowandinthefuture.”

Resilienceforwatercompaniesmeansplanningforandanticipatingriskswhethertheyareenvironmental,operationalorvirtual,sothatanydisruptiontoserviceisminimisedandrectifiedasswiftlyaspossible.

Predict, prepare, respond

“Managingandbeingpreparedforenvironmentalandoperationalrisksthatarerealisedinfrequentlyisadifficulttask,”commentedGeorgeHeywood,TechnicalDirectoratServelecTechnologiesfollowingthepublicationofthemethodology,whoadded:

“DespiterecenteffortstodevelopstandardresilienceperformancecommitmentsforuseatPR19,Ofwatmakeitclearthatthereisstillmuchworktobedoneinthisarea.Companieswillneedtoinnovatetodeveloptheirownbespokemeasures,andtoquantifytheseusingappropriatemodellingtoolsandapproaches.”

Long-termresilienceandlong-termaffordabilityforcustomersmustbebalanced.ItisclearfromOfwat’sconsultationthatstrongaffordabilityandcost-benefitchallengeswillremainforproposalsthatinvolvesignificantexpenditure.Companieswillneedtomakeaverystrongcaseforexpenditure,backedupbyrobustanalysis.

Thiswillrequireaccuratequantificationoftheimpactofdisruptionsoncustomers,accountingforaspectssuchascomplexnetworkconstraints,awiderangeofinitialconditions,andpracticableoperationalresponses.ServelecTechnologies’MISERsoftwareautomaticallyoptimisesoperationunderfailureeventstoensureanauditableandobjectiveanalysisofsupplyinterruptionsandwaterqualityimpacts.DeeperunderstandingofrisksisgainedthroughMonteCarloSimulationtoderiveconsequencedistributionsbasedonthestatisticsoftheinputs.Tosupportthecaseforinvestment,optimalsizingofnewschemesandschemeselectionprovidesoundcost-benefitappraisals.

Operationally,MISERincreasesresiliencethroughoptimalnetworkoperationbymaximisingsecurityofsupply,takingaccountofoutages,forecastdemands,storagelevels,licenceusageandloadbalancing.Longer-term,waterresourceyieldassessmentsandsupply/demandanalysisensureoperationissustainableand robust into the future.

ServelecTechnologies’waternetworkmanagementadvisorytool,MISERisusedbyninewatercompaniesintheUK,whobenefitfromitsabilitytohelpthemmanage their risks, investment and vulnerability.

Asset health

Although not always associated with the resilience agenda, the underlying health of water company assets is a key element of providing resilient services to customersnowandinthefuture.Ofwat’smethodologystrengthensrequirementsinthisarea,informedbythefindingsoftheirrecenthorizontalreview.Toimprovetransparencyaggregatedperformancecommitmentswillnolongerbepermitted,andthereareanumberofcommonmeasuresproposedtoallowformorecross-industrybenchmarking.

Thereisarequirementforcompaniestoforecasttheirperformancecommitmentsoveratleastafurthertenyearsbeyondthenextpricereviewperiod,tohelpcustomersandstakeholdersengageontheselonger-termissues.

Georgeadded:“Ifthereisaneedforincreasedinvestmenttomaintainassethealthinthelongertermthencompanieswillneedtobuildabroadconsensusforthiswithcustomers.WearealreadyworkingwithanumberofcompaniestosupportthemindetermininginvestmentrequirementsforPR19,usingourPIONEERsoftware.Thisworkwillincludeforecastingofinvestmentrequirementsovertherequiredperiod.Inmostcasesthisisbeingdoneusingcompany-specificmodelspreparedbyourselvesorbythecompany,butwealsohavestandardmodelsthatwecanuseforthispurpose.”

