wir schaffen wissen –heute für morgen paul scherrer institut

36
Wir schaffen Wissen – heute für morgen Paul Scherrer Institut 12.5.2014 René Künzi Thermal Design of Power Electronic Circuits CERN Accelerator School 2014, Baden, Switzerland

Upload: others

Post on 29-Apr-2022

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Wir schaffen Wissen –heute für morgen Paul Scherrer Institut

Wir schaffen Wissen – heute für morgen

Paul Scherrer Institut

12.5.2014

René Künzi

Thermal Design of Power Electronic Circuits

CERN Accelerator School 2014, Baden, Switzerland

Page 2: Wir schaffen Wissen –heute für morgen Paul Scherrer Institut

R. Künzi Thermal Design CAS 2014 12.05.2014 2

Motivation

Statement in a meeting:

“The converter works as specified, there are just a couple of tests missing to check its thermal behavi or.”

Statement in the follow-up meeting 2 weeks later:

“We could only test up to 50% of the rated power, ot herwise the converter would have been burnt away.”

Lesson learnt:

Take the losses and the heat dissipation issues int o

account from the very beginning!

Page 3: Wir schaffen Wissen –heute für morgen Paul Scherrer Institut

Heat Sources: Resistors

• Resistors– Continuous load

• Sufficient heat transfer to ambient• Temperature ≈ stable

– Pulsed load• Absorb energy during pulses→ sufficient active material

• Temperature ≠ stable• Limited repetition rate

• Cables– Use sufficient cross section → additional investment vs. loss costs– Skin effect

• Skin depth in Cu @ 1kHz: 2.1mm• @ 10kHz: 0.7mm

R. Künzi Thermal Design CAS 2014 12.05.2014 3

Page 4: Wir schaffen Wissen –heute für morgen Paul Scherrer Institut

Heat sources: Magnetic Components

• Core losses– Eddy current losses

• Iron sheet cores f < 1kHz• Powder cores f < 10kHz• Ferrite cores f > 10kHz

– Hysteresis losses• Proportional to the area of the hysteresis curve and the frequency

– Core losses in transformers• Designed to have a minimized hysteresis curve area• Losses increase with frequency• Losses are also present at zero load

– DC-chokes• Are built to store a lot of energy → hysteresis curve spans a large area• Core losses depend on amplitude and frequency of the ripple current

R. Künzi Thermal Design CAS 2014 12.05.2014 4

Page 5: Wir schaffen Wissen –heute für morgen Paul Scherrer Institut

Heat sources: Magnetic Components

R. Künzi Thermal Design CAS 2014 12.05.2014 5

• Winding losses– Arise from the ohmic resistance of the winding– Dissipated power is proportional to I2

– Winding resistance increases approx. 0.4% per K (for Cu)

• Keep losses and temperatures low because– Higher tempeatures cause even higher losses– Wasted energy– Costs of the wasted energy– Costs for recooling– Lower temperatures increase the life time– The investments will be returned

Page 6: Wir schaffen Wissen –heute für morgen Paul Scherrer Institut

Heat Sources: Semiconductors

R. Künzi Thermal Design CAS 2014 12.05.2014 6

VDC = 250VIOut = 200A @ m = 0.8fs= 20kHz

• IGBT losses– Conduction losses– (Blocking losses)– Switching losses

(ON and OFF)

• Diode losses– Conduction losses– (Blocking losses)– Switching losses

(Recovery losses)

FF600R06ME3 [1]

Example:

Page 7: Wir schaffen Wissen –heute für morgen Paul Scherrer Institut

Heat Sources: IGBT losses

Conduction losses IGBT:

��� � � ∙ �� ∙ ���

Note: VCE depends on the junctiontemperature

��� � 0.8 ∙ 200� ∙ 1.1� � 176�

R. Künzi Thermal Design CAS 2014 12.05.2014 7

Page 8: Wir schaffen Wissen –heute für morgen Paul Scherrer Institut

Heat Sources: IGBT losses

Switching losses IGBT:

��� � �� ∙ ��� � ���� ∙���

�� �

!"