Leakage

LeakagewillcontinuetohaveahighprofileatPR19,asOfwatchallengecompaniestosetmoreambitioustargetsforleakagereduction,atleast15%overthe

Page 17

Page 18: WIPAC Monthly - July 2017

five-yearperiod.Solutionsexistthatenablewatercompaniestodetectandlocateeventsontheirnetworkssuchasburstsbeforetheybecomeaproblem,signalingashifttowardsmoreproactiveleakagereductionstrategies.PortsmouthWateristhelatestcompanytoseekServelecTechnologies’assistanceinthisarea,adoptingServelecTechnologies’self-learninganomalydetectionsoftware,FlowSure.FlowSurehaspreviouslydemonstratedsix-figurenetsavingsandtypicallypaysforitselfinlessthan12months;thesesavingscanhelpfinanceextranetworkresilienceinotherareas.

“Ofwat’sdraftmethodology ischallengingandambitious,aimingtospurthe industryontogreater innovation inpursuitofmoreaffordableandresilientservices.TheclockisnowtickingforcompaniestoshowhowtheywillrespondtothesechallengesatPR19andbeyond.”

About the Author

GeorgeHeywoodisTechnicalDirectoratServelecTechnologies,aleadingproviderofend-to-enddatacollection,controlandoptimisationsolutionstotheUKwaterindustry.Georgeisamathematicianandenvironmentalengineer,whohasspentover20yearsworkinginthewaterindustry,mostlyinassetmanagement.Hehelpscompaniestoimprovetheirdecision-makingthroughevidence-basedanalysis,modellingandoptimisation..ServelecTechnologies specialises inproviding thewater industrywithexpertmodelling,optimisationand riskanal-ysis consultancy, combinedwith software products and development services. Our team has extensive experiencegainedfromsupportingutilitycompanieswithregulatorypricereviewsandpracticalplanningsince1997.WeprovidemodellingandwideranginganalysisservicescoveringallutilityassettypesandhaveprovidedourassetmanagementsoftwarePIONEERandrelatedservicesto30%ofUKWatercompaniesduringthemostrecentpricereview.ServelecTechnologiesisalsosupportinginternationalcustomerswiththeirownregulatoryreviewsandroutineplanning.

Thames Water uses satellite data to find forgotten London riversThamesWaterisusinginnovativesatellitetechnologytofindforgottenriversinLondon-hundredsoflostriverscouldsoonberediscoveredandeventuallyrestoredthankstotheground-breakingproject.The teamof riverhunters fromThamesWater’s innovationteamhavebeencollatinginformationfromhistoricalmapsandrecordsandcombiningitwithdatafrommodernsatelliteimagestotrackdownformerrivers–inthehopethatmanyofthemcanberestored.

Todatethe innovationteamhasonlybeenabletomapNorthLondonandpredictwheretheriversmightbe.However,theyhavealreadydiscoveredapotential68kmofpipesandtunnelsthat may once have been natural watercourses but were buried and so became lost from view.

They have been able to do this by creating detailed spatialmodellingmaps, using all of thecombined data plus the known sewer and river network.

DavidHarding,customerandstakeholdermanagerwhooriginallysuggestedtheproject,added:

“Identificationofpipedwatercoursesoffersopportunitiestorestoremodifiedwatercoursesbacktotheirnaturalstate,knownas‘daylighting’.

“River daylighting is already taking place in towns and cities across the UK, and has manybenefitsincludingencouragingmorewildlife.Iworkwithmanyenvironmentalgroupsandlocalauthoritiesthatarepassionateaboutrestoringlostrivers–theyjustneedtoknowwheretheyare.”

AlthoughtheteamhasonlybeenabletomappotentiallostriversinNorthLondon,they’rehopingthatiftheyattractthenecessaryfunding,themodellingcanbeusedacrosstheThamesWaterregiontotrackdownlostrivers.

Thereareanumberofreasonsthewatercourseswereburied,suchastoallowforbuildingdevelopments,tohelpmanagefloodingrisksortoconcealpollution.

Overtimetheiroriginalnaturehasbeenlostduetothetransferofrecordsbetweendifferentorganisations.Nowtheyareinvisible,bothonthegroundandonthemapsthatmostpeopleuse.Evenwhenpipesarerecordedonmapsmanyofthemareincorrectlyrecordedassewers,whichmeanstheownershipofthem,and the responsibility for the upkeep of them, is unclear.

Theriversarealsooftenacauseoffloodingwhenpipesandtunnelsbecomeblockedoroverloaded.Ifthey’rerestoredtoopenriverchannelsthatcansafelyflood,itmayhelpmanagefloodingintheaffectedareas.

RachelCunningham,fromtheinnovationteam,said:

“Nowthepotentialculvertedwatercourseshavebeenidentifiedforthistrialarea,correctownershipcanbeinvestigatedsothere’sabetterunderstandingofthemaintenance and cleaning that needs to take place.

“Thisisareallyexcitingprojectandwe’rehopingtoattractthefundingthatwouldallowforthistobecarriedoutacrosstheregion.”

Model of the catchment studied with the lost rivers in pink

Page 18

Page 19: WIPAC Monthly - July 2017

Introduction

Dissolvedoxygenisakeyingredientintheefficienttreatmentofwasteinwaterprocesses.Atypicalwastewatertreatmentplantusesfourmainstagesoftreatment–Primary,Secondary,TertiaryandSludge.Thesecondarytreatmentstageisthepointatwhichorganicwasteisoxidisedtoformcarbondioxide,waterandnitrogencompounds.Toachievethis,mostmodernplantsuseanactivatedsludgesystem,whichusesacultureofbacteriaandotherorganismstofeedontheorganicmaterialsinthesewage.Whenaddedincombinationwiththerighttemperature,thesebacteriaandorganismsusedissolvedoxygentoburnorbreakdownorganiccarbonsintocarbondioxide,waterandenergy,clearingthewaterofharmfulsubstances.

Theimportanceofaccuratedissolvedoxygencontrol

Asakeyrequirementformosttypesoflife,oxygenisoneofthemostimportantparametersinwaterqualitymonitoring.Assuch,wateroperatorsneedtokeepacloseeyeonlevelsthroughoutthewatertreatmentprocess,fromthetreatmentofwasteattheaerationstagethroughtothepointoffinaldischarge.

Optimizingaerationefficiency

Theefficiencyoftheaerationprocessreliesondissolvedoxygenlevelsbeingcontrolledascloselyaspossible.Underidealconditions,dissolvedoxygenlevelsshouldbemaintainedatbetween1.5ppmto2ppm.Ifnotenoughdissolvedoxygenisavailable,theaerationbasinswillbedeprivedoftheoxygenneededforeffectivebacterialgrowth,negativelyaffectingtherateofsewagebreakdownandimpairingtreatmentprocessefficiency.

Toomuchdissolvedoxygencanalsohaveadetrimentalimpact.Withaerationprocessesaccountingforoverhalfofaplant’senergycosts,itisvitalthattheirefficiencyisoptimisedasmuchaspossible.Failingtoensuretightcontrolofdissolvedoxygengreatlyincreasestheriskofoperatorsincurringexcessiveenergycosts.

Minimizingenvironmentalimpact

Withoperatorsofwatertreatmentplantsfacingeverstrictercontrolsonthequalityofthewatertheydischarge,itisvitallyimportanttoensurethatanythingthatcouldaffectthehealthofwatercoursesandaquaticareas.Wheredissolvedoxygenisconcerned, it isparticularly importanttoensurethat levelsarecontrolledascloselyaspossible.Bothexcessivelylowandexcessivelyhighlevelsofdissolvedoxygencanbeequallyasharmfultoaquaticlife,makingitessentialforwatertreatmentplantstoensurethatlevelsareasclosetoidealaspossiblebeforewaterisdischarged.

Anexampleisthepotentialcreationoffilamentousgrowthsandammoniaduringthewastewatertreatmentprocesscausedbyinsufficientaeration.Ifleftunresolved,theseharmfulby-productscanescapeintotheenvironment,damagingaquaticlifeandleadingtopotentiallystifffinancialpenaltiesforwateroperators.

What are the main types of measurement techniques for dissolved oxygen?