∙ #$

with #& � 1.3… . . 1.4

and #$ � 1 � 0.003#*+ ∙ ,- . ,/ � [2]

In our example we assume TJ ≈ 90°C

#$ � 1 � 0.003#*+ ∙ 90 . 125

#$� 0.895

��� � 202000�*+ ∙ 5 � 8 ∙ 10*34

∙250�

300�

+.35

∙ 0.895 � 182�

R. Künzi Thermal Design CAS 2014 12.05.2014 8

Page 9: Wir schaffen Wissen –heute für morgen Paul Scherrer Institut

Heat Sources: IGBT losses

A softer switching (higher gateresistance) increases the switchinglosses dramatically

R. Künzi Thermal Design CAS 2014 12.05.2014 9

Page 10: Wir schaffen Wissen –heute für morgen Paul Scherrer Institut

Heat Sources: Diode losses

Conduction losses Diode

��� � 61 .�7 ∙ �� ∙ �8

Note: Negative temperature coefficient!

��� � 61 . 0.87 ∙ 200� ∙ 1.15� � 46�

R. Künzi Thermal Design CAS 2014 12.05.2014 10

Page 11: Wir schaffen Wissen –heute für morgen Paul Scherrer Institut

Heat Sources: Diode losses

Switching losses Diode

��� � �9 ∙ �/ : ∙���

�� �

!"

∙ #$

with #& � 0.6

and #$ � 1 � 0.006#*+ ∙ ,- . ,/ � [2]

In our example we assume TJ ≈ 90°C

#$ � 1 � 0.006#*+ 90 . 125

#$� 0.79

��� � 202000�*+ ∙ 5 ∙ 10*34 ∙250�

300�

;.<

∙ 0.79

� 71�

R. Künzi Thermal Design CAS 2014 12.05.2014 11

Page 12: Wir schaffen Wissen –heute für morgen Paul Scherrer Institut

Heat Sources: Diode losses

In contrary to the IGBT, a softer switching (higher gate resistance) reduces the switching losses of the freewheeling diode remarkably.

R. Künzi Thermal Design CAS 2014 12.05.2014 12

Page 13: Wir schaffen Wissen –heute für morgen Paul Scherrer Institut

Summary losses

IGBT losses

�� � ��� � ���

�� � 176W� 182W �358W

Diode losses

�� � ��� � ���

�� � 46W � 71W � 117W

R. Künzi Thermal Design CAS 2014 12.05.2014 13

Total losses per module

� � �� � ��

� � 358W� 117W � 475W

Page 14: Wir schaffen Wissen –heute für morgen Paul Scherrer Institut

Heat transfer: Packages

• Isolated module package– Isolated Cu Base

• 1 heat sink for several devices• Heat sink on ground potential

– Solder contacts– Cooling from one side only– Open circuit after failure

• Parallel connection

• Press pack devices– Cooling via power terminals

• Individual heat sinks for all devices• Heat sink on high voltage

– Presspack contacts– Cooling from both sides– Short circuit after failure

• Series connection

R. Künzi Thermal Design CAS 2014 12.05.2014 14

Page 15: Wir schaffen Wissen –heute für morgen Paul Scherrer Institut

Heat transfer: Temperatures

• Maximum ambient temperature

• Get thermal resistances frommodule data sheet

• Get thermal resistance from heatsink supplier

• IGBT- and diode-losses fromcalculation

• Calculate heatsink temperature

• Calculate base plate temperature

• Calculate diode and IGBT chiptemperatures

• There should be a safetymargin of min. 25K!