As a key indicator of biological activity levels in water, dissolved oxygen has always been a critical measurement in wastewater treatment processes.Startingwithin-situmanualcollectiontechniques,thewayinwhichdissolvedoxygenlevelshavebeenmeasuredhasevolvedastechnologyhasbecomemoresophisticated.

Thefollowingisabriefdescriptionofthevariouskeymethodshistoricallyusedtomeasuredissolvedoxygen.

TheWinklerTitrationmethod

OriginallydevelopedbyLudwigWinklerin1888,theWinklerTitrationmethodisanin-situtestinvolvingthemixingofaknownchemicalalkalisolutionwithaknownacidsolutiontoassessthelevelofdissolvedoxygeninasample.Theprocessstartswithmanganesesulphatebeingaddedtothewatersample,followedbyanalkali,iodideorazidereagent.Thesampleisthenmixed,withthepresenceofanydissolvedoxygenbeingindicatedbytheformationofabrown-colouredprecipitate(shownbelowasMnO2(s)).Theequationforthisprocessisshownbelow:

4e-+4H++O2=2H2O2Mn2++4OH-=2MnO2(s)+4H++4e-2Mn2++4OH-+O2(aq)=2MnO2(s)+2H2O

Thesampleisthenmixedwithatitrateofsodiumthiosulfate,followedbyastarchsolution,toproduceabluecolour.Extratitrateisthenbeaddeduntilthesampleturnsclear.Atthispoint,thelevelofdissolvedoxygencanbecalculated,withthelevelbeingproportionaltotheamountoftitrateaddedinmilliliters.Although the test is relatively simple toperform, itnevertheless suffers fromseveraldisadvantages.Firstly, thesamplehas tobemeasuredasquicklyaspossible,inordertoprovideasaccurateareadingaspossible.Linkedtothisisthefactthatasampleassessedusingthemethodcouldonlyeverofferinformationonthelevelofdissolvedoxygenforaspecificmomentoftime.Forwastewatertreatmentprocesses,thismadeanydatagatheredoflimitedvalueinhelpingtoachieveaconsistentlevelofdissolvedoxygen.

White Paper:

Dissolved Oxygen Measurement in Wastewater

Page 19

Page 20: WIPAC Monthly - July 2017

Portabledissolvedoxygenmeters

Anothercommonmethodforcollectingdissolvedoxygensamplesistouseportablemeters.Combiningahandheldmeterwithachoiceofagalvanicoropticalsensor,thismethodoffersanumberofadvantagesovertheWinklertest.Withpre-calibratedvaluesautomaticallyprogrammedintothedevice,areadingcanbeobtainedalmostimmediately.Byeliminatingthetimetakentoconductatest,moremeasurementscanbemadewithinagiventimeframe.

However,aswiththeWinklertest,portablemetersaredesignedforgrabsamplesandthusonlyprovideanindicationofdissolvedoxygenlevelsforaparticularmomentintimeunderaparticularsetofconditions.Thisisespeciallyimportantinawastewatertreatmentprocessifthereadingsareusedtodeterminethesettingsofthedissolvedoxygenblowers.Iftheconditionsremainconsistent,thentheblowerswillprovidethecorrectlevelofdissolvedoxygenforoptimumaeration.However,iftheconditionsaresubjecttovariation,thenadditionalreadingswillneedtobetakeninorderfortheblowerstobereset.

Onlinemeasurement

Continuouslymeasuringdissolvedoxygen levelsoffersthebestwayofensuringthattheright levelsofoxygenarebeingdeliveredformaximumaerationefficiency.Whenused inconjunctionwithmodernsensingtechnology,anonlinedissolvedoxygenmeasurementsystemcanoffermuchtightercontrolofdissolvedoxygenlevels,matchingthemtoactualoxygendemand.Whencoupledwithautomaticblowercontrol,significantenergycostsavingscanpotentiallyberealisedthroughreducedairconsumption.

Sensor technology

Therearetwomaintypesofsensorsavailablefordissolvedoxygenmonitoring–electrochemicalandoptical.

Electrochemicalsensors

Electrochemical sensors work on either the polarographic or galvanic cell principles. Both work in asimilarway,featuringapolarisedanodeandcathodewithanelectrolytesolutionsurroundedbyanoxygenpermeable membrane.

The measurement is derived based on the difference in oxygen pressure outside and inside of themembrane. Variations in the oxygenpressure outside of themembrane affect the rate of diffusion ofoxygenthroughthemembraneitself.Thecathodereducestheoxygenmolecules,producinganelectricalsignalthatisrelayedfirsttotheanodeandthentoatransmitter,whichconvertsthesignalintoareading.

Thisprocesscanberepresentedas:

Attheanode:2Pb→2Pb2++4e-Atthecathode:O2+2H2O+4e-→4OH-Overallreaction:O2+2Pb+2H2O→2Pb(OH)2(insoluble)

Theconsumptionoftheoxygenatthecathodemeansthataconstantflowofsampleisneededinorderforareadingtobeasaccurateaspossible.Inmostcases,thiswillrequirethesampletobestirredconstantlyatthesensortip,inordertoproducethenecessarylevelsofoxygenforanaccuratereading.

Onepotentialdrawbackofpolarographicsensorsoccursduringstart-up.Incontrasttogalvanicsensors,wheretheprobesareabletoself-polariseunpowered,polarographicsensorsrequirea‘warm-up’period,lastingfrom5to15minutes,fortheprobestopolarise.Therequirementforaconstantcurrentmeansthatthesensorconsumesmorepowerthanothersensortypes,makingitcomparativelylesscost-effective.

In terms of performance, electrochemical sensors have been proven to offer similar levels ofmeasurement accuracy to optical devices. However, theirrequirementforaconstantflowandtheirsusceptibilitytofoulingbyfilamentousgrowthssuchasalgae,orcloggingbyfatsoilsandgrease,makethemcomparativelylessreliableundernon-idealmonitoringconditions.Wherethisoccurs,theriskofinaccuratemeasurementandinefficientblowercontrolisgreatly increased.Continued sensordrift, coupledwith foulingof the sensormembrane, alsomeans that frequentmaintenance, including calibration, isneeded,rangingfromonceamonthtoonceadayinextremecircumstances.

Opticalsensors

Originallydevelopedinthe1970s,opticalsensorshaveevolvedtoovercomemanyofthelimitationsassociatedwiththeirelectrochemicalcounterparts.

Incontrastwithelectrochemicalsensors,opticalsensorshavenomembraneor chemical components. The most advanced dissolved oxygen sensorswork on the ‘dynamic luminescence quenching’ principle, a light-basedmeasurement technique.

Opticalsensorsarecomprisedoflumiphoremoleculesembeddedinasensingelement,plusblueandredLEDsandaphotodiode.Figure2showshowanopticalsensorworks.Theoperatingprinciplesofopticalsensorsshowninthefigurecanbeexplainedasfollows:

Figure 2: The principle of Optical DO Measurement

Figure 1: Principle of electrochemical DO measurement

Page 20

Page 21: WIPAC Monthly - July 2017

1. Thesensorincludeslumiphoremoleculesembeddedinasensingelement,ablueLED,aredLEDandaphotodiode2. Lumiphoremoleculesareexcitedbybluelightandemitredlight,whichisdetectedbythephotodiode3. Opticalelectronicscomputetheluminescencelifetime.Theluminescencelifetimeisbasedonthephaseshiftbetweentheredreturnedlightfrom

theexcitedlumiphoremoleculesandtheredreferencelightfromtheredLED

Whenareadingistaken,thelumiphoremoleculesareexcitedbybluelightfromtheblueLED.Whenexcited,thesemoleculesemitaredlight,whichisdetectedbythephotodiode.Anyoxygenmoleculespresentwillquenchtheexcitedlumiphoremolecules,reducingtheamountofredlightbeingemitted.TheshiftintheamountofredlightbeingemittedisthenmeasuredbytheredreferenceLED.AsDOconcentrationandtheamountofredlightbeingreturnedareproportional,ameasurementcanthenbetakenandconvertedintoareadingbasedonmg/l.