R. Künzi Thermal Design CAS 2014 12.05.2014 15

35ºC

0.09K/W 0.15K/W

358W 117W

∆T=(358+117)W*0.1K/W=48K

∆T=(358+117)W*0.009K/W=4K

83ºC

87ºC

∆T=117W*0.15K/W=18K

∆T=358W*0.09K/W=32K

105ºC119ºC

0.009K/W

0.1K/W

Page 16: Wir schaffen Wissen –heute für morgen Paul Scherrer Institut

Transient thermal impedance

R. Künzi Thermal Design CAS 2014 12.05.2014 16

Continued fraction circuit (Cauer model)

Page 17: Wir schaffen Wissen –heute für morgen Paul Scherrer Institut

Transient thermal impedance

R. Künzi Thermal Design CAS 2014 12.05.2014 17

Partial fraction circuit (Foster model)

Page 18: Wir schaffen Wissen –heute für morgen Paul Scherrer Institut

Stacking of different materials

R. Künzi Thermal Design CAS 2014 12.05.2014 18

Page 19: Wir schaffen Wissen –heute für morgen Paul Scherrer Institut

Temperature variations

• Power Cycling– Temperature variations

of the silicon chips (fast)– Causes mechanical

stress to bond wires– Bond wires lift off– VCE increases– Losses increase– Larger temperature

variations– Device fails

• Thermal Cycling– Temperature variations

of the base plate (slow)– Causes mechanical

stress to soldering joint– Aging of soldering joint– Rth increases

– Larger temperaturevariations

– Device fails

R. Künzi Thermal Design CAS 2014 12.05.2014 19

Page 20: Wir schaffen Wissen –heute für morgen Paul Scherrer Institut

LESIT Project

R. Künzi Thermal Design CAS 2014 12.05.2014 20

Power Cycling of standard modules from various manufacturers (~1995)

Page 21: Wir schaffen Wissen –heute für morgen Paul Scherrer Institut

Practical Experience (1)

R. Künzi Thermal Design CAS 2014 12.05.2014 21

• SLS Booster Dipole Power Supply in Topup Mode– Junction temperature variations– IGBT failures after 3.5a of operation

Page 22: Wir schaffen Wissen –heute für morgen Paul Scherrer Institut

Practical Experience (2)

R. Künzi Thermal Design CAS 2014 12.05.2014 22

• 3Hz Oscillations: 68……82°C ∆Tj = 14K, Tm = 75°C– 40 weeks/a, continuous → 80*106 cy/a → 6a to failure– 40 weeks/a, 16cy every 100s → 15*106 cy/a → 33a to failure– Extreme extrapolation: Result valid ???

500*106 cy

Page 23: Wir schaffen Wissen –heute für morgen Paul Scherrer Institut

Practical Experience (3)

R. Künzi Thermal Design CAS 2014 12.05.2014 23

• 100s Oscillations: 30……86°C ∆Tj = 56K, Tm = 58°C– 40 weeks/a, 1cy every 100s → 0.25*106 cy/a → 4a to failure

that is, what we have experienced!

1*106 cycles

Page 24: Wir schaffen Wissen –heute für morgen Paul Scherrer Institut

Thermal Design of a PCB

R. Künzi Thermal Design CAS 2014 12.05.2014 24

10A H-bridge on a PCB 100mm 160mm

Page 25: Wir schaffen Wissen –heute für morgen Paul Scherrer Institut

First prototype

R. Künzi Thermal Design CAS 2014 12.05.2014 25

Infrared image at full load

Page 26: Wir schaffen Wissen –heute für morgen Paul Scherrer Institut

Replace DC/DC converter 24V/15V

R. Künzi Thermal Design CAS 2014 12.05.2014 26

New:

SMD DC/DC-converter in a metallic case

Protoype 1:

THT DC/DC-converter in a plastic case

Page 27: Wir schaffen Wissen –heute für morgen Paul Scherrer Institut

R. Künzi Thermal Design CAS 2014 12.05.2014 27

New:

Switched modeconverter

15V / 5V

Prototype 1:

Linear converter15V / 5V

Replace DC/DC converters 15V/5V

Page 28: Wir schaffen Wissen –heute für morgen Paul Scherrer Institut

Replace filter chokes

R. Künzi Thermal Design CAS 2014 12.05.2014 28

Neu:

Four chokes of3.9uH/12A each

Prototype 1:

Two chokes of8.2uH/13A each

Page 29: Wir schaffen Wissen –heute für morgen Paul Scherrer Institut

Replace snubber resistors

R. Künzi Thermal Design CAS 2014 12.05.2014 29

New:

2W snubber-resistors

Prototype 1:

100mW snubber-resistors

Page 30: Wir schaffen Wissen –heute für morgen Paul Scherrer Institut

Improve heat flow

R. Künzi Thermal Design CAS 2014 12.05.2014 30

• Thermal conductivity of different materials λ [W/K m]– Gold 318– Silver 429– Copper 401– Aluminum 237– Steel 50– Heat transfer foil 2– PCB core material (FR-4) 0.3– Air 0.025

Page 31: Wir schaffen Wissen –heute für morgen Paul Scherrer Institut

Improve heat flow

R. Künzi Thermal Design CAS 2014 12.05.2014 31

W

K

cmW

Kmmm

A

lRth 3.13

43.0

6.12

=⋅

⋅⋅=⋅

KWW

KPRT th 133103.13 =⋅=⋅=∆

• Heat path through the PCB– Mounting area of semiconductors A = 2cm x 2cm = 4cm2

– Distance from top to bottom layer l = 1.6mm– Thermal conductivity PCB core (FR-4) λ = 0.3 W/K m– Total losses in the semiconductors P ≈ 10W

– Thermal resistance:

– Temp. differenceTop - Bottom

Page 32: Wir schaffen Wissen –heute für morgen Paul Scherrer Institut

Improve heat flow

R. Künzi Thermal Design CAS 2014 12.05.2014 32

22222 0255.0))15.0()175.0(()( mmmmmmriraA =⋅−=⋅−= ππ

W

K

mmW

Kmmm

A

lRth 8.156

0255.0400

6.12

=⋅

⋅⋅=⋅

WKRth /45.2=

K

K

W

K

WW

RR

PT

ViathLPth

7.20

45.2

1

3.13

11

1011

1 =⋅+⋅⋅=+

⋅=∆

−−

• Additional heat path through vias– Outside radius ra = 0.175mm– Inside radius ri = 0.15 mm– Via heigth l = 1.6 mm– Thermal conductivity of Cu λ = 400 W/K m

– On 4 cm2 there is space for 8 x 8 = 64 vias– Thermal resistance of 64 vias:– Temperature

differenceTop - Bottom

Page 33: Wir schaffen Wissen –heute für morgen Paul Scherrer Institut

Improve heat flow

R. Künzi Thermal Design CAS 2014 12.05.2014 33

Original design

Improved design

Page 34: Wir schaffen Wissen –heute für morgen Paul Scherrer Institut

Heat transfer to ambient

R. Künzi Thermal Design CAS 2014 12.05.2014 34

Heat sink

Heat transfer foil

MOSFETs

PCB

Al bars

Cover

Page 35: Wir schaffen Wissen –heute für morgen Paul Scherrer Institut

Comparison Prototype 1 and 2

R. Künzi Thermal Design CAS 2014 12.05.2014 35

Better heatspreading

Lowertemperatures

Good corre-lation withcalcualtions

Page 36: Wir schaffen Wissen –heute für morgen Paul Scherrer Institut

R. Künzi Thermal Design CAS 2014 12.05.2014 36

References[1] Infineon, Datasheet FF600R06ME3 Rev. 3.1[2] Semikron, Applikationshandbuch Leistungs-

halbleiter, VSL Verlag 2010[3] Infineon, Thermal equivalent circuit models,

AN2008-03[4] Infineon, Technical Information IGBT modules,

Use of Power Cycling curves for IGBT4, AN2010-02