Akeybenefitofopticalmeasurementtechnologyisitsstabilityandaccuracy.Theluminescencelifetimetechniqueisusedtomeasurethephaseshiftbetweenthereturnedredlightandtheredreferencelight.Therearetwomainwaysofmeasuringtheluminescencelifetime:

Time domain method

Thetimedomainmethodisbasedonapulsedmethod.Measurementsaretakenbasedoneitherasingleoranaverageofaseriesofexponentialdecayevents.Thismethodmeasurestheamountoftimetakenforthebrightnessofthelighttoreturntoaparticularvalue.Inaccuraciescanarisewherethismethodisusedduetodriftorthepresenceofanystraylight.

Frequency domain method

Involvingthemeasurementandreferencingofthephaseshiftofanentiresignalagainstanumberofcycles,thismethodoffersmuchbetteraccuracyandstabilityacrossaverywideoperatingrange.

Advantagesofopticalsensors

Usingopticalsensorsfordissolvedoxygenmeasurementcanhelptoovercomemanyoftheproblemsassociatedwithelectrochemicaldevices.Typicalbenefitsofopticalsensorsinclude:

Improved accuracy–opticaldeviceshavebeenproventodeliverimprovedaccuracywithnodriftevenoverprolongedperiods.Incomparison,theaccuracyofelectrochemicaldevicescanbecomeimpairedduetofoulingofthemembraneand/ordegradationofthesensorelectrolyte.No need for a sample flow – optical devices also provide an effective alternative to electrochemical sensors in low oxygen (hypoxic) conditions. Unlikemembrane-basedsensors,opticaldeviceshavenorequirementforsamplefloworstirringtoartificiallyraisedissolvedoxygenlevels.Low maintenance–comparedtoelectrochemicaldevices,opticalsensorshaveagreatlyreducedmaintenancerequirement.Thesensorheadonlyneedstobecleanedperiodically,whilstthesensorcaponlyneedstobereplacedonayearlybasis.Thecostofsparesisalsoreduced,withnoneedtokeepsparemembranesorelectrolytefillingsolution.Long-term calibration–thenon-consumptive,non-reactivedesignofopticalsensorsmeansthatthefrequencyofcalibrationisreduced.Opticalsensordeviceshavebeenproventoprovideaccuratemeasurementsformanymonthsbeforecalibrationneedstobechecked,eveninapplicationswithahigherriskoffouling.Improved resistance against harsh conditions–thesensingelementinopticalsensorsishighlyabrasionresistant,affordingprotectionagainsttheeffectsoffouling,sedimentandrapidflows.Opticaldevicesarealsoimpervioustotheeffectsofsubstancesandgasessuchassulphides,sulphates,hydrogensulphide,carbondioxide,ammoniaandchloridethatcanaffecttheefficiencyofelectrochemicalsensors.

ProblemsassociatedwithtraditionaldissolvedoxygensensingsystemscannowbeeliminatedusingABB’sopticaldissolvedoxygensensingsystem.ComprisedoftheADS430sensorandAWT400multi-channeltransmitter,thesystemutilizesthe latestdevelopments inopticalmeasurementtechnology.Consistent,reliableandaccurate,itcanhelpoperatorstorealisesignificantsavingsthroughreducedenergyconsumptionandmaintenance.TheADS430opticalDOsensorusesRuggedDissolvedOxygen(RDO®)*opticaltechnologyformeasuringdissolvedoxygeninthemostdemandingprocessenvironments.TheRDOtechnology,whichhasbeenapprovedbytheU.S.EnvironmentalProtectionAgency(EPA),usesthedynamicluminescencequenchingtechnique.Comprisedofasensorandmulti-channeltransmitter,itworksonthefrequencydomainmethodandprovidesthehighestlevelsofstabilityandaccuracyfordissolvedoxygenmeasurement.

Thepatentedsignalprocessingwithinthesensorenablesittorespondtochangesinprocessconditionsuptofivetimesfasterthanotheropticalsystems,allowingimprovedprocesscontrolandmaximumprocesssavings.Thesensor’srobustdesignofthesensorenablesittowithstandtheproblemsthatcanaffectconventionalmembrane-basedsensors,suchasabrasion,foulingorpoisoning.Thesensorlumiphoreisnotaffectedbyphotobleachingorstraylight.Thesensoritselfisalsoimmunetotheeffectsofsulfides,sulfates,hydrogensulfide,carbondioxide,ammonia,pH,chlorideandotherinterferences.Thisenablesittoprovideconsistent,accuratereadingsoverlongperiodsoftimewithoutsufferingfromsensordrift.TheADS430sensorisalsoconstructedfrominert,non-corrosivematerials,makingitsuitableforuseinhighsalinityenvironments.Theuseofthedynamicluminescencequenchingprinciplemeansthatthesensorisnotsusceptibletodrift,removingtheneedforfrequentmaintenance.

Page 21

Page 22: WIPAC Monthly - July 2017

September 2017

Sensing in Water 201727th-28thSeptember2017NottinghamBelfry,Nottingham,UKHosted by theSensorsforWaterInterestGroup

October 2017

WEFTEC30thSeptember-4thOctober2017Chicago,USAHosted by WEF

Wetsus Congress9th-10thOctober2017Leeuwarden,HollandHosted by Wetsus

November 2017

WEX Global7th-9thNovember2017Seville, SpainHostedbyWEXGlobal

Innovation Brokerage Workshop22ndNovember2017UniversityofBath,UKHostedbytheSensorsforWaterInterestGroup

Page 22

Conferences, Events,Seminars & Studies

Conferences, Seminars & EventsSensing in Water

Where: NottinghamBelfryWhen: 27th-28th September2017

The 4th biennial conference and exhibition promises to be bigger andbetterthanever!In2015,180peopleattendedSensinginWateroverthe2days of the conference, including 12majorwater companies. 40 exhibitorspresented theirproductsand services in theexhibition,manyofwhomarerepeatcustomersatourconferencesodon’tmisstheopportunitytoadvertiseandraiseyourprofiletothewatersensorcommunity!

Thethemeofthisyearsconferenceis“meaningfulmeasurementfrommicrotomacro”takingtheapplicationofsensortechnologywiththesessionsoverthetwodayconferenceconcentratingon

• SensorDesign&Performance• SensorapplicationattheTreatmentWorks• Sensorapplicationwithinnetworks&infrastructure• Sensorapplicationwithinenvironmentalcatchments

WithkeynotespeakersfromWelshWater&theEnvironmentAgencyandover20 speakers in total the event promises to be an interesting fewdays. Thelatestdraftprogrammeisavailablehere

Innovation Brokerage Workshop

Where: UniversityofBathWhen: 22ndNovember2017

There isawealthofnewtechnologyand innovationbeingdeveloped inUKuniversitieswhichoftentranslatesintothedevelopmentofnewproductsinindustry. Successful translation and exploitation of academic researchdependsonrecognisingpotentialandformingnecessarycollaborations.ThisSWIGInnovationworkshopisdesignedtobringtogetheracademicresearchgroupsandinterestedcompaniestoidentifypotentialtechnologies,collaboration, exploitation opportunities in the area of sensor technologiesdeveloped for use in water.

Theneedfornewsensortechnologiesforwaterisoftendrivenbylegislationandtheneedforregularmeasurementsatlowerconcentrations,ortheneedfor more rapid or more reliable measurements made at remote sensing sites. Thisencompassesawiderangeoftechnologiesthatareusedformeasuring physical, chemical or biological parameters in or of water. Forexamplessensorsthatmeasurewaterpressure,heightorchemicalandbio-sensors for measuring dissolved components, pollutants or microorganisms.

Page 23: WIPAC Monthly - July 2017

Sensing in Water 2017

“Meaningful Measurementfrom

Micro to Macro”

27th - 28th September 2017Nottingham Belfry, UK

Page 